|
|
|
@ -45,45 +45,45 @@ using namespace std; |
|
|
|
|
using namespace cv; |
|
|
|
|
|
|
|
|
|
static |
|
|
|
|
void defaultDistribs( Mat& means, vector<Mat>& covs ) |
|
|
|
|
void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 ) |
|
|
|
|
{ |
|
|
|
|
float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f}; |
|
|
|
|
float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f}; |
|
|
|
|
float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f}; |
|
|
|
|
means.create(3, 2, CV_32FC1); |
|
|
|
|
means.create(3, 2, type); |
|
|
|
|
Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 ); |
|
|
|
|
Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 ); |
|
|
|
|
Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 ); |
|
|
|
|
means.resize(3), covs.resize(3); |
|
|
|
|
|
|
|
|
|
Mat mr0 = means.row(0); |
|
|
|
|
m0.copyTo(mr0); |
|
|
|
|
c0.copyTo(covs[0]); |
|
|
|
|
m0.convertTo(mr0, type); |
|
|
|
|
c0.convertTo(covs[0], type); |
|
|
|
|
|
|
|
|
|
Mat mr1 = means.row(1); |
|
|
|
|
m1.copyTo(mr1); |
|
|
|
|
c1.copyTo(covs[1]); |
|
|
|
|
m1.convertTo(mr1, type); |
|
|
|
|
c1.convertTo(covs[1], type); |
|
|
|
|
|
|
|
|
|
Mat mr2 = means.row(2); |
|
|
|
|
m2.copyTo(mr2); |
|
|
|
|
c2.copyTo(covs[2]); |
|
|
|
|
m2.convertTo(mr2, type); |
|
|
|
|
c2.convertTo(covs[2], type); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// generate points sets by normal distributions
|
|
|
|
|
static |
|
|
|
|
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int labelType ) |
|
|
|
|
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType ) |
|
|
|
|
{ |
|
|
|
|
vector<int>::const_iterator sit = sizes.begin(); |
|
|
|
|
int total = 0; |
|
|
|
|
for( ; sit != sizes.end(); ++sit ) |
|
|
|
|
total += *sit; |
|
|
|
|
assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() ); |
|
|
|
|
assert( !data.empty() && data.rows == total ); |
|
|
|
|
assert( data.type() == CV_32FC1 ); |
|
|
|
|
|
|
|
|
|
CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() ); |
|
|
|
|
CV_Assert( !data.empty() && data.rows == total ); |
|
|
|
|
CV_Assert( data.type() == dataType ); |
|
|
|
|
|
|
|
|
|
labels.create( data.rows, 1, labelType ); |
|
|
|
|
|
|
|
|
|
randn( data, Scalar::all(0.0), Scalar::all(1.0) ); |
|
|
|
|
randn( data, Scalar::all(-1.0), Scalar::all(1.0) ); |
|
|
|
|
vector<Mat> means(sizes.size()); |
|
|
|
|
for(int i = 0; i < _means.rows; i++) |
|
|
|
|
means[i] = _means.row(i); |
|
|
|
@ -98,8 +98,8 @@ void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& |
|
|
|
|
assert( cit->rows == data.cols && cit->cols == data.cols ); |
|
|
|
|
for( int i = bi; i < ei; i++, p++ ) |
|
|
|
|
{ |
|
|
|
|
Mat r(1, data.cols, CV_32FC1, data.ptr<float>(i)); |
|
|
|
|
r = r * (*cit) + *mit;
|
|
|
|
|
Mat r = data.row(i); |
|
|
|
|
r = r * (*cit) + *mit; |
|
|
|
|
if( labelType == CV_32FC1 ) |
|
|
|
|
labels.at<float>(p, 0) = (float)l; |
|
|
|
|
else if( labelType == CV_32SC1 ) |
|
|
|
@ -129,7 +129,7 @@ int maxIdx( const vector<int>& count ) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static |
|
|
|
|
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap ) |
|
|
|
|
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq=true ) |
|
|
|
|
{ |
|
|
|
|
size_t total = 0, nclusters = sizes.size(); |
|
|
|
|
for(size_t i = 0; i < sizes.size(); i++) |
|
|
|
@ -158,21 +158,25 @@ bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& lab |
|
|
|
|
startIndex += sizes[clusterIndex]; |
|
|
|
|
|
|
|
|
|
int cls = maxIdx( count ); |
|
|
|
|
CV_Assert( !buzy[cls] ); |
|
|
|
|
CV_Assert( !checkClusterUniq || !buzy[cls] ); |
|
|
|
|
|
|
|
|
|
labelsMap[clusterIndex] = cls; |
|
|
|
|
|
|
|
|
|
buzy[cls] = true; |
|
|
|
|
} |
|
|
|
|
for(size_t i = 0; i < buzy.size(); i++) |
|
|
|
|
if(!buzy[i]) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
if(checkClusterUniq) |
|
|
|
|
{ |
|
|
|
|
for(size_t i = 0; i < buzy.size(); i++) |
|
|
|
|
if(!buzy[i]) |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static |
|
|
|
|
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent = true ) |
|
|
|
|
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent, bool checkClusterUniq ) |
|
|
|
|
{ |
|
|
|
|
err = 0; |
|
|
|
|
CV_Assert( !labels.empty() && !origLabels.empty() ); |
|
|
|
@ -186,7 +190,7 @@ bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes |
|
|
|
|
bool isFlt = labels.type() == CV_32FC1; |
|
|
|
|
if( !labelsEquivalent ) |
|
|
|
|
{ |
|
|
|
|
if( !getLabelsMap( labels, sizes, labelsMap ) ) |
|
|
|
|
if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) ) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
for( int i = 0; i < labels.rows; i++ ) |
|
|
|
@ -234,7 +238,7 @@ int CV_CvEMTest::runCase( int caseIndex, const CvEMParams& params, |
|
|
|
|
em.train( trainData, Mat(), params, &labels ); |
|
|
|
|
|
|
|
|
|
// check train error
|
|
|
|
|
if( !calcErr( labels, trainLabels, sizes, err , false ) ) |
|
|
|
|
if( !calcErr( labels, trainLabels, sizes, err , false, false ) ) |
|
|
|
|
{ |
|
|
|
|
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex ); |
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
|
|
@ -252,7 +256,7 @@ int CV_CvEMTest::runCase( int caseIndex, const CvEMParams& params, |
|
|
|
|
Mat sample = testData.row(i); |
|
|
|
|
labels.at<int>(i,0) = (int)em.predict( sample, 0 ); |
|
|
|
|
} |
|
|
|
|
if( !calcErr( labels, testLabels, sizes, err, false ) ) |
|
|
|
|
if( !calcErr( labels, testLabels, sizes, err, false, false ) ) |
|
|
|
|
{ |
|
|
|
|
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex ); |
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
|
|
@ -279,11 +283,11 @@ void CV_CvEMTest::run( int /*start_from*/ ) |
|
|
|
|
// train data
|
|
|
|
|
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels; |
|
|
|
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); |
|
|
|
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32SC1 ); |
|
|
|
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32SC1 ); |
|
|
|
|
|
|
|
|
|
// test data
|
|
|
|
|
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels; |
|
|
|
|
generateData( testData, testLabels, sizes, means, covs, CV_32SC1 ); |
|
|
|
|
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32SC1 ); |
|
|
|
|
|
|
|
|
|
CvEMParams params; |
|
|
|
|
params.nclusters = 3; |
|
|
|
|