mirror of https://github.com/opencv/opencv.git
parent
1498d2f427
commit
ce2fd7fec9
5 changed files with 771 additions and 0 deletions
@ -0,0 +1,332 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or bpied warranties, including, but not limited to, the bpied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if !defined CUDA_DISABLER |
||||
|
||||
#include "opencv2/gpu/device/common.hpp" |
||||
#include "opencv2/gpu/device/border_interpolate.hpp" |
||||
#include "opencv2/gpu/device/limits.hpp" |
||||
|
||||
using namespace cv::gpu; |
||||
using namespace cv::gpu::device; |
||||
|
||||
//////////////////////////////////////////////////////////// |
||||
// centeredGradient |
||||
|
||||
namespace tvl1flow |
||||
{ |
||||
__global__ void centeredGradientKernel(const PtrStepSzf src, PtrStepf dx, PtrStepf dy) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= src.cols || y >= src.rows) |
||||
return; |
||||
|
||||
dx(y, x) = 0.5f * (src(y, ::min(x + 1, src.cols - 1)) - src(y, ::max(x - 1, 0))); |
||||
dy(y, x) = 0.5f * (src(::min(y + 1, src.rows - 1), x) - src(::max(y - 1, 0), x)); |
||||
} |
||||
|
||||
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy) |
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y)); |
||||
|
||||
centeredGradientKernel<<<grid, block>>>(src, dx, dy); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////// |
||||
// warpBackward |
||||
|
||||
namespace tvl1flow |
||||
{ |
||||
static __device__ __forceinline__ float bicubicCoeff(float x_) |
||||
{ |
||||
float x = fabsf(x_); |
||||
if (x <= 1.0f) |
||||
{ |
||||
return x * x * (1.5f * x - 2.5f) + 1.0f; |
||||
} |
||||
else if (x < 2.0f) |
||||
{ |
||||
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; |
||||
} |
||||
else |
||||
{ |
||||
return 0.0f; |
||||
} |
||||
} |
||||
|
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1 (false, cudaFilterModePoint, cudaAddressModeClamp); |
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1x(false, cudaFilterModePoint, cudaAddressModeClamp); |
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1y(false, cudaFilterModePoint, cudaAddressModeClamp); |
||||
|
||||
__global__ void warpBackwardKernel(const PtrStepSzf I0, const PtrStepf u1, const PtrStepf u2, PtrStepf I1w, PtrStepf I1wx, PtrStepf I1wy, PtrStepf grad, PtrStepf rho) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= I0.cols || y >= I0.rows) |
||||
return; |
||||
|
||||
const float u1Val = u1(y, x); |
||||
const float u2Val = u2(y, x); |
||||
|
||||
const float wx = x + u1Val; |
||||
const float wy = y + u2Val; |
||||
|
||||
const int xmin = ::ceilf(wx - 2.0f); |
||||
const int xmax = ::floorf(wx + 2.0f); |
||||
|
||||
const int ymin = ::ceilf(wy - 2.0f); |
||||
const int ymax = ::floorf(wy + 2.0f); |
||||
|
||||
float sum = 0.0f; |
||||
float sumx = 0.0f; |
||||
float sumy = 0.0f; |
||||
float wsum = 0.0f; |
||||
|
||||
for (int cy = ymin; cy <= ymax; ++cy) |
||||
{ |
||||
for (int cx = xmin; cx <= xmax; ++cx) |
||||
{ |
||||
const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); |
||||
|
||||
sum += w * tex2D(tex_I1 , cx, cy); |
||||
sumx += w * tex2D(tex_I1x, cx, cy); |
||||
sumy += w * tex2D(tex_I1y, cx, cy); |
||||
|
||||
wsum += w; |
||||
} |
||||
} |
||||
|
||||
const float coeff = 1.0f / wsum; |
||||
|
||||
const float I1wVal = sum * coeff; |
||||
const float I1wxVal = sumx * coeff; |
||||
const float I1wyVal = sumy * coeff; |
||||
|
||||
I1w(y, x) = I1wVal; |
||||
I1wx(y, x) = I1wxVal; |
||||
I1wy(y, x) = I1wyVal; |
||||
|
||||
const float Ix2 = I1wxVal * I1wxVal; |
||||
const float Iy2 = I1wyVal * I1wyVal; |
||||
|
||||
// store the |Grad(I1)|^2 |
||||
grad(y, x) = Ix2 + Iy2; |
||||
|
||||
// compute the constant part of the rho function |
||||
const float I0Val = I0(y, x); |
||||
rho(y, x) = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; |
||||
} |
||||
|
||||
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho) |
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(I0.cols, block.x), divUp(I0.rows, block.y)); |
||||
|
||||
bindTexture(&tex_I1 , I1); |
||||
bindTexture(&tex_I1x, I1x); |
||||
bindTexture(&tex_I1y, I1y); |
||||
|
||||
warpBackwardKernel<<<grid, block>>>(I0, u1, u2, I1w, I1wx, I1wy, grad, rho); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////// |
||||
// estimateU |
||||
|
||||
namespace tvl1flow |
||||
{ |
||||
__device__ float divergence(const PtrStepf& v1, const PtrStepf& v2, int y, int x) |
||||
{ |
||||
if (x > 0 && y > 0) |
||||
{ |
||||
const float v1x = v1(y, x) - v1(y, x - 1); |
||||
const float v2y = v2(y, x) - v2(y - 1, x); |
||||
return v1x + v2y; |
||||
} |
||||
else |
||||
{ |
||||
if (y > 0) |
||||
return v1(y, 0) + v2(y, 0) - v2(y - 1, 0); |
||||
else |
||||
{ |
||||
if (x > 0) |
||||
return v1(0, x) - v1(0, x - 1) + v2(0, x); |
||||
else |
||||
return v1(0, 0) + v2(0, 0); |
||||
} |
||||
} |
||||
} |
||||
|
||||
__global__ void estimateUKernel(const PtrStepSzf I1wx, const PtrStepf I1wy, |
||||
const PtrStepf grad, const PtrStepf rho_c, |
||||
const PtrStepf p11, const PtrStepf p12, const PtrStepf p21, const PtrStepf p22, |
||||
PtrStepf u1, PtrStepf u2, PtrStepf error, |
||||
const float l_t, const float theta) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= I1wx.cols || y >= I1wx.rows) |
||||
return; |
||||
|
||||
const float I1wxVal = I1wx(y, x); |
||||
const float I1wyVal = I1wy(y, x); |
||||
const float gradVal = grad(y, x); |
||||
const float u1OldVal = u1(y, x); |
||||
const float u2OldVal = u2(y, x); |
||||
|
||||
const float rho = rho_c(y, x) + (I1wxVal * u1OldVal + I1wyVal * u2OldVal); |
||||
|
||||
// estimate the values of the variable (v1, v2) (thresholding operator TH) |
||||
|
||||
float d1 = 0.0f; |
||||
float d2 = 0.0f; |
||||
|
||||
if (rho < -l_t * gradVal) |
||||
{ |
||||
d1 = l_t * I1wxVal; |
||||
d2 = l_t * I1wyVal; |
||||
} |
||||
else if (rho > l_t * gradVal) |
||||
{ |
||||
d1 = -l_t * I1wxVal; |
||||
d2 = -l_t * I1wyVal; |
||||
} |
||||
else if (gradVal > numeric_limits<float>::epsilon()) |
||||
{ |
||||
const float fi = -rho / gradVal; |
||||
d1 = fi * I1wxVal; |
||||
d2 = fi * I1wyVal; |
||||
} |
||||
|
||||
const float v1 = u1OldVal + d1; |
||||
const float v2 = u2OldVal + d2; |
||||
|
||||
// compute the divergence of the dual variable (p1, p2) |
||||
|
||||
const float div_p1 = divergence(p11, p12, y, x); |
||||
const float div_p2 = divergence(p21, p22, y, x); |
||||
|
||||
// estimate the values of the optical flow (u1, u2) |
||||
|
||||
const float u1NewVal = v1 + theta * div_p1; |
||||
const float u2NewVal = v2 + theta * div_p2; |
||||
|
||||
u1(y, x) = u1NewVal; |
||||
u2(y, x) = u2NewVal; |
||||
|
||||
const float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal); |
||||
const float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal); |
||||
error(y, x) = n1 + n2; |
||||
} |
||||
|
||||
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy, |
||||
PtrStepSzf grad, PtrStepSzf rho_c, |
||||
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, |
||||
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error, |
||||
float l_t, float theta) |
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(I1wx.cols, block.x), divUp(I1wx.rows, block.y)); |
||||
|
||||
estimateUKernel<<<grid, block>>>(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, error, l_t, theta); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////// |
||||
// estimateDualVariables |
||||
|
||||
namespace tvl1flow |
||||
{ |
||||
__global__ void estimateDualVariablesKernel(const PtrStepSzf u1, const PtrStepf u2, PtrStepf p11, PtrStepf p12, PtrStepf p21, PtrStepf p22, const float taut) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= u1.cols || y >= u1.rows) |
||||
return; |
||||
|
||||
const float u1x = u1(y, ::min(x + 1, u1.cols - 1)) - u1(y, x); |
||||
const float u1y = u1(::min(y + 1, u1.rows - 1), x) - u1(y, x); |
||||
|
||||
const float u2x = u2(y, ::min(x + 1, u1.cols - 1)) - u2(y, x); |
||||
const float u2y = u2(::min(y + 1, u1.rows - 1), x) - u2(y, x); |
||||
|
||||
const float g1 = ::hypotf(u1x, u1y); |
||||
const float g2 = ::hypotf(u2x, u2y); |
||||
|
||||
const float ng1 = 1.0f + taut * g1; |
||||
const float ng2 = 1.0f + taut * g2; |
||||
|
||||
p11(y, x) = (p11(y, x) + taut * u1x) / ng1; |
||||
p12(y, x) = (p12(y, x) + taut * u1y) / ng1; |
||||
p21(y, x) = (p21(y, x) + taut * u2x) / ng2; |
||||
p22(y, x) = (p22(y, x) + taut * u2y) / ng2; |
||||
} |
||||
|
||||
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut) |
||||
{ |
||||
const dim3 block(32, 8); |
||||
const dim3 grid(divUp(u1.cols, block.x), divUp(u1.rows, block.y)); |
||||
|
||||
estimateDualVariablesKernel<<<grid, block>>>(u1, u2, p11, p12, p21, p22, taut); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
} |
||||
|
||||
#endif // !defined CUDA_DISABLER |
@ -0,0 +1,256 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
||||
|
||||
cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU() { throw_nogpu(); } |
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage() {} |
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } |
||||
|
||||
#else |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU() |
||||
{ |
||||
tau = 0.25; |
||||
lambda = 0.15; |
||||
theta = 0.3; |
||||
nscales = 5; |
||||
warps = 5; |
||||
epsilon = 0.01; |
||||
iterations = 300; |
||||
useInitialFlow = false; |
||||
} |
||||
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy) |
||||
{ |
||||
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 ); |
||||
CV_Assert( I0.size() == I1.size() ); |
||||
CV_Assert( I0.type() == I1.type() ); |
||||
CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) ); |
||||
CV_Assert( nscales > 0 ); |
||||
|
||||
// allocate memory for the pyramid structure
|
||||
I0s.resize(nscales); |
||||
I1s.resize(nscales); |
||||
u1s.resize(nscales); |
||||
u2s.resize(nscales); |
||||
|
||||
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0); |
||||
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0); |
||||
|
||||
if (!useInitialFlow) |
||||
{ |
||||
flowx.create(I0.size(), CV_32FC1); |
||||
flowy.create(I0.size(), CV_32FC1); |
||||
} |
||||
|
||||
u1s[0] = flowx; |
||||
u2s[0] = flowy; |
||||
|
||||
I1x_buf.create(I0.size(), CV_32FC1); |
||||
I1y_buf.create(I0.size(), CV_32FC1); |
||||
|
||||
I1w_buf.create(I0.size(), CV_32FC1); |
||||
I1wx_buf.create(I0.size(), CV_32FC1); |
||||
I1wy_buf.create(I0.size(), CV_32FC1); |
||||
|
||||
grad_buf.create(I0.size(), CV_32FC1); |
||||
rho_c_buf.create(I0.size(), CV_32FC1); |
||||
|
||||
p11_buf.create(I0.size(), CV_32FC1); |
||||
p12_buf.create(I0.size(), CV_32FC1); |
||||
p21_buf.create(I0.size(), CV_32FC1); |
||||
p22_buf.create(I0.size(), CV_32FC1); |
||||
|
||||
diff_buf.create(I0.size(), CV_32FC1); |
||||
|
||||
// create the scales
|
||||
for (int s = 1; s < nscales; ++s) |
||||
{ |
||||
gpu::pyrDown(I0s[s - 1], I0s[s]); |
||||
gpu::pyrDown(I1s[s - 1], I1s[s]); |
||||
|
||||
if (I0s[s].cols < 16 || I0s[s].rows < 16) |
||||
{ |
||||
nscales = s; |
||||
break; |
||||
} |
||||
|
||||
if (useInitialFlow) |
||||
{ |
||||
gpu::pyrDown(u1s[s - 1], u1s[s]); |
||||
gpu::pyrDown(u2s[s - 1], u2s[s]); |
||||
|
||||
gpu::multiply(u1s[s], Scalar::all(0.5), u1s[s]); |
||||
gpu::multiply(u2s[s], Scalar::all(0.5), u2s[s]); |
||||
} |
||||
} |
||||
|
||||
// pyramidal structure for computing the optical flow
|
||||
for (int s = nscales - 1; s >= 0; --s) |
||||
{ |
||||
// compute the optical flow at the current scale
|
||||
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]); |
||||
|
||||
// if this was the last scale, finish now
|
||||
if (s == 0) |
||||
break; |
||||
|
||||
// otherwise, upsample the optical flow
|
||||
|
||||
// zoom the optical flow for the next finer scale
|
||||
gpu::resize(u1s[s], u1s[s - 1], I0s[s - 1].size()); |
||||
gpu::resize(u2s[s], u2s[s - 1], I0s[s - 1].size()); |
||||
|
||||
// scale the optical flow with the appropriate zoom factor
|
||||
gpu::multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]); |
||||
gpu::multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]); |
||||
} |
||||
} |
||||
|
||||
namespace tvl1flow |
||||
{ |
||||
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy); |
||||
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho); |
||||
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy, |
||||
PtrStepSzf grad, PtrStepSzf rho_c, |
||||
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, |
||||
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error, |
||||
float l_t, float theta); |
||||
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut); |
||||
} |
||||
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2) |
||||
{ |
||||
using namespace tvl1flow; |
||||
|
||||
const double scaledEpsilon = epsilon * epsilon * I0.size().area(); |
||||
|
||||
CV_DbgAssert( I1.size() == I0.size() ); |
||||
CV_DbgAssert( I1.type() == I0.type() ); |
||||
CV_DbgAssert( u1.empty() || u1.size() == I0.size() ); |
||||
CV_DbgAssert( u2.size() == u1.size() ); |
||||
|
||||
if (u1.empty()) |
||||
{ |
||||
u1.create(I0.size(), CV_32FC1); |
||||
u1.setTo(Scalar::all(0)); |
||||
|
||||
u2.create(I0.size(), CV_32FC1); |
||||
u2.setTo(Scalar::all(0)); |
||||
} |
||||
|
||||
GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
centeredGradient(I1, I1x, I1y); |
||||
|
||||
GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
|
||||
GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
|
||||
GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
p11.setTo(Scalar::all(0)); |
||||
p12.setTo(Scalar::all(0)); |
||||
p21.setTo(Scalar::all(0)); |
||||
p22.setTo(Scalar::all(0)); |
||||
|
||||
GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows)); |
||||
|
||||
const float l_t = static_cast<float>(lambda * theta); |
||||
const float taut = static_cast<float>(tau / theta); |
||||
|
||||
for (int warpings = 0; warpings < warps; ++warpings) |
||||
{ |
||||
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c); |
||||
|
||||
double error = numeric_limits<double>::max(); |
||||
for (int n = 0; error > scaledEpsilon && n < iterations; ++n) |
||||
{ |
||||
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast<float>(theta)); |
||||
|
||||
error = gpu::sum(diff, norm_buf)[0]; |
||||
|
||||
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage() |
||||
{ |
||||
I0s.clear(); |
||||
I1s.clear(); |
||||
u1s.clear(); |
||||
u2s.clear(); |
||||
|
||||
I1x_buf.release(); |
||||
I1y_buf.release(); |
||||
|
||||
I1w_buf.release(); |
||||
I1wx_buf.release(); |
||||
I1wy_buf.release(); |
||||
|
||||
grad_buf.release(); |
||||
rho_c_buf.release(); |
||||
|
||||
p11_buf.release(); |
||||
p12_buf.release(); |
||||
p21_buf.release(); |
||||
p22_buf.release(); |
||||
|
||||
diff_buf.release(); |
||||
norm_buf.release(); |
||||
} |
||||
|
||||
#endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
Loading…
Reference in new issue