Addition of per-channel h-values for fastNlMeansDenoising[Multi][Abs]

pull/3814/head
Erik Karlsson 10 years ago
parent 324fa26848
commit cc8d94c6fc
  1. 124
      modules/photo/include/opencv2/photo.hpp
  2. 221
      modules/photo/src/denoising.cpp
  3. 2
      modules/photo/src/fast_nlmeans_denoising_invoker.hpp
  4. 2
      modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
  5. 2
      modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
  6. 2
      modules/photo/src/opencl/nlmeans.cl

@ -138,6 +138,31 @@ parameter.
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3,
int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Perform image denoising using Non-local Means Denoising algorithm
<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
optimizations. Noise expected to be a gaussian white noise
@param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
@param dst Output image with the same size and type as src .
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one per
channel. Big h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
*/
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float *h,
int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Perform image denoising using Non-local Means Denoising
algorithm <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/>
with several computational optimizations. Noise expected to be a
@ -163,6 +188,33 @@ parameter.
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float h = 3,
int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Perform image denoising using Non-local Means Denoising
algorithm <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/>
with several computational optimizations. Noise expected to be a
gaussian white noise. Uses squared sum of absolute value distances
instead of sum of squared distances for weight calculation
@param src Input 8-bit or 16-bit 1-channel, 2-channel, 3-channel or 4-channel image.
@param dst Output image with the same size and type as src .
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one per
channel. Big h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
*/
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float *h,
int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoising function for colored images
@param src Input 8-bit 3-channel image.
@ -204,14 +256,42 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noise
@param h Parameter regulating filter strength. Bigger h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. For more details see
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
@param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
4-channel images sequence. All images should have the same type and
size.
@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.
@param dst Output image with the same size and type as srcImgs images.
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one for each
channel. Bigger h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h , int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoising function for images
sequence where consequtive images have been captured in small period
of time. For example video. This version of the function is for
@ -235,14 +315,46 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noise
@param h Parameter regulating filter strength. Bigger h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoising function for images
sequence where consequtive images have been captured in small period
of time. For example video. This version of the function is for
grayscale images or for manual manipulation with colorspaces. For more
details see
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>. Uses
squared sum of absolute value distances instead of sum of squared
distances for weight calculation
@param srcImgs Input 8-bit or 16-bit 1-channel, 2-channel, 3-channel
or 4-channel images sequence. All images should have the same type and
size.
@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.
@param dst Output image with the same size and type as srcImgs images.
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one for each
channel. Bigger h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h, int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
@param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and

@ -90,6 +90,51 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
}
}
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
int templateWindowSize, int searchWindowSize)
{
Size src_size = _src.size();
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
templateWindowSize, searchWindowSize, false))
Mat src = _src.getMat();
_dst.create(src_size, src.type());
Mat dst = _dst.getMat();
#ifdef HAVE_TEGRA_OPTIMIZATION
if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
return;
#endif
switch (src.type()) {
case CV_8U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
}
}
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
@ -150,6 +195,66 @@ void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
}
}
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h,
int templateWindowSize, int searchWindowSize)
{
Size src_size = _src.size();
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
templateWindowSize, searchWindowSize, true))
Mat src = _src.getMat();
_dst.create(src_size, src.type());
Mat dst = _dst.getMat();
switch (src.type()) {
case CV_8U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
}
}
void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
@ -269,6 +374,52 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
}
}
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h, int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
}
}
void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, int templateWindowSize, int searchWindowSize)
@ -339,6 +490,76 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
}
}
void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h, int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_16UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
}
}
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, float hForColorComponents,

@ -236,7 +236,7 @@ void FastNlMeansDenoisingInvoker<T, IT, UIT, D, WT>::operator() (const Range& ra
for (int x = 0; x < search_window_size_; x++)
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
int weight = almost_dist2weight_[almostAvgDist];
WT weight = almost_dist2weight_[almostAvgDist];
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight<T, IT, WT>(estimation, weights_sum, weight, p);
}

@ -387,7 +387,7 @@ template <typename ET, typename IT, typename EW> struct incWithWeight_<Vec<ET, 4
};
template <typename T, typename IT, typename WT>
static inline void incWithWeight(IT* estimation, IT* weights_sum, IT weight, T p)
static inline void incWithWeight(IT* estimation, IT* weights_sum, WT weight, T p)
{
return incWithWeight_<T, IT, WT>::f(estimation, weights_sum, weight, p);
}

@ -262,7 +262,7 @@ void FastNlMeansMultiDenoisingInvoker<T, IT, UIT, D, WT>::operator() (const Rang
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift;
int weight = almost_dist2weight[almostAvgDist];
WT weight = almost_dist2weight[almostAvgDist];
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight<T, IT, WT>(estimation, weights_sum, weight, p);
}

@ -36,7 +36,7 @@ __kernel void calcAlmostDist2Weight(__global wlut_t * almostDist2Weight, int alm
#endif
wlut_t weight = convert_wlut_t(fixedPointMult * (isnan(w) ? (w_t)1.0 : w));
almostDist2Weight[almostDist] =
weight < WEIGHT_THRESHOLD * fixedPointMult ? (wlut_t)0 : weight;
weight < (wlut_t)(WEIGHT_THRESHOLD * fixedPointMult) ? (wlut_t)0 : weight;
}
}

Loading…
Cancel
Save