|
|
|
@ -5,15 +5,15 @@ import argparse |
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
|
|
description='This script is used to run style transfer models from ' |
|
|
|
|
'https://github.com/jcjohnson/fast-neural-style using OpenCV') |
|
|
|
|
'https://github.com/onnx/models/tree/main/vision/style_transfer/fast_neural_style using OpenCV') |
|
|
|
|
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') |
|
|
|
|
parser.add_argument('--model', help='Path to .t7 model') |
|
|
|
|
parser.add_argument('--model', help='Path to .onnx model') |
|
|
|
|
parser.add_argument('--width', default=-1, type=int, help='Resize input to specific width.') |
|
|
|
|
parser.add_argument('--height', default=-1, type=int, help='Resize input to specific height.') |
|
|
|
|
parser.add_argument('--median_filter', default=0, type=int, help='Kernel size of postprocessing blurring.') |
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
net = cv.dnn.readNetFromTorch(cv.samples.findFile(args.model)) |
|
|
|
|
net = cv.dnn.readNetFromONNX(cv.samples.findFile(args.model)) |
|
|
|
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) |
|
|
|
|
|
|
|
|
|
if args.input: |
|
|
|
@ -31,16 +31,12 @@ while cv.waitKey(1) < 0: |
|
|
|
|
inWidth = args.width if args.width != -1 else frame.shape[1] |
|
|
|
|
inHeight = args.height if args.height != -1 else frame.shape[0] |
|
|
|
|
inp = cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), |
|
|
|
|
(103.939, 116.779, 123.68), swapRB=False, crop=False) |
|
|
|
|
swapRB=True, crop=False) |
|
|
|
|
|
|
|
|
|
net.setInput(inp) |
|
|
|
|
out = net.forward() |
|
|
|
|
|
|
|
|
|
out = out.reshape(3, out.shape[2], out.shape[3]) |
|
|
|
|
out[0] += 103.939 |
|
|
|
|
out[1] += 116.779 |
|
|
|
|
out[2] += 123.68 |
|
|
|
|
out /= 255 |
|
|
|
|
out = out.transpose(1, 2, 0) |
|
|
|
|
|
|
|
|
|
t, _ = net.getPerfProfile() |
|
|
|
@ -50,4 +46,7 @@ while cv.waitKey(1) < 0: |
|
|
|
|
if args.median_filter: |
|
|
|
|
out = cv.medianBlur(out, args.median_filter) |
|
|
|
|
|
|
|
|
|
out = np.clip(out, 0, 255) |
|
|
|
|
out = out.astype(np.uint8) |
|
|
|
|
|
|
|
|
|
cv.imshow('Styled image', out) |
|
|
|
|