|
|
|
@ -54,6 +54,7 @@ static const float atan2_p3 = -0.3258083974640975f*(float)(180/CV_PI); |
|
|
|
|
static const float atan2_p5 = 0.1555786518463281f*(float)(180/CV_PI); |
|
|
|
|
static const float atan2_p7 = -0.04432655554792128f*(float)(180/CV_PI); |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
|
enum { OCL_OP_LOG=0, OCL_OP_EXP=1, OCL_OP_MAG=2, OCL_OP_PHASE_DEGREES=3, OCL_OP_PHASE_RADIANS=4 }; |
|
|
|
|
|
|
|
|
@ -98,6 +99,8 @@ static bool ocl_math_op(InputArray _src1, InputArray _src2, OutputArray _dst, in |
|
|
|
|
return k.run(2, globalsize, 0, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
float fastAtan2( float y, float x ) |
|
|
|
|
{ |
|
|
|
|
float ax = std::abs(x), ay = std::abs(y); |
|
|
|
@ -401,11 +404,8 @@ void magnitude( InputArray src1, InputArray src2, OutputArray dst ) |
|
|
|
|
int type = src1.type(), depth = src1.depth(), cn = src1.channels(); |
|
|
|
|
CV_Assert( src1.size() == src2.size() && type == src2.type() && (depth == CV_32F || depth == CV_64F)); |
|
|
|
|
|
|
|
|
|
bool use_opencl = dst.isUMat() && ocl::useOpenCL() |
|
|
|
|
&& src1.dims() <= 2 && src2.dims() <= 2; |
|
|
|
|
|
|
|
|
|
if(use_opencl && ocl_math_op(src1, src2, dst, OCL_OP_MAG) ) |
|
|
|
|
return; |
|
|
|
|
CV_OCL_RUN(dst.isUMat() && src1.dims() <= 2 && src2.dims() <= 2, |
|
|
|
|
ocl_math_op(src1, src2, dst, OCL_OP_MAG)) |
|
|
|
|
|
|
|
|
|
Mat X = src1.getMat(), Y = src2.getMat(); |
|
|
|
|
dst.create(X.dims, X.size, X.type()); |
|
|
|
@ -439,11 +439,8 @@ void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegre |
|
|
|
|
int type = src1.type(), depth = src1.depth(), cn = src1.channels(); |
|
|
|
|
CV_Assert( src1.size() == src2.size() && type == src2.type() && (depth == CV_32F || depth == CV_64F)); |
|
|
|
|
|
|
|
|
|
bool use_opencl = dst.isUMat() && ocl::useOpenCL() |
|
|
|
|
&& src1.dims() <= 2 && src2.dims() <= 2; |
|
|
|
|
|
|
|
|
|
if(use_opencl && ocl_math_op(src1, src2, dst, angleInDegrees ? OCL_OP_PHASE_DEGREES : OCL_OP_PHASE_RADIANS) ) |
|
|
|
|
return; |
|
|
|
|
CV_OCL_RUN(dst.isUMat() && src1.dims() <= 2 && src2.dims() <= 2, |
|
|
|
|
ocl_math_op(src1, src2, dst, angleInDegrees ? OCL_OP_PHASE_DEGREES : OCL_OP_PHASE_RADIANS)) |
|
|
|
|
|
|
|
|
|
Mat X = src1.getMat(), Y = src2.getMat(); |
|
|
|
|
dst.create( X.dims, X.size, type ); |
|
|
|
@ -497,6 +494,8 @@ void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegre |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
|
static bool ocl_cartToPolar( InputArray _src1, InputArray _src2, |
|
|
|
|
OutputArray _dst1, OutputArray _dst2, bool angleInDegrees ) |
|
|
|
|
{ |
|
|
|
@ -533,12 +532,13 @@ static bool ocl_cartToPolar( InputArray _src1, InputArray _src2, |
|
|
|
|
return k.run(2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void cartToPolar( InputArray src1, InputArray src2, |
|
|
|
|
OutputArray dst1, OutputArray dst2, bool angleInDegrees ) |
|
|
|
|
{ |
|
|
|
|
if (ocl::useOpenCL() && dst1.isUMat() && dst2.isUMat() && |
|
|
|
|
CV_OCL_RUN(dst1.isUMat() && dst2.isUMat(), |
|
|
|
|
ocl_cartToPolar(src1, src2, dst1, dst2, angleInDegrees)) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
Mat X = src1.getMat(), Y = src2.getMat(); |
|
|
|
|
int type = X.type(), depth = X.depth(), cn = X.channels(); |
|
|
|
@ -683,6 +683,8 @@ static void SinCos_32f( const float *angle, float *sinval, float* cosval, |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
|
static bool ocl_polarToCart( InputArray _mag, InputArray _angle, |
|
|
|
|
OutputArray _dst1, OutputArray _dst2, bool angleInDegrees ) |
|
|
|
|
{ |
|
|
|
@ -715,15 +717,16 @@ static bool ocl_polarToCart( InputArray _mag, InputArray _angle, |
|
|
|
|
return k.run(2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void polarToCart( InputArray src1, InputArray src2, |
|
|
|
|
OutputArray dst1, OutputArray dst2, bool angleInDegrees ) |
|
|
|
|
{ |
|
|
|
|
int type = src2.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
|
CV_Assert((depth == CV_32F || depth == CV_64F) && (src1.empty() || src1.type() == type)); |
|
|
|
|
|
|
|
|
|
if (ocl::useOpenCL() && !src1.empty() && src2.dims() <= 2 && dst1.isUMat() && dst2.isUMat() && |
|
|
|
|
ocl_polarToCart(src1, src2, dst1, dst2, angleInDegrees)) |
|
|
|
|
return; |
|
|
|
|
CV_OCL_RUN(!src1.empty() && src2.dims() <= 2 && dst1.isUMat() && dst2.isUMat(), |
|
|
|
|
ocl_polarToCart(src1, src2, dst1, dst2, angleInDegrees)) |
|
|
|
|
|
|
|
|
|
Mat Mag = src1.getMat(), Angle = src2.getMat(); |
|
|
|
|
CV_Assert( Mag.empty() || Angle.size == Mag.size); |
|
|
|
@ -1289,10 +1292,8 @@ void exp( InputArray _src, OutputArray _dst ) |
|
|
|
|
int type = _src.type(), depth = _src.depth(), cn = _src.channels(); |
|
|
|
|
CV_Assert( depth == CV_32F || depth == CV_64F ); |
|
|
|
|
|
|
|
|
|
bool use_opencl = _dst.isUMat() && ocl::useOpenCL() && _src.dims() <= 2; |
|
|
|
|
|
|
|
|
|
if(use_opencl && ocl_math_op(_src, noArray(), _dst, OCL_OP_EXP) ) |
|
|
|
|
return; |
|
|
|
|
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2, |
|
|
|
|
ocl_math_op(_src, noArray(), _dst, OCL_OP_EXP)) |
|
|
|
|
|
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
_dst.create( src.dims, src.size, type ); |
|
|
|
@ -1938,10 +1939,8 @@ void log( InputArray _src, OutputArray _dst ) |
|
|
|
|
int type = _src.type(), depth = _src.depth(), cn = _src.channels(); |
|
|
|
|
CV_Assert( depth == CV_32F || depth == CV_64F ); |
|
|
|
|
|
|
|
|
|
bool use_opencl = _dst.isUMat() && ocl::useOpenCL() && _src.dims() <= 2; |
|
|
|
|
|
|
|
|
|
if(use_opencl && ocl_math_op(_src, noArray(), _dst, OCL_OP_LOG) ) |
|
|
|
|
return; |
|
|
|
|
CV_OCL_RUN( _dst.isUMat() && _src.dims() <= 2, |
|
|
|
|
ocl_math_op(_src, noArray(), _dst, OCL_OP_LOG)) |
|
|
|
|
|
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
_dst.create( src.dims, src.size, type ); |
|
|
|
@ -2032,6 +2031,8 @@ static IPowFunc ipowTab[] = |
|
|
|
|
(IPowFunc)iPow32s, (IPowFunc)iPow32f, (IPowFunc)iPow64f, 0 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
|
static bool ocl_pow(InputArray _src, double power, OutputArray _dst) |
|
|
|
|
{ |
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
@ -2071,10 +2072,12 @@ static bool ocl_pow(InputArray _src, double power, OutputArray _dst) |
|
|
|
|
return k.run(2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void pow( InputArray _src, double power, OutputArray _dst ) |
|
|
|
|
{ |
|
|
|
|
if (ocl::useOpenCL() && _dst.isUMat() && ocl_pow(_src, power, _dst)) |
|
|
|
|
return; |
|
|
|
|
CV_OCL_RUN(_dst.isUMat(), |
|
|
|
|
ocl_pow(_src, power, _dst)) |
|
|
|
|
|
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
int type = src.type(), depth = src.depth(), cn = src.channels(); |
|
|
|
@ -2369,6 +2372,8 @@ bool checkRange(InputArray _src, bool quiet, Point* pt, double minVal, double ma |
|
|
|
|
return badPt.x < 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
|
static bool ocl_patchNaNs( InputOutputArray _a, float value ) |
|
|
|
|
{ |
|
|
|
|
ocl::Kernel k("KF", ocl::core::arithm_oclsrc, |
|
|
|
@ -2386,12 +2391,14 @@ static bool ocl_patchNaNs( InputOutputArray _a, float value ) |
|
|
|
|
return k.run(2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void patchNaNs( InputOutputArray _a, double _val ) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( _a.depth() == CV_32F ); |
|
|
|
|
|
|
|
|
|
if (ocl::useOpenCL() && _a.isUMat() && _a.dims() <= 2 && ocl_patchNaNs(_a, (float)_val)) |
|
|
|
|
return; |
|
|
|
|
CV_OCL_RUN(_a.isUMat() && _a.dims() <= 2, |
|
|
|
|
ocl_patchNaNs(_a, (float)_val)) |
|
|
|
|
|
|
|
|
|
Mat a = _a.getMat(); |
|
|
|
|
const Mat* arrays[] = {&a, 0}; |
|
|
|
|