parent
1248775177
commit
cfdf464052
1 changed files with 955 additions and 0 deletions
@ -0,0 +1,955 @@ |
||||
#include <opencv2/opencv.hpp> |
||||
#include <iostream> |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
class CV_EXPORTS_W Subdiv2D |
||||
{ |
||||
public: |
||||
|
||||
enum
|
||||
{ |
||||
PTLOC_ERROR = -2, |
||||
PTLOC_OUTSIDE_RECT = -1, |
||||
PTLOC_INSIDE = 0, |
||||
PTLOC_VERTEX = 1, |
||||
PTLOC_ON_EDGE = 2 |
||||
}; |
||||
|
||||
enum
|
||||
{ |
||||
NEXT_AROUND_ORG = 0x00, |
||||
NEXT_AROUND_DST = 0x22, |
||||
PREV_AROUND_ORG = 0x11, |
||||
PREV_AROUND_DST = 0x33, |
||||
NEXT_AROUND_LEFT = 0x13, |
||||
NEXT_AROUND_RIGHT = 0x31, |
||||
PREV_AROUND_LEFT = 0x20, |
||||
PREV_AROUND_RIGHT = 0x02 |
||||
}; |
||||
|
||||
CV_WRAP Subdiv2D(); |
||||
CV_WRAP Subdiv2D(Rect rect); |
||||
CV_WRAP void initDelaunay(Rect rect); |
||||
|
||||
CV_WRAP int insert(Point2f pt); |
||||
CV_WRAP void insert(const vector<Point2f>& ptvec); |
||||
CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); |
||||
|
||||
CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0); |
||||
CV_WRAP void getTriangleList(CV_OUT vector<Vec6f>& triangleList); |
||||
CV_WRAP void getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList); |
||||
|
||||
CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const; |
||||
|
||||
CV_WRAP int getEdge( int edge, int nextEdgeType ) const; |
||||
CV_WRAP int nextEdge(int edge) const; |
||||
CV_WRAP int rotateEdge(int edge, int rotate) const; |
||||
CV_WRAP int symEdge(int edge) const; |
||||
CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const; |
||||
CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const; |
||||
|
||||
protected: |
||||
int newEdge(); |
||||
void deleteEdge(int edge); |
||||
int newPoint(Point2f pt, bool isvirtual, int firstEdge=0); |
||||
void deletePoint(int vtx); |
||||
void setEdgePoints( int edge, int orgPt, int dstPt ); |
||||
void splice( int edgeA, int edgeB ); |
||||
int connectEdges( int edgeA, int edgeB ); |
||||
void swapEdges( int edge ); |
||||
int isRightOf(Point2f pt, int edge) const; |
||||
void calcVoronoi(); |
||||
void clearVoronoi(); |
||||
|
||||
struct CV_EXPORTS Vertex |
||||
{ |
||||
Vertex(); |
||||
Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); |
||||
bool isvirtual() const; |
||||
bool isfree() const; |
||||
int firstEdge; |
||||
int type; |
||||
Point2f pt; |
||||
}; |
||||
struct CV_EXPORTS QuadEdge |
||||
{ |
||||
QuadEdge(); |
||||
QuadEdge(int edgeidx); |
||||
bool isfree() const; |
||||
int next[4]; |
||||
int pt[4]; |
||||
}; |
||||
|
||||
vector<Vertex> vtx; |
||||
vector<QuadEdge> qedges; |
||||
int freeQEdge; |
||||
int freePoint; |
||||
bool validGeometry; |
||||
|
||||
int recentEdge; |
||||
Point2f topLeft; |
||||
Point2f bottomRight; |
||||
}; |
||||
|
||||
|
||||
int Subdiv2D::nextEdge(int edge) const |
||||
{ |
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); |
||||
return qedges[edge >> 2].next[edge & 3]; |
||||
} |
||||
|
||||
int Subdiv2D::rotateEdge(int edge, int rotate) const |
||||
{ |
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); |
||||
return (edge & ~3) + ((edge + rotate) & 3); |
||||
} |
||||
|
||||
int Subdiv2D::symEdge(int edge) const |
||||
{ |
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); |
||||
return edge ^ 2; |
||||
} |
||||
|
||||
int Subdiv2D::getEdge(int edge, int nextEdgeType) const |
||||
{ |
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); |
||||
edge = qedges[edge >> 2].next[(edge + nextEdgeType) & 3]; |
||||
return (edge & ~3) + ((edge + (nextEdgeType >> 4)) & 3); |
||||
} |
||||
|
||||
int Subdiv2D::edgeOrg(int edge, CV_OUT Point2f* orgpt) const |
||||
{ |
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); |
||||
int vidx = qedges[edge >> 2].pt[edge & 3]; |
||||
if( orgpt ) |
||||
{ |
||||
CV_DbgAssert((size_t)vidx < vtx.size()); |
||||
*orgpt = vtx[vidx].pt; |
||||
} |
||||
return vidx; |
||||
} |
||||
|
||||
int Subdiv2D::edgeDst(int edge, CV_OUT Point2f* dstpt) const |
||||
{ |
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); |
||||
int vidx = qedges[edge >> 2].pt[(edge + 2) & 3]; |
||||
if( dstpt ) |
||||
{ |
||||
CV_DbgAssert((size_t)vidx < vtx.size()); |
||||
*dstpt = vtx[vidx].pt; |
||||
} |
||||
return vidx; |
||||
} |
||||
|
||||
|
||||
Point2f Subdiv2D::getVertex(int vertex, CV_OUT int* firstEdge) const |
||||
{ |
||||
CV_DbgAssert((size_t)vertex < vtx.size()); |
||||
if( firstEdge ) |
||||
*firstEdge = vtx[vertex].firstEdge; |
||||
return vtx[vertex].pt; |
||||
} |
||||
|
||||
|
||||
Subdiv2D::Subdiv2D() |
||||
{ |
||||
validGeometry = false; |
||||
freeQEdge = 0; |
||||
freePoint = 0; |
||||
recentEdge = 0; |
||||
} |
||||
|
||||
Subdiv2D::Subdiv2D(Rect rect) |
||||
{ |
||||
validGeometry = false; |
||||
freeQEdge = 0; |
||||
freePoint = 0; |
||||
recentEdge = 0; |
||||
|
||||
initDelaunay(rect); |
||||
} |
||||
|
||||
|
||||
Subdiv2D::QuadEdge::QuadEdge() |
||||
{ |
||||
next[0] = next[1] = next[2] = next[3] = 0; |
||||
pt[0] = pt[1] = pt[2] = pt[3] = 0; |
||||
} |
||||
|
||||
Subdiv2D::QuadEdge::QuadEdge(int edgeidx) |
||||
{ |
||||
next[0] = edgeidx; |
||||
next[1] = edgeidx+3; |
||||
next[2] = edgeidx+2; |
||||
next[3] = edgeidx+1; |
||||
|
||||
pt[0] = pt[1] = pt[2] = pt[3] = 0; |
||||
} |
||||
|
||||
bool Subdiv2D::QuadEdge::isfree() const |
||||
{ |
||||
return next[0] <= 0; |
||||
} |
||||
|
||||
Subdiv2D::Vertex::Vertex() |
||||
{ |
||||
firstEdge = 0; |
||||
type = -1; |
||||
} |
||||
|
||||
Subdiv2D::Vertex::Vertex(Point2f _pt, bool _isvirtual, int _firstEdge) |
||||
{ |
||||
firstEdge = _firstEdge; |
||||
type = (int)_isvirtual; |
||||
pt = _pt; |
||||
} |
||||
|
||||
bool Subdiv2D::Vertex::isvirtual() const |
||||
{ |
||||
return type > 0; |
||||
} |
||||
|
||||
bool Subdiv2D::Vertex::isfree() const |
||||
{ |
||||
return firstEdge <= 0; |
||||
} |
||||
|
||||
void Subdiv2D::splice( int edgeA, int edgeB ) |
||||
{ |
||||
int& a_next = qedges[edgeA >> 2].next[edgeA & 3]; |
||||
int& b_next = qedges[edgeB >> 2].next[edgeB & 3]; |
||||
int a_rot = rotateEdge(a_next, 1); |
||||
int b_rot = rotateEdge(b_next, 1); |
||||
int& a_rot_next = qedges[a_rot >> 2].next[a_rot & 3]; |
||||
int& b_rot_next = qedges[b_rot >> 2].next[b_rot & 3]; |
||||
std::swap(a_next, b_next); |
||||
std::swap(a_rot_next, b_rot_next); |
||||
} |
||||
|
||||
void Subdiv2D::setEdgePoints(int edge, int orgPt, int dstPt) |
||||
{ |
||||
qedges[edge >> 2].pt[edge & 3] = orgPt; |
||||
qedges[edge >> 2].pt[(edge + 2) & 3] = dstPt; |
||||
} |
||||
|
||||
int Subdiv2D::connectEdges( int edgeA, int edgeB ) |
||||
{ |
||||
int edge = newEdge(); |
||||
|
||||
splice(edge, getEdge(edgeA, NEXT_AROUND_LEFT)); |
||||
splice(symEdge(edge), edgeB); |
||||
|
||||
setEdgePoints(edge, edgeDst(edgeA), edgeOrg(edgeB)); |
||||
return edge; |
||||
} |
||||
|
||||
void Subdiv2D::swapEdges( int edge ) |
||||
{ |
||||
int sedge = symEdge(edge); |
||||
int a = getEdge(edge, PREV_AROUND_ORG); |
||||
int b = getEdge(sedge, PREV_AROUND_ORG); |
||||
|
||||
splice(edge, a); |
||||
splice(sedge, b); |
||||
|
||||
setEdgePoints(edge, edgeDst(a), edgeDst(b)); |
||||
|
||||
splice(edge, getEdge(a, NEXT_AROUND_LEFT)); |
||||
splice(sedge, getEdge(b, NEXT_AROUND_LEFT)); |
||||
} |
||||
|
||||
int Subdiv2D::isRightOf(Point2f pt, int edge) const |
||||
{ |
||||
Point2f org, dst; |
||||
edgeOrg(edge, &org); |
||||
edgeDst(edge, &dst); |
||||
double cw_area = cvTriangleArea( pt, dst, org ); |
||||
|
||||
return (cw_area > 0) - (cw_area < 0); |
||||
} |
||||
|
||||
|
||||
int Subdiv2D::newEdge() |
||||
{ |
||||
if( freeQEdge == 0 ) |
||||
{ |
||||
qedges.push_back(QuadEdge()); |
||||
freeQEdge = (int)(qedges.size()-1); |
||||
} |
||||
int edge = freeQEdge*4; |
||||
freeQEdge = qedges[edge >> 2].next[1]; |
||||
qedges[edge >> 2] = QuadEdge(edge); |
||||
return edge; |
||||
} |
||||
|
||||
void Subdiv2D::deleteEdge(int edge) |
||||
{ |
||||
CV_DbgAssert((size_t)(edge >> 2) < (size_t)qedges.size()); |
||||
splice( edge, getEdge(edge, PREV_AROUND_ORG) ); |
||||
int sedge = symEdge(edge); |
||||
splice(sedge, getEdge(sedge, PREV_AROUND_ORG) ); |
||||
|
||||
edge >>= 2; |
||||
qedges[edge].next[0] = -1; |
||||
qedges[edge].next[1] = freeQEdge; |
||||
freeQEdge = edge; |
||||
} |
||||
|
||||
int Subdiv2D::newPoint(Point2f pt, bool isvirtual, int firstEdge) |
||||
{ |
||||
if( freePoint == 0 ) |
||||
{ |
||||
vtx.push_back(Vertex()); |
||||
freePoint = (int)(vtx.size()-1); |
||||
vtx[freePoint].type = -1; |
||||
vtx[freePoint].firstEdge = 0; |
||||
} |
||||
int vidx = freePoint; |
||||
freePoint = vtx[vidx].firstEdge; |
||||
vtx[vidx] = Vertex(pt, isvirtual, firstEdge); |
||||
|
||||
return vidx; |
||||
} |
||||
|
||||
void Subdiv2D::deletePoint(int vidx) |
||||
{ |
||||
CV_DbgAssert( (size_t)vidx < vtx.size() ); |
||||
vtx[vidx].firstEdge = freePoint; |
||||
vtx[vidx].type = -1; |
||||
freePoint = vidx; |
||||
} |
||||
|
||||
int Subdiv2D::locate(Point2f pt, int& _edge, int& _vertex) |
||||
{ |
||||
int vertex = 0; |
||||
|
||||
int i, maxEdges = (int)(qedges.size() * 4); |
||||
int edge = recentEdge; |
||||
|
||||
CV_Assert(edge > 0); |
||||
|
||||
if( pt.x < topLeft.x || pt.y < topLeft.y || pt.x >= bottomRight.x || pt.y >= bottomRight.y ) |
||||
CV_Error( CV_StsOutOfRange, "" ); |
||||
|
||||
int location = PTLOC_ERROR; |
||||
|
||||
int right_of_curr = isRightOf(pt, edge); |
||||
if( right_of_curr > 0 ) |
||||
{ |
||||
edge = symEdge(edge); |
||||
right_of_curr = -right_of_curr; |
||||
} |
||||
|
||||
for( i = 0; i < maxEdges; i++ ) |
||||
{ |
||||
int onext_edge = nextEdge( edge ); |
||||
int dprev_edge = getEdge( edge, PREV_AROUND_DST ); |
||||
|
||||
int right_of_onext = isRightOf( pt, onext_edge ); |
||||
int right_of_dprev = isRightOf( pt, dprev_edge ); |
||||
|
||||
if( right_of_dprev > 0 ) |
||||
{ |
||||
if( right_of_onext > 0 || (right_of_onext == 0 && right_of_curr == 0) ) |
||||
{ |
||||
location = PTLOC_INSIDE; |
||||
break; |
||||
} |
||||
else |
||||
{ |
||||
right_of_curr = right_of_onext; |
||||
edge = onext_edge; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
if( right_of_onext > 0 ) |
||||
{ |
||||
if( right_of_dprev == 0 && right_of_curr == 0 ) |
||||
{ |
||||
location = PTLOC_INSIDE; |
||||
break; |
||||
} |
||||
else |
||||
{ |
||||
right_of_curr = right_of_dprev; |
||||
edge = dprev_edge; |
||||
} |
||||
} |
||||
else if( right_of_curr == 0 && |
||||
isRightOf( vtx[edgeDst(onext_edge)].pt, edge ) >= 0 ) |
||||
{ |
||||
edge = symEdge( edge ); |
||||
} |
||||
else |
||||
{ |
||||
right_of_curr = right_of_onext; |
||||
edge = onext_edge; |
||||
} |
||||
} |
||||
} |
||||
|
||||
recentEdge = edge; |
||||
|
||||
if( location == PTLOC_INSIDE ) |
||||
{ |
||||
Point2f org_pt, dst_pt; |
||||
edgeOrg(edge, &org_pt); |
||||
edgeDst(edge, &dst_pt); |
||||
|
||||
double t1 = fabs( pt.x - org_pt.x ); |
||||
t1 += fabs( pt.y - org_pt.y ); |
||||
double t2 = fabs( pt.x - dst_pt.x ); |
||||
t2 += fabs( pt.y - dst_pt.y ); |
||||
double t3 = fabs( org_pt.x - dst_pt.x ); |
||||
t3 += fabs( org_pt.y - dst_pt.y ); |
||||
|
||||
if( t1 < FLT_EPSILON ) |
||||
{ |
||||
location = PTLOC_VERTEX; |
||||
vertex = edgeOrg( edge ); |
||||
edge = 0; |
||||
} |
||||
else if( t2 < FLT_EPSILON ) |
||||
{ |
||||
location = PTLOC_VERTEX; |
||||
vertex = edgeDst( edge ); |
||||
edge = 0; |
||||
} |
||||
else if( (t1 < t3 || t2 < t3) && |
||||
fabs( cvTriangleArea( pt, org_pt, dst_pt )) < FLT_EPSILON ) |
||||
{ |
||||
location = PTLOC_ON_EDGE; |
||||
vertex = 0; |
||||
} |
||||
} |
||||
|
||||
if( location == PTLOC_ERROR ) |
||||
{ |
||||
edge = 0; |
||||
vertex = 0; |
||||
} |
||||
|
||||
_edge = edge; |
||||
_vertex = vertex; |
||||
|
||||
return location; |
||||
} |
||||
|
||||
|
||||
inline bool |
||||
isPtInCircle3( Point2f pt, Point2f a, Point2f b, Point2f c) |
||||
{ |
||||
const double eps = FLT_EPSILON*0.125; |
||||
double val = ((double)a.x * a.x + (double)a.y * a.y) * cvTriangleArea( b, c, pt ); |
||||
val -= ((double)b.x * b.x + (double)b.y * b.y) * cvTriangleArea( a, c, pt ); |
||||
val += ((double)c.x * c.x + (double)c.y * c.y) * cvTriangleArea( a, b, pt ); |
||||
val -= ((double)pt.x * pt.x + (double)pt.y * pt.y) * cvTriangleArea( a, b, c ); |
||||
|
||||
return val > eps ? 1 : val < -eps ? -1 : 0; |
||||
} |
||||
|
||||
|
||||
int Subdiv2D::insert(Point2f pt) |
||||
{ |
||||
int curr_point = 0, curr_edge = 0, deleted_edge = 0; |
||||
int location = locate( pt, curr_edge, curr_point ); |
||||
|
||||
if( location == PTLOC_ERROR ) |
||||
CV_Error( CV_StsBadSize, "" ); |
||||
|
||||
if( location == PTLOC_OUTSIDE_RECT ) |
||||
CV_Error( CV_StsOutOfRange, "" ); |
||||
|
||||
if( location == PTLOC_VERTEX ) |
||||
return curr_point; |
||||
|
||||
if( location == PTLOC_ON_EDGE ) |
||||
{ |
||||
deleted_edge = curr_edge; |
||||
recentEdge = curr_edge = getEdge( curr_edge, PREV_AROUND_ORG ); |
||||
deleteEdge(deleted_edge); |
||||
} |
||||
else if( location == PTLOC_INSIDE ) |
||||
; |
||||
else |
||||
CV_Error_(CV_StsError, ("Subdiv2D::locate returned invalid location = %d", location) ); |
||||
|
||||
assert( curr_edge != 0 ); |
||||
validGeometry = false; |
||||
|
||||
curr_point = newPoint(pt, false); |
||||
int base_edge = newEdge(); |
||||
int first_point = edgeOrg(curr_edge); |
||||
setEdgePoints(base_edge, first_point, curr_point); |
||||
splice(base_edge, curr_edge); |
||||
|
||||
do |
||||
{ |
||||
base_edge = connectEdges( curr_edge, symEdge(base_edge) ); |
||||
curr_edge = getEdge(base_edge, PREV_AROUND_ORG); |
||||
} |
||||
while( edgeDst(curr_edge) != first_point ); |
||||
|
||||
curr_edge = getEdge( base_edge, PREV_AROUND_ORG ); |
||||
|
||||
int i, max_edges = qedges.size()*4; |
||||
|
||||
for( i = 0; i < max_edges; i++ ) |
||||
{ |
||||
int temp_dst = 0, curr_org = 0, curr_dst = 0; |
||||
int temp_edge = getEdge( curr_edge, PREV_AROUND_ORG ); |
||||
|
||||
temp_dst = edgeDst( temp_edge ); |
||||
curr_org = edgeOrg( curr_edge ); |
||||
curr_dst = edgeDst( curr_edge ); |
||||
|
||||
if( isRightOf( vtx[temp_dst].pt, curr_edge ) > 0 && |
||||
isPtInCircle3( vtx[curr_org].pt, vtx[temp_dst].pt, |
||||
vtx[curr_dst].pt, vtx[curr_point].pt ) < 0 ) |
||||
{ |
||||
swapEdges( curr_edge ); |
||||
curr_edge = getEdge( curr_edge, PREV_AROUND_ORG ); |
||||
} |
||||
else if( curr_org == first_point ) |
||||
break; |
||||
else |
||||
curr_edge = getEdge( nextEdge( curr_edge ), PREV_AROUND_LEFT ); |
||||
} |
||||
|
||||
return curr_point; |
||||
} |
||||
|
||||
void Subdiv2D::insert(const vector<Point2f>& ptvec) |
||||
{ |
||||
for( size_t i = 0; i < ptvec.size(); i++ ) |
||||
insert(ptvec[i]); |
||||
} |
||||
|
||||
void Subdiv2D::initDelaunay( Rect rect ) |
||||
{ |
||||
float big_coord = 3.f * MAX( rect.width, rect.height ); |
||||
float rx = (float)rect.x; |
||||
float ry = (float)rect.y; |
||||
|
||||
vtx.clear(); |
||||
qedges.clear(); |
||||
|
||||
recentEdge = 0; |
||||
validGeometry = false; |
||||
|
||||
topLeft = Point2f( rx, ry ); |
||||
bottomRight = Point2f( rx + rect.width, ry + rect.height ); |
||||
|
||||
Point2f ppA( rx + big_coord, ry ); |
||||
Point2f ppB( rx, ry + big_coord ); |
||||
Point2f ppC( rx - big_coord, ry - big_coord ); |
||||
|
||||
vtx.push_back(Vertex()); |
||||
qedges.push_back(QuadEdge()); |
||||
|
||||
freeQEdge = 0; |
||||
freePoint = 0; |
||||
|
||||
int pA = newPoint(ppA, false); |
||||
int pB = newPoint(ppB, false); |
||||
int pC = newPoint(ppC, false); |
||||
|
||||
int edge_AB = newEdge(); |
||||
int edge_BC = newEdge(); |
||||
int edge_CA = newEdge(); |
||||
|
||||
setEdgePoints( edge_AB, pA, pB ); |
||||
setEdgePoints( edge_BC, pB, pC ); |
||||
setEdgePoints( edge_CA, pC, pA ); |
||||
|
||||
splice( edge_AB, symEdge( edge_CA )); |
||||
splice( edge_BC, symEdge( edge_AB )); |
||||
splice( edge_CA, symEdge( edge_BC )); |
||||
|
||||
recentEdge = edge_AB; |
||||
} |
||||
|
||||
|
||||
void Subdiv2D::clearVoronoi() |
||||
{ |
||||
size_t i, total = qedges.size(); |
||||
|
||||
for( i = 0; i < total; i++ ) |
||||
qedges[i].pt[1] = qedges[i].pt[3] = 0; |
||||
|
||||
total = vtx.size(); |
||||
for( i = 0; i < total; i++ ) |
||||
{ |
||||
if( vtx[i].isvirtual() ) |
||||
deletePoint((int)i); |
||||
} |
||||
|
||||
validGeometry = false; |
||||
} |
||||
|
||||
|
||||
static Point2f computeVoronoiPoint(Point2f org0, Point2f dst0, Point2f org1, Point2f dst1) |
||||
{ |
||||
double a0 = dst0.x - org0.x; |
||||
double b0 = dst0.y - org0.y; |
||||
double c0 = -0.5*(a0 * (dst0.x + org0.x) + b0 * (dst0.y + org0.y)); |
||||
|
||||
double a1 = dst1.x - org1.x; |
||||
double b1 = dst1.y - org1.y; |
||||
double c1 = -0.5*(a1 * (dst1.x + org1.x) + b1 * (dst1.y + org1.y)); |
||||
|
||||
double det = a0 * b1 - a1 * b0; |
||||
|
||||
if( det != 0 ) |
||||
{ |
||||
det = 1. / det; |
||||
return Point2f((float) ((b0 * c1 - b1 * c0) * det), |
||||
(float) ((a1 * c0 - a0 * c1) * det)); |
||||
} |
||||
|
||||
return Point2f(FLT_MAX, FLT_MAX); |
||||
} |
||||
|
||||
|
||||
void Subdiv2D::calcVoronoi() |
||||
{ |
||||
// check if it is already calculated
|
||||
if( validGeometry ) |
||||
return; |
||||
|
||||
clearVoronoi(); |
||||
int i, total = (int)qedges.size(); |
||||
|
||||
// loop through all quad-edges, except for the first 3 (#1, #2, #3 - 0 is reserved for "NULL" pointer)
|
||||
for( i = 4; i < total; i++ ) |
||||
{ |
||||
QuadEdge& quadedge = qedges[i]; |
||||
|
||||
if( quadedge.isfree() ) |
||||
continue; |
||||
|
||||
int edge0 = (int)(i*4); |
||||
Point2f org0, dst0, org1, dst1; |
||||
|
||||
if( !quadedge.pt[3] ) |
||||
{ |
||||
int edge1 = getEdge( edge0, NEXT_AROUND_LEFT ); |
||||
int edge2 = getEdge( edge1, NEXT_AROUND_LEFT ); |
||||
|
||||
edgeOrg(edge0, &org0); |
||||
edgeDst(edge0, &dst0); |
||||
edgeOrg(edge1, &org1); |
||||
edgeDst(edge1, &dst1); |
||||
|
||||
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1); |
||||
|
||||
if( fabs( virt_point.x ) < FLT_MAX * 0.5 && |
||||
fabs( virt_point.y ) < FLT_MAX * 0.5 ) |
||||
{ |
||||
quadedge.pt[3] = qedges[edge1 >> 2].pt[3 - (edge1 & 2)] = |
||||
qedges[edge2 >> 2].pt[3 - (edge2 & 2)] = newPoint(virt_point, true); |
||||
} |
||||
} |
||||
|
||||
if( !quadedge.pt[1] ) |
||||
{ |
||||
int edge1 = getEdge( edge0, NEXT_AROUND_RIGHT ); |
||||
int edge2 = getEdge( edge1, NEXT_AROUND_RIGHT ); |
||||
|
||||
edgeOrg(edge0, &org0); |
||||
edgeDst(edge0, &dst0); |
||||
edgeOrg(edge1, &org1); |
||||
edgeDst(edge1, &dst1); |
||||
|
||||
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1); |
||||
|
||||
if( fabs( virt_point.x ) < FLT_MAX * 0.5 && |
||||
fabs( virt_point.y ) < FLT_MAX * 0.5 ) |
||||
{ |
||||
quadedge.pt[1] = qedges[edge1 >> 2].pt[1 + (edge1 & 2)] =
|
||||
qedges[edge2 >> 2].pt[1 + (edge2 & 2)] = newPoint(virt_point, true); |
||||
} |
||||
} |
||||
} |
||||
|
||||
validGeometry = true; |
||||
} |
||||
|
||||
|
||||
static int |
||||
isRightOf2( const Point2f& pt, const Point2f& org, const Point2f& diff ) |
||||
{ |
||||
double cw_area = ((double)org.x - pt.x)*diff.y - ((double)org.y - pt.y)*diff.x; |
||||
return (cw_area > 0) - (cw_area < 0); |
||||
} |
||||
|
||||
|
||||
int Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt) |
||||
{ |
||||
if( !validGeometry ) |
||||
calcVoronoi(); |
||||
|
||||
int vertex = 0, edge = 0; |
||||
int loc = locate( pt, edge, vertex ); |
||||
|
||||
if( loc != PTLOC_ON_EDGE && loc != PTLOC_INSIDE ) |
||||
return vertex; |
||||
|
||||
vertex = 0; |
||||
|
||||
Point2f start; |
||||
edgeOrg(edge, &start); |
||||
Point2f diff = pt - start; |
||||
|
||||
edge = rotateEdge(edge, 1); |
||||
|
||||
int i, total = (int)vtx.size(); |
||||
|
||||
for( i = 0; i < total; i++ ) |
||||
{ |
||||
Point2f t; |
||||
|
||||
for(;;) |
||||
{ |
||||
CV_Assert( edgeDst(edge, &t) > 0 ); |
||||
if( isRightOf2( t, start, diff ) >= 0 ) |
||||
break; |
||||
|
||||
edge = getEdge( edge, NEXT_AROUND_LEFT ); |
||||
} |
||||
|
||||
for(;;) |
||||
{ |
||||
CV_Assert( edgeOrg( edge, &t ) > 0 ); |
||||
|
||||
if( isRightOf2( t, start, diff ) < 0 ) |
||||
break; |
||||
|
||||
edge = getEdge( edge, PREV_AROUND_LEFT ); |
||||
} |
||||
|
||||
Point2f tempDiff; |
||||
edgeDst(edge, &tempDiff); |
||||
edgeOrg(edge, &t); |
||||
tempDiff -= t; |
||||
|
||||
if( isRightOf2( pt, t, tempDiff ) >= 0 ) |
||||
{ |
||||
vertex = edgeOrg(rotateEdge( edge, 3 )); |
||||
break; |
||||
} |
||||
|
||||
edge = symEdge( edge ); |
||||
} |
||||
|
||||
if( nearestPt && vertex > 0 ) |
||||
*nearestPt = vtx[vertex].pt; |
||||
|
||||
return vertex; |
||||
} |
||||
|
||||
void Subdiv2D::getTriangleList(vector<Vec6f>& triangleList) |
||||
{ |
||||
vector<bool> processed(vtx.size(), false); |
||||
processed[0] = true; |
||||
|
||||
calcVoronoi(); |
||||
triangleList.clear(); |
||||
|
||||
for( size_t i = 4; i < qedges.size(); i++ ) |
||||
{ |
||||
if( qedges[i].isfree() ) |
||||
continue; |
||||
int e0 = (int)(i*4), e1 = rotateEdge(e0, 1), e; |
||||
int vidx0 = edgeOrg(e1), vidx1 = edgeDst(e1); |
||||
Point2f a, b, c; |
||||
if( !processed[vidx0] ) |
||||
{ |
||||
edgeOrg(e0, &a); |
||||
edgeDst(e0, &b); |
||||
e = getEdge(e0, NEXT_AROUND_LEFT); |
||||
edgeDst(e, &c); |
||||
triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y)); |
||||
processed[vidx0] = true; |
||||
} |
||||
if( !processed[vidx1] ) |
||||
{ |
||||
edgeDst(e0, &a); |
||||
edgeOrg(e0, &b); |
||||
e = getEdge(e0, PREV_AROUND_RIGHT); |
||||
edgeOrg(e, &c); |
||||
triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y)); |
||||
processed[vidx1] = true; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void Subdiv2D::getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList) |
||||
{ |
||||
calcVoronoi(); |
||||
facetList.clear(); |
||||
|
||||
vector<Point2f> buf; |
||||
|
||||
size_t i, total; |
||||
if( idx.empty() ) |
||||
i = 4, total = vtx.size(); |
||||
else |
||||
i = 0, total = idx.size(); |
||||
|
||||
for( ; i < total; i++ ) |
||||
{ |
||||
int k = idx.empty() ? (int)i : idx[i]; |
||||
|
||||
if( vtx[k].isvirtual() ) |
||||
continue; |
||||
int edge = rotateEdge(vtx[k].firstEdge, 1), t = edge;
|
||||
|
||||
// gather points
|
||||
buf.clear(); |
||||
do |
||||
{ |
||||
buf.push_back(vtx[edgeOrg(t)].pt); |
||||
t = getEdge( t, NEXT_AROUND_LEFT ); |
||||
} |
||||
while( t != edge ); |
||||
|
||||
facetList.push_back(buf); |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
static void help() |
||||
{ |
||||
cout << "\nThis program demostrates iterative construction of\n" |
||||
"delaunay triangulation and voronoi tesselation.\n" |
||||
"It draws a random set of points in an image and then delaunay triangulates them.\n" |
||||
"Usage: \n" |
||||
"./delaunay \n" |
||||
"\nThis program builds the traingulation interactively, you may stop this process by\n" |
||||
"hitting any key.\n"; |
||||
} |
||||
|
||||
|
||||
static void draw_subdiv_point( Mat& img, Point2f fp, Scalar color ) |
||||
{ |
||||
circle( img, fp, 3, color, CV_FILLED, 8, 0 ); |
||||
} |
||||
|
||||
static void draw_subdiv( Mat& img, Subdiv2D& subdiv, Scalar delaunay_color ) |
||||
{ |
||||
vector<Vec6f> triangleList; |
||||
subdiv.getTriangleList(triangleList); |
||||
vector<Point> pt(3); |
||||
|
||||
for( size_t i = 0; i < triangleList.size(); i++ ) |
||||
{ |
||||
Vec6f t = triangleList[i]; |
||||
pt[0] = Point(cvRound(t[0]), cvRound(t[1])); |
||||
pt[1] = Point(cvRound(t[2]), cvRound(t[3])); |
||||
pt[2] = Point(cvRound(t[4]), cvRound(t[5])); |
||||
line(img, pt[0], pt[1], delaunay_color, 1, CV_AA, 0); |
||||
line(img, pt[1], pt[2], delaunay_color, 1, CV_AA, 0); |
||||
line(img, pt[2], pt[0], delaunay_color, 1, CV_AA, 0); |
||||
} |
||||
} |
||||
|
||||
static void locate_point( Mat& img, Subdiv2D& subdiv, Point2f fp, Scalar active_color ) |
||||
{ |
||||
int e0=0, vertex=0; |
||||
|
||||
subdiv.locate(fp, e0, vertex); |
||||
|
||||
if( e0 > 0 ) |
||||
{ |
||||
int e = e0; |
||||
do |
||||
{ |
||||
Point2f org, dst; |
||||
if( subdiv.edgeOrg(e, &org) > 0 && subdiv.edgeDst(e, &dst) > 0 ) |
||||
line( img, org, dst, active_color, 3, CV_AA, 0 ); |
||||
|
||||
e = subdiv.getEdge(e, Subdiv2D::NEXT_AROUND_LEFT); |
||||
} |
||||
while( e != e0 ); |
||||
} |
||||
|
||||
draw_subdiv_point( img, fp, active_color ); |
||||
} |
||||
|
||||
|
||||
void paint_voronoi( Mat& img, Subdiv2D& subdiv ) |
||||
{ |
||||
vector<vector<Point2f> > facets; |
||||
subdiv.getVoronoiFacetList(vector<int>(), facets); |
||||
|
||||
vector<Point> ifacet; |
||||
vector<vector<Point> > ifacets(1); |
||||
|
||||
for( size_t i = 0; i < facets.size(); i++ ) |
||||
{ |
||||
ifacet.resize(facets[i].size()); |
||||
for( size_t j = 0; j < facets[i].size(); j++ ) |
||||
ifacet[j] = facets[i][j]; |
||||
|
||||
Scalar color; |
||||
color[0] = rand() & 256; |
||||
color[1] = rand() & 256; |
||||
color[2] = rand() & 256; |
||||
fillConvexPoly(img, ifacet, color, 8, 0); |
||||
|
||||
ifacets[0] = ifacet; |
||||
polylines(img, ifacets, true, Scalar(), 1, CV_AA, 0); |
||||
} |
||||
} |
||||
|
||||
|
||||
int main( int, char** ) |
||||
{ |
||||
help(); |
||||
|
||||
Scalar active_facet_color(0, 0, 255), delaunay_color(255,255,255); |
||||
Rect rect(0, 0, 600, 600); |
||||
|
||||
Subdiv2D subdiv(rect); |
||||
Mat img(rect.size(), CV_8UC3); |
||||
|
||||
img = Scalar::all(0); |
||||
string win = "Delaunay Demo"; |
||||
imshow(win, img); |
||||
|
||||
for( int i = 0; i < 200; i++ ) |
||||
{ |
||||
Point2f fp( (float)(rand()%(rect.width-10)+5), |
||||
(float)(rand()%(rect.height-10)+5)); |
||||
|
||||
locate_point( img, subdiv, fp, active_facet_color ); |
||||
imshow( win, img ); |
||||
|
||||
if( waitKey( 100 ) >= 0 ) |
||||
break; |
||||
|
||||
subdiv.insert(fp); |
||||
img = Scalar::all(0); |
||||
draw_subdiv( img, subdiv, delaunay_color ); |
||||
imshow( win, img ); |
||||
|
||||
if( waitKey( 100 ) >= 0 ) |
||||
break; |
||||
} |
||||
|
||||
img = Scalar::all(0); |
||||
paint_voronoi( img, subdiv ); |
||||
imshow( win, img ); |
||||
|
||||
waitKey(0); |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue