parent
6ba22dea46
commit
ce1cc352d9
4 changed files with 3351 additions and 1 deletions
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,87 @@ |
|||||||
|
import numpy as np |
||||||
|
import argparse |
||||||
|
|
||||||
|
try: |
||||||
|
import cv2 as cv |
||||||
|
except ImportError: |
||||||
|
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' |
||||||
|
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') |
||||||
|
|
||||||
|
inWidth = 300 |
||||||
|
inHeight = 300 |
||||||
|
WHRatio = inWidth / float(inHeight) |
||||||
|
inScaleFactor = 0.007843 |
||||||
|
meanVal = 127.5 |
||||||
|
|
||||||
|
classNames = ('background', |
||||||
|
'aeroplane', 'bicycle', 'bird', 'boat', |
||||||
|
'bottle', 'bus', 'car', 'cat', 'chair', |
||||||
|
'cow', 'diningtable', 'dog', 'horse', |
||||||
|
'motorbike', 'person', 'pottedplant', |
||||||
|
'sheep', 'sofa', 'train', 'tvmonitor') |
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
parser = argparse.ArgumentParser() |
||||||
|
parser.add_argument("--video", help="path to video file. If empty, camera's stream will be used") |
||||||
|
parser.add_argument("--prototxt", default="MobileNetSSD_300x300.prototxt", |
||||||
|
help="path to caffe prototxt") |
||||||
|
parser.add_argument("-c", "--caffemodel", help="path to caffemodel file, download it here: " |
||||||
|
"https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel") |
||||||
|
parser.add_argument("--thr", default=0.2, help="confidence threshold to filter out weak detections") |
||||||
|
args = parser.parse_args() |
||||||
|
|
||||||
|
net = dnn.readNetFromCaffe(args.prototxt, args.caffemodel) |
||||||
|
|
||||||
|
if len(args.video): |
||||||
|
cap = cv2.VideoCapture(args.video) |
||||||
|
else: |
||||||
|
cap = cv2.VideoCapture(0) |
||||||
|
|
||||||
|
while True: |
||||||
|
# Capture frame-by-frame |
||||||
|
ret, frame = cap.read() |
||||||
|
blob = dnn.blobFromImage(frame, inScaleFactor, (inWidth, inHeight), meanVal) |
||||||
|
net.setInput(blob) |
||||||
|
detections = net.forward() |
||||||
|
|
||||||
|
cols = frame.shape[1] |
||||||
|
rows = frame.shape[0] |
||||||
|
|
||||||
|
if cols / float(rows) > WHRatio: |
||||||
|
cropSize = (int(rows * WHRatio), rows) |
||||||
|
else: |
||||||
|
cropSize = (cols, int(cols / WHRatio)) |
||||||
|
|
||||||
|
y1 = (rows - cropSize[1]) / 2 |
||||||
|
y2 = y1 + cropSize[1] |
||||||
|
x1 = (cols - cropSize[0]) / 2 |
||||||
|
x2 = x1 + cropSize[0] |
||||||
|
frame = frame[y1:y2, x1:x2] |
||||||
|
|
||||||
|
cols = frame.shape[1] |
||||||
|
rows = frame.shape[0] |
||||||
|
|
||||||
|
for i in range(detections.shape[2]): |
||||||
|
confidence = detections[0, 0, i, 2] |
||||||
|
if confidence > args.thr: |
||||||
|
class_id = int(detections[0, 0, i, 1]) |
||||||
|
|
||||||
|
xLeftBottom = int(detections[0, 0, i, 3] * cols) |
||||||
|
yLeftBottom = int(detections[0, 0, i, 4] * rows) |
||||||
|
xRightTop = int(detections[0, 0, i, 5] * cols) |
||||||
|
yRightTop = int(detections[0, 0, i, 6] * rows) |
||||||
|
|
||||||
|
cv2.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop), |
||||||
|
(0, 255, 0)) |
||||||
|
label = classNames[class_id] + ": " + str(confidence) |
||||||
|
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
||||||
|
|
||||||
|
cv2.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]), |
||||||
|
(xLeftBottom + labelSize[0], yLeftBottom + baseLine), |
||||||
|
(255, 255, 255), cv2.FILLED) |
||||||
|
cv2.putText(frame, label, (xLeftBottom, yLeftBottom), |
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) |
||||||
|
|
||||||
|
cv2.imshow("detections", frame) |
||||||
|
if cv2.waitKey(1) >= 0: |
||||||
|
break |
@ -0,0 +1,161 @@ |
|||||||
|
#include <opencv2/dnn.hpp> |
||||||
|
#include <opencv2/dnn/shape_utils.hpp> |
||||||
|
#include <opencv2/imgproc.hpp> |
||||||
|
#include <opencv2/highgui.hpp> |
||||||
|
|
||||||
|
using namespace cv; |
||||||
|
using namespace cv::dnn; |
||||||
|
|
||||||
|
#include <fstream> |
||||||
|
#include <iostream> |
||||||
|
#include <cstdlib> |
||||||
|
using namespace std; |
||||||
|
|
||||||
|
const size_t inWidth = 300; |
||||||
|
const size_t inHeight = 300; |
||||||
|
const float WHRatio = inWidth / (float)inHeight; |
||||||
|
const float inScaleFactor = 0.007843f; |
||||||
|
const float meanVal = 127.5; |
||||||
|
const char* classNames[] = {"background", |
||||||
|
"aeroplane", "bicycle", "bird", "boat", |
||||||
|
"bottle", "bus", "car", "cat", "chair", |
||||||
|
"cow", "diningtable", "dog", "horse", |
||||||
|
"motorbike", "person", "pottedplant", |
||||||
|
"sheep", "sofa", "train", "tvmonitor"}; |
||||||
|
|
||||||
|
const char* about = "This sample uses Single-Shot Detector " |
||||||
|
"(https://arxiv.org/abs/1512.02325)" |
||||||
|
"to detect objects on image.\n" |
||||||
|
".caffemodel model's file is avaliable here: " |
||||||
|
"https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel\n"; |
||||||
|
|
||||||
|
const char* params |
||||||
|
= "{ help | false | print usage }" |
||||||
|
"{ proto | MobileNetSSD_300x300.prototxt | model configuration }" |
||||||
|
"{ model | | model weights }" |
||||||
|
"{ video | | video for detection }" |
||||||
|
"{ out | | path to output video file}" |
||||||
|
"{ min_confidence | 0.2 | min confidence }"; |
||||||
|
|
||||||
|
int main(int argc, char** argv) |
||||||
|
{ |
||||||
|
cv::CommandLineParser parser(argc, argv, params); |
||||||
|
|
||||||
|
if (parser.get<bool>("help")) |
||||||
|
{ |
||||||
|
cout << about << endl; |
||||||
|
parser.printMessage(); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
String modelConfiguration = parser.get<string>("proto"); |
||||||
|
String modelBinary = parser.get<string>("model"); |
||||||
|
|
||||||
|
//! [Initialize network]
|
||||||
|
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
||||||
|
//! [Initialize network]
|
||||||
|
|
||||||
|
VideoCapture cap(parser.get<String>("video")); |
||||||
|
if(!cap.isOpened()) // check if we succeeded
|
||||||
|
{ |
||||||
|
cap = VideoCapture(0); |
||||||
|
if(!cap.isOpened()) |
||||||
|
{ |
||||||
|
cout << "Couldn't find camera" << endl; |
||||||
|
return -1; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
Size inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size
|
||||||
|
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT)); |
||||||
|
|
||||||
|
Size cropSize; |
||||||
|
if (inVideoSize.width / (float)inVideoSize.height > WHRatio) |
||||||
|
{ |
||||||
|
cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio), |
||||||
|
inVideoSize.height); |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
cropSize = Size(inVideoSize.width, |
||||||
|
static_cast<int>(inVideoSize.width / WHRatio)); |
||||||
|
} |
||||||
|
|
||||||
|
Rect crop(Point((inVideoSize.width - cropSize.width) / 2, |
||||||
|
(inVideoSize.height - cropSize.height) / 2), |
||||||
|
cropSize); |
||||||
|
|
||||||
|
VideoWriter outputVideo; |
||||||
|
outputVideo.open(parser.get<String>("out") , |
||||||
|
static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)), |
||||||
|
cap.get(CV_CAP_PROP_FPS), cropSize, true); |
||||||
|
|
||||||
|
for(;;) |
||||||
|
{ |
||||||
|
Mat frame; |
||||||
|
cap >> frame; // get a new frame from camera
|
||||||
|
//! [Prepare blob]
|
||||||
|
|
||||||
|
Mat inputBlob = blobFromImage(frame, inScaleFactor, |
||||||
|
Size(inWidth, inHeight), meanVal); //Convert Mat to batch of images
|
||||||
|
//! [Prepare blob]
|
||||||
|
|
||||||
|
//! [Set input blob]
|
||||||
|
net.setInput(inputBlob, "data"); //set the network input
|
||||||
|
//! [Set input blob]
|
||||||
|
|
||||||
|
TickMeter tm; |
||||||
|
tm.start(); |
||||||
|
//! [Make forward pass]
|
||||||
|
Mat detection = net.forward("detection_out"); //compute output
|
||||||
|
tm.stop(); |
||||||
|
cout << "Inference time, ms: " << tm.getTimeMilli() << endl; |
||||||
|
//! [Make forward pass]
|
||||||
|
|
||||||
|
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
||||||
|
|
||||||
|
frame = frame(crop); |
||||||
|
|
||||||
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
||||||
|
for(int i = 0; i < detectionMat.rows; i++) |
||||||
|
{ |
||||||
|
float confidence = detectionMat.at<float>(i, 2); |
||||||
|
|
||||||
|
if(confidence > confidenceThreshold) |
||||||
|
{ |
||||||
|
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1)); |
||||||
|
|
||||||
|
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
||||||
|
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
||||||
|
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
||||||
|
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
||||||
|
|
||||||
|
ostringstream ss; |
||||||
|
ss << confidence; |
||||||
|
String conf(ss.str()); |
||||||
|
|
||||||
|
Rect object((int)xLeftBottom, (int)yLeftBottom, |
||||||
|
(int)(xRightTop - xLeftBottom), |
||||||
|
(int)(yRightTop - yLeftBottom)); |
||||||
|
|
||||||
|
rectangle(frame, object, Scalar(0, 255, 0)); |
||||||
|
String label = String(classNames[objectClass]) + ": " + conf; |
||||||
|
int baseLine = 0; |
||||||
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
||||||
|
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
||||||
|
Size(labelSize.width, labelSize.height + baseLine)), |
||||||
|
Scalar(255, 255, 255), CV_FILLED); |
||||||
|
putText(frame, label, Point(xLeftBottom, yLeftBottom), |
||||||
|
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if (outputVideo.isOpened()) |
||||||
|
outputVideo << frame; |
||||||
|
|
||||||
|
imshow("detections", frame); |
||||||
|
if (waitKey(1) >= 0) break; |
||||||
|
} |
||||||
|
|
||||||
|
return 0; |
||||||
|
} // main
|
Loading…
Reference in new issue