|
|
|
@ -208,7 +208,7 @@ static void find_decision_boundary_ANN( const Mat& layer_sizes ) |
|
|
|
|
ANN_MLP::Params params(layer_sizes, ANN_MLP::SIGMOID_SYM, 1, 1, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 300, FLT_EPSILON), |
|
|
|
|
ANN_MLP::Params::BACKPROP, 0.001); |
|
|
|
|
|
|
|
|
|
Mat trainClasses = Mat::zeros( trainedPoints.size(), classColors.size(), CV_32FC1 ); |
|
|
|
|
Mat trainClasses = Mat::zeros( (int)trainedPoints.size(), (int)classColors.size(), CV_32FC1 ); |
|
|
|
|
for( int i = 0; i < trainClasses.rows; i++ ) |
|
|
|
|
{ |
|
|
|
|
trainClasses.at<float>(i, trainedPointsMarkers[i]) = 1.f; |
|
|
|
@ -386,7 +386,7 @@ int main() |
|
|
|
|
Mat layer_sizes1( 1, 3, CV_32SC1 ); |
|
|
|
|
layer_sizes1.at<int>(0) = 2; |
|
|
|
|
layer_sizes1.at<int>(1) = 5; |
|
|
|
|
layer_sizes1.at<int>(2) = classColors.size(); |
|
|
|
|
layer_sizes1.at<int>(2) = (int)classColors.size(); |
|
|
|
|
find_decision_boundary_ANN( layer_sizes1 ); |
|
|
|
|
imshow( "ANN", imgDst ); |
|
|
|
|
#endif |
|
|
|
|