added new macros useful for tracking whether OpenCL impl run or not

pull/2191/head
Ilya Lavrenov 11 years ago
parent ee88cc2c52
commit cc514ac7a9
  1. 1
      cmake/cl2cpp.cmake
  2. 34
      modules/core/include/opencv2/core/opencl/ocl_defs.hpp
  3. 61
      modules/core/src/mathfuncs.cpp

@ -29,6 +29,7 @@ ${nested_namespace_start}
set(STR_HPP "// This file is auto-generated. Do not edit!
#include \"opencv2/core/ocl_genbase.hpp\"
#include \"opencv2/core/opencl/ocl_defs.hpp\"
namespace cv
{

@ -0,0 +1,34 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifdef HAVE_OPENCL
#ifdef CV_OPENCL_RUN_VERBOSE
#define CV_OCL_RUN(condition, func) \
{ \
if (cv::ocl::useOpenCL() && (condition) && func) \
{ \
printf("%s: OpenCL implementation is running\n", CV_Func); \
fflush(stdout); \
return; \
} \
else \
{ \
printf("%s: Plain implementation is running\n", CV_Func); \
fflush(stdout); \
} \
}
#else
#define CV_OCL_RUN(condition, func) \
if (cv::ocl::useOpenCL() && (condition) && func) \
return;
#endif
#else
#define CV_OCL_RUN(condition, func)
#endif

@ -54,6 +54,7 @@ static const float atan2_p3 = -0.3258083974640975f*(float)(180/CV_PI);
static const float atan2_p5 = 0.1555786518463281f*(float)(180/CV_PI);
static const float atan2_p7 = -0.04432655554792128f*(float)(180/CV_PI);
#ifdef HAVE_OPENCL
enum { OCL_OP_LOG=0, OCL_OP_EXP=1, OCL_OP_MAG=2, OCL_OP_PHASE_DEGREES=3, OCL_OP_PHASE_RADIANS=4 };
@ -98,6 +99,8 @@ static bool ocl_math_op(InputArray _src1, InputArray _src2, OutputArray _dst, in
return k.run(2, globalsize, 0, false);
}
#endif
float fastAtan2( float y, float x )
{
float ax = std::abs(x), ay = std::abs(y);
@ -401,11 +404,8 @@ void magnitude( InputArray src1, InputArray src2, OutputArray dst )
int type = src1.type(), depth = src1.depth(), cn = src1.channels();
CV_Assert( src1.size() == src2.size() && type == src2.type() && (depth == CV_32F || depth == CV_64F));
bool use_opencl = dst.isUMat() && ocl::useOpenCL()
&& src1.dims() <= 2 && src2.dims() <= 2;
if(use_opencl && ocl_math_op(src1, src2, dst, OCL_OP_MAG) )
return;
CV_OCL_RUN(dst.isUMat() && src1.dims() <= 2 && src2.dims() <= 2,
ocl_math_op(src1, src2, dst, OCL_OP_MAG))
Mat X = src1.getMat(), Y = src2.getMat();
dst.create(X.dims, X.size, X.type());
@ -439,11 +439,8 @@ void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegre
int type = src1.type(), depth = src1.depth(), cn = src1.channels();
CV_Assert( src1.size() == src2.size() && type == src2.type() && (depth == CV_32F || depth == CV_64F));
bool use_opencl = dst.isUMat() && ocl::useOpenCL()
&& src1.dims() <= 2 && src2.dims() <= 2;
if(use_opencl && ocl_math_op(src1, src2, dst, angleInDegrees ? OCL_OP_PHASE_DEGREES : OCL_OP_PHASE_RADIANS) )
return;
CV_OCL_RUN(dst.isUMat() && src1.dims() <= 2 && src2.dims() <= 2,
ocl_math_op(src1, src2, dst, angleInDegrees ? OCL_OP_PHASE_DEGREES : OCL_OP_PHASE_RADIANS))
Mat X = src1.getMat(), Y = src2.getMat();
dst.create( X.dims, X.size, type );
@ -497,6 +494,8 @@ void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegre
}
}
#ifdef HAVE_OPENCL
static bool ocl_cartToPolar( InputArray _src1, InputArray _src2,
OutputArray _dst1, OutputArray _dst2, bool angleInDegrees )
{
@ -533,12 +532,13 @@ static bool ocl_cartToPolar( InputArray _src1, InputArray _src2,
return k.run(2, globalsize, NULL, false);
}
#endif
void cartToPolar( InputArray src1, InputArray src2,
OutputArray dst1, OutputArray dst2, bool angleInDegrees )
{
if (ocl::useOpenCL() && dst1.isUMat() && dst2.isUMat() &&
CV_OCL_RUN(dst1.isUMat() && dst2.isUMat(),
ocl_cartToPolar(src1, src2, dst1, dst2, angleInDegrees))
return;
Mat X = src1.getMat(), Y = src2.getMat();
int type = X.type(), depth = X.depth(), cn = X.channels();
@ -683,6 +683,8 @@ static void SinCos_32f( const float *angle, float *sinval, float* cosval,
}
#ifdef HAVE_OPENCL
static bool ocl_polarToCart( InputArray _mag, InputArray _angle,
OutputArray _dst1, OutputArray _dst2, bool angleInDegrees )
{
@ -715,15 +717,16 @@ static bool ocl_polarToCart( InputArray _mag, InputArray _angle,
return k.run(2, globalsize, NULL, false);
}
#endif
void polarToCart( InputArray src1, InputArray src2,
OutputArray dst1, OutputArray dst2, bool angleInDegrees )
{
int type = src2.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert((depth == CV_32F || depth == CV_64F) && (src1.empty() || src1.type() == type));
if (ocl::useOpenCL() && !src1.empty() && src2.dims() <= 2 && dst1.isUMat() && dst2.isUMat() &&
ocl_polarToCart(src1, src2, dst1, dst2, angleInDegrees))
return;
CV_OCL_RUN(!src1.empty() && src2.dims() <= 2 && dst1.isUMat() && dst2.isUMat(),
ocl_polarToCart(src1, src2, dst1, dst2, angleInDegrees))
Mat Mag = src1.getMat(), Angle = src2.getMat();
CV_Assert( Mag.empty() || Angle.size == Mag.size);
@ -1289,10 +1292,8 @@ void exp( InputArray _src, OutputArray _dst )
int type = _src.type(), depth = _src.depth(), cn = _src.channels();
CV_Assert( depth == CV_32F || depth == CV_64F );
bool use_opencl = _dst.isUMat() && ocl::useOpenCL() && _src.dims() <= 2;
if(use_opencl && ocl_math_op(_src, noArray(), _dst, OCL_OP_EXP) )
return;
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2,
ocl_math_op(_src, noArray(), _dst, OCL_OP_EXP))
Mat src = _src.getMat();
_dst.create( src.dims, src.size, type );
@ -1938,10 +1939,8 @@ void log( InputArray _src, OutputArray _dst )
int type = _src.type(), depth = _src.depth(), cn = _src.channels();
CV_Assert( depth == CV_32F || depth == CV_64F );
bool use_opencl = _dst.isUMat() && ocl::useOpenCL() && _src.dims() <= 2;
if(use_opencl && ocl_math_op(_src, noArray(), _dst, OCL_OP_LOG) )
return;
CV_OCL_RUN( _dst.isUMat() && _src.dims() <= 2,
ocl_math_op(_src, noArray(), _dst, OCL_OP_LOG))
Mat src = _src.getMat();
_dst.create( src.dims, src.size, type );
@ -2032,6 +2031,8 @@ static IPowFunc ipowTab[] =
(IPowFunc)iPow32s, (IPowFunc)iPow32f, (IPowFunc)iPow64f, 0
};
#ifdef HAVE_OPENCL
static bool ocl_pow(InputArray _src, double power, OutputArray _dst)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
@ -2071,10 +2072,12 @@ static bool ocl_pow(InputArray _src, double power, OutputArray _dst)
return k.run(2, globalsize, NULL, false);
}
#endif
void pow( InputArray _src, double power, OutputArray _dst )
{
if (ocl::useOpenCL() && _dst.isUMat() && ocl_pow(_src, power, _dst))
return;
CV_OCL_RUN(_dst.isUMat(),
ocl_pow(_src, power, _dst))
Mat src = _src.getMat();
int type = src.type(), depth = src.depth(), cn = src.channels();
@ -2369,6 +2372,8 @@ bool checkRange(InputArray _src, bool quiet, Point* pt, double minVal, double ma
return badPt.x < 0;
}
#ifdef HAVE_OPENCL
static bool ocl_patchNaNs( InputOutputArray _a, float value )
{
ocl::Kernel k("KF", ocl::core::arithm_oclsrc,
@ -2386,12 +2391,14 @@ static bool ocl_patchNaNs( InputOutputArray _a, float value )
return k.run(2, globalsize, NULL, false);
}
#endif
void patchNaNs( InputOutputArray _a, double _val )
{
CV_Assert( _a.depth() == CV_32F );
if (ocl::useOpenCL() && _a.isUMat() && _a.dims() <= 2 && ocl_patchNaNs(_a, (float)_val))
return;
CV_OCL_RUN(_a.isUMat() && _a.dims() <= 2,
ocl_patchNaNs(_a, (float)_val))
Mat a = _a.getMat();
const Mat* arrays[] = {&a, 0};

Loading…
Cancel
Save