mirror of https://github.com/opencv/opencv.git
Merge pull request #22808 from zihaomu:nanotrack
[teset data in opencv_extra](https://github.com/opencv/opencv_extra/pull/1016) NanoTrack is an extremely lightweight and fast object-tracking model. The total size is **1.1 MB**. And the FPS on M1 chip is **150**, on Raspberry Pi 4 is about **30**. (Float32 CPU only) With this model, many users can run object tracking on the edge device. The author of NanoTrack is @HonglinChu. The original repo is https://github.com/HonglinChu/NanoTrack. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMakepull/18377/merge
parent
b16f76eede
commit
cb8f1dca3b
6 changed files with 655 additions and 43 deletions
@ -0,0 +1,359 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// This file is modified from the https://github.com/HonglinChu/NanoTrack/blob/master/ncnn_macos_nanotrack/nanotrack.cpp
|
||||
// Author, HongLinChu, 1628464345@qq.com
|
||||
// Adapt to OpenCV, ZihaoMu: zihaomu@outlook.com
|
||||
|
||||
// Link to original inference code: https://github.com/HonglinChu/NanoTrack
|
||||
// Link to original training repo: https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack
|
||||
|
||||
#include "../precomp.hpp" |
||||
#ifdef HAVE_OPENCV_DNN |
||||
#include "opencv2/dnn.hpp" |
||||
#endif |
||||
|
||||
namespace cv { |
||||
|
||||
TrackerNano::TrackerNano() |
||||
{ |
||||
// nothing
|
||||
} |
||||
|
||||
TrackerNano::~TrackerNano() |
||||
{ |
||||
// nothing
|
||||
} |
||||
|
||||
TrackerNano::Params::Params() |
||||
{ |
||||
backbone = "backbone.onnx"; |
||||
neckhead = "neckhead.onnx"; |
||||
#ifdef HAVE_OPENCV_DNN |
||||
backend = dnn::DNN_BACKEND_DEFAULT; |
||||
target = dnn::DNN_TARGET_CPU; |
||||
#else |
||||
backend = -1; // invalid value
|
||||
target = -1; // invalid value
|
||||
#endif |
||||
} |
||||
|
||||
#ifdef HAVE_OPENCV_DNN |
||||
static void softmax(const Mat& src, Mat& dst) |
||||
{ |
||||
Mat maxVal; |
||||
cv::max(src.row(1), src.row(0), maxVal); |
||||
|
||||
src.row(1) -= maxVal; |
||||
src.row(0) -= maxVal; |
||||
|
||||
exp(src, dst); |
||||
|
||||
Mat sumVal = dst.row(0) + dst.row(1); |
||||
dst.row(0) = dst.row(0) / sumVal; |
||||
dst.row(1) = dst.row(1) / sumVal; |
||||
} |
||||
|
||||
static float sizeCal(float w, float h) |
||||
{ |
||||
float pad = (w + h) * 0.5f; |
||||
float sz2 = (w + pad) * (h + pad); |
||||
return sqrt(sz2); |
||||
} |
||||
|
||||
static Mat sizeCal(const Mat& w, const Mat& h) |
||||
{ |
||||
Mat pad = (w + h) * 0.5; |
||||
Mat sz2 = (w + pad).mul((h + pad)); |
||||
|
||||
cv::sqrt(sz2, sz2); |
||||
return sz2; |
||||
} |
||||
|
||||
// Similar python code: r = np.maximum(r, 1. / r) # r is matrix
|
||||
static void elementReciprocalMax(Mat& srcDst) |
||||
{ |
||||
size_t totalV = srcDst.total(); |
||||
float* ptr = srcDst.ptr<float>(0); |
||||
for (size_t i = 0; i < totalV; i++) |
||||
{ |
||||
float val = *(ptr + i); |
||||
*(ptr + i) = std::max(val, 1.0f/val); |
||||
} |
||||
} |
||||
|
||||
class TrackerNanoImpl : public TrackerNano |
||||
{ |
||||
public: |
||||
TrackerNanoImpl(const TrackerNano::Params& parameters) |
||||
: params(parameters) |
||||
{ |
||||
backbone = dnn::readNet(params.backbone); |
||||
neckhead = dnn::readNet(params.neckhead); |
||||
|
||||
CV_Assert(!backbone.empty()); |
||||
CV_Assert(!neckhead.empty()); |
||||
|
||||
backbone.setPreferableBackend(params.backend); |
||||
backbone.setPreferableTarget(params.target); |
||||
neckhead.setPreferableBackend(params.backend); |
||||
neckhead.setPreferableTarget(params.target); |
||||
} |
||||
|
||||
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE; |
||||
bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE; |
||||
float getTrackingScore() CV_OVERRIDE; |
||||
|
||||
// Save the target bounding box for each frame.
|
||||
std::vector<float> targetSz = {0, 0}; // H and W of bounding box
|
||||
std::vector<float> targetPos = {0, 0}; // center point of bounding box (x, y)
|
||||
float tracking_score; |
||||
|
||||
TrackerNano::Params params; |
||||
|
||||
struct trackerConfig |
||||
{ |
||||
float windowInfluence = 0.455f; |
||||
float lr = 0.37f; |
||||
float contextAmount = 0.5; |
||||
bool swapRB = true; |
||||
int totalStride = 16; |
||||
float penaltyK = 0.055f; |
||||
}; |
||||
|
||||
protected: |
||||
const int exemplarSize = 127; |
||||
const int instanceSize = 255; |
||||
|
||||
trackerConfig trackState; |
||||
int scoreSize; |
||||
Size imgSize = {0, 0}; |
||||
Mat hanningWindow; |
||||
Mat grid2searchX, grid2searchY; |
||||
|
||||
dnn::Net backbone, neckhead; |
||||
Mat image; |
||||
|
||||
void getSubwindow(Mat& dstCrop, Mat& srcImg, int originalSz, int resizeSz); |
||||
void generateGrids(); |
||||
}; |
||||
|
||||
void TrackerNanoImpl::generateGrids() |
||||
{ |
||||
int sz = scoreSize; |
||||
const int sz2 = sz / 2; |
||||
|
||||
std::vector<float> x1Vec(sz, 0); |
||||
|
||||
for (int i = 0; i < sz; i++) |
||||
{ |
||||
x1Vec[i] = i - sz2; |
||||
} |
||||
|
||||
Mat x1M(1, sz, CV_32FC1, x1Vec.data()); |
||||
|
||||
cv::repeat(x1M, sz, 1, grid2searchX); |
||||
cv::repeat(x1M.t(), 1, sz, grid2searchY); |
||||
|
||||
grid2searchX *= trackState.totalStride; |
||||
grid2searchY *= trackState.totalStride; |
||||
|
||||
grid2searchX += instanceSize/2; |
||||
grid2searchY += instanceSize/2; |
||||
} |
||||
|
||||
void TrackerNanoImpl::init(InputArray image_, const Rect &boundingBox_) |
||||
{ |
||||
scoreSize = (instanceSize - exemplarSize) / trackState.totalStride + 8; |
||||
trackState = trackerConfig(); |
||||
image = image_.getMat().clone(); |
||||
|
||||
// convert Rect2d from left-up to center.
|
||||
targetPos[0] = float(boundingBox_.x) + float(boundingBox_.width) * 0.5f; |
||||
targetPos[1] = float(boundingBox_.y) + float(boundingBox_.height) * 0.5f; |
||||
|
||||
targetSz[0] = float(boundingBox_.width); |
||||
targetSz[1] = float(boundingBox_.height); |
||||
|
||||
imgSize = image.size(); |
||||
|
||||
// Extent the bounding box.
|
||||
float sumSz = targetSz[0] + targetSz[1]; |
||||
float wExtent = targetSz[0] + trackState.contextAmount * (sumSz); |
||||
float hExtent = targetSz[1] + trackState.contextAmount * (sumSz); |
||||
int sz = int(cv::sqrt(wExtent * hExtent)); |
||||
|
||||
Mat crop; |
||||
getSubwindow(crop, image, sz, exemplarSize); |
||||
Mat blob = dnn::blobFromImage(crop, 1.0, Size(), Scalar(), trackState.swapRB); |
||||
|
||||
backbone.setInput(blob); |
||||
Mat out = backbone.forward(); // Feature extraction.
|
||||
neckhead.setInput(out, "input1"); |
||||
|
||||
createHanningWindow(hanningWindow, Size(scoreSize, scoreSize), CV_32F); |
||||
generateGrids(); |
||||
} |
||||
|
||||
void TrackerNanoImpl::getSubwindow(Mat& dstCrop, Mat& srcImg, int originalSz, int resizeSz) |
||||
{ |
||||
Scalar avgChans = mean(srcImg); |
||||
Size imgSz = srcImg.size(); |
||||
int c = (originalSz + 1) / 2; |
||||
|
||||
int context_xmin = targetPos[0] - c; |
||||
int context_xmax = context_xmin + originalSz - 1; |
||||
int context_ymin = targetPos[1] - c; |
||||
int context_ymax = context_ymin + originalSz - 1; |
||||
|
||||
int left_pad = std::max(0, -context_xmin); |
||||
int top_pad = std::max(0, -context_ymin); |
||||
int right_pad = std::max(0, context_xmax - imgSz.width + 1); |
||||
int bottom_pad = std::max(0, context_ymax - imgSz.height + 1); |
||||
|
||||
context_xmin += left_pad; |
||||
context_xmax += left_pad; |
||||
context_ymin += top_pad; |
||||
context_ymax += top_pad; |
||||
|
||||
Mat cropImg; |
||||
if (left_pad == 0 && top_pad == 0 && right_pad == 0 && bottom_pad == 0) |
||||
{ |
||||
// Crop image without padding.
|
||||
cropImg = srcImg(cv::Rect(context_xmin, context_ymin, |
||||
context_xmax - context_xmin + 1, context_ymax - context_ymin + 1)); |
||||
} |
||||
else // Crop image with padding, and the padding value is avgChans
|
||||
{ |
||||
cv::Mat tmpMat; |
||||
cv::copyMakeBorder(srcImg, tmpMat, top_pad, bottom_pad, left_pad, right_pad, cv::BORDER_CONSTANT, avgChans); |
||||
cropImg = tmpMat(cv::Rect(context_xmin, context_ymin, context_xmax - context_xmin + 1, context_ymax - context_ymin + 1)); |
||||
} |
||||
resize(cropImg, dstCrop, Size(resizeSz, resizeSz)); |
||||
} |
||||
|
||||
bool TrackerNanoImpl::update(InputArray image_, Rect &boundingBoxRes) |
||||
{ |
||||
image = image_.getMat().clone(); |
||||
int targetSzSum = targetSz[0] + targetSz[1]; |
||||
|
||||
float wc = targetSz[0] + trackState.contextAmount * targetSzSum; |
||||
float hc = targetSz[1] + trackState.contextAmount * targetSzSum; |
||||
float sz = cv::sqrt(wc * hc); |
||||
float scale_z = exemplarSize / sz; |
||||
float sx = sz * (instanceSize / exemplarSize); |
||||
targetSz[0] *= scale_z; |
||||
targetSz[1] *= scale_z; |
||||
|
||||
Mat crop; |
||||
getSubwindow(crop, image, int(sx), instanceSize); |
||||
|
||||
Mat blob = dnn::blobFromImage(crop, 1.0, Size(), Scalar(), trackState.swapRB); |
||||
backbone.setInput(blob); |
||||
Mat xf = backbone.forward(); |
||||
neckhead.setInput(xf, "input2"); |
||||
std::vector<String> outputName = {"output1", "output2"}; |
||||
std::vector<Mat> outs; |
||||
neckhead.forward(outs, outputName); |
||||
|
||||
CV_Assert(outs.size() == 2); |
||||
|
||||
Mat clsScore = outs[0]; // 1x2x16x16
|
||||
Mat bboxPred = outs[1]; // 1x4x16x16
|
||||
|
||||
clsScore = clsScore.reshape(0, {2, scoreSize, scoreSize}); |
||||
bboxPred = bboxPred.reshape(0, {4, scoreSize, scoreSize}); |
||||
|
||||
Mat scoreSoftmax; // 2x16x16
|
||||
softmax(clsScore, scoreSoftmax); |
||||
|
||||
Mat score = scoreSoftmax.row(1); |
||||
score = score.reshape(0, {scoreSize, scoreSize}); |
||||
|
||||
Mat predX1 = grid2searchX - bboxPred.row(0).reshape(0, {scoreSize, scoreSize}); |
||||
Mat predY1 = grid2searchY - bboxPred.row(1).reshape(0, {scoreSize, scoreSize}); |
||||
Mat predX2 = grid2searchX + bboxPred.row(2).reshape(0, {scoreSize, scoreSize}); |
||||
Mat predY2 = grid2searchY + bboxPred.row(3).reshape(0, {scoreSize, scoreSize}); |
||||
|
||||
// size penalty
|
||||
// scale penalty
|
||||
Mat sc = sizeCal(predX2 - predX1, predY2 - predY1)/sizeCal(targetPos[0], targetPos[1]); |
||||
elementReciprocalMax(sc); |
||||
|
||||
// ratio penalty
|
||||
float ratioVal = targetSz[0] / targetSz[1]; |
||||
|
||||
Mat ratioM(scoreSize, scoreSize, CV_32FC1, Scalar::all(ratioVal)); |
||||
Mat rc = ratioM / ((predX2 - predX1) / (predY2 - predY1)); |
||||
elementReciprocalMax(rc); |
||||
|
||||
Mat penalty; |
||||
exp(((rc.mul(sc) - 1) * trackState.penaltyK * (-1)), penalty); |
||||
Mat pscore = penalty.mul(score); |
||||
|
||||
// Window penalty
|
||||
pscore = pscore * (1.0 - trackState.windowInfluence) + hanningWindow * trackState.windowInfluence; |
||||
|
||||
// get Max
|
||||
int bestID[2] = { 0, 0 }; |
||||
minMaxIdx(pscore, 0, 0, 0, bestID); |
||||
|
||||
tracking_score = pscore.at<float>(bestID); |
||||
|
||||
float x1Val = predX1.at<float>(bestID); |
||||
float x2Val = predX2.at<float>(bestID); |
||||
float y1Val = predY1.at<float>(bestID); |
||||
float y2Val = predY2.at<float>(bestID); |
||||
|
||||
float predXs = (x1Val + x2Val)/2; |
||||
float predYs = (y1Val + y2Val)/2; |
||||
float predW = (x2Val - x1Val)/scale_z; |
||||
float predH = (y2Val - y1Val)/scale_z; |
||||
|
||||
float diffXs = (predXs - instanceSize / 2) / scale_z; |
||||
float diffYs = (predYs - instanceSize / 2) / scale_z; |
||||
|
||||
targetSz[0] /= scale_z; |
||||
targetSz[1] /= scale_z; |
||||
|
||||
float lr = penalty.at<float>(bestID) * score.at<float>(bestID) * trackState.lr; |
||||
|
||||
float resX = targetPos[0] + diffXs; |
||||
float resY = targetPos[1] + diffYs; |
||||
float resW = predW * lr + (1 - lr) * targetSz[0]; |
||||
float resH = predH * lr + (1 - lr) * targetSz[1]; |
||||
|
||||
resX = std::max(0.f, std::min((float)imgSize.width, resX)); |
||||
resY = std::max(0.f, std::min((float)imgSize.height, resY)); |
||||
resW = std::max(10.f, std::min((float)imgSize.width, resW)); |
||||
resH = std::max(10.f, std::min((float)imgSize.height, resH)); |
||||
|
||||
targetPos[0] = resX; |
||||
targetPos[1] = resY; |
||||
targetSz[0] = resW; |
||||
targetSz[1] = resH; |
||||
|
||||
// convert center to Rect.
|
||||
boundingBoxRes = { int(resX - resW/2), int(resY - resH/2), int(resW), int(resH)}; |
||||
return true; |
||||
} |
||||
|
||||
float TrackerNanoImpl::getTrackingScore() |
||||
{ |
||||
return tracking_score; |
||||
} |
||||
|
||||
Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters) |
||||
{ |
||||
return makePtr<TrackerNanoImpl>(parameters); |
||||
} |
||||
|
||||
#else // OPENCV_HAVE_DNN
|
||||
Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters) |
||||
{ |
||||
CV_UNUSED(parameters); |
||||
CV_Error(cv::Error::StsNotImplemented, "to use NanoTrack, the tracking module needs to be built with opencv_dnn !"); |
||||
} |
||||
#endif // OPENCV_HAVE_DNN
|
||||
} |
@ -0,0 +1,183 @@ |
||||
// NanoTrack
|
||||
// Link to original inference code: https://github.com/HonglinChu/NanoTrack
|
||||
// Link to original training repo: https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack
|
||||
// backBone model: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_backbone_sim.onnx
|
||||
// headNeck model: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_head_sim.onnx
|
||||
|
||||
#include <iostream> |
||||
#include <cmath> |
||||
|
||||
#include <opencv2/dnn.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <opencv2/video.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
|
||||
const char *keys = |
||||
"{ help h | | Print help message }" |
||||
"{ input i | | Full path to input video folder, the specific camera index. (empty for camera 0) }" |
||||
"{ backbone | backbone.onnx | Path to onnx model of backbone.onnx}" |
||||
"{ headneck | headneck.onnx | Path to onnx model of headneck.onnx }" |
||||
"{ backend | 0 | Choose one of computation backends: " |
||||
"0: automatically (by default), " |
||||
"1: Halide language (http://halide-lang.org/), " |
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
||||
"3: OpenCV implementation, " |
||||
"4: VKCOM, " |
||||
"5: CUDA }," |
||||
"{ target | 0 | Choose one of target computation devices: " |
||||
"0: CPU target (by default), " |
||||
"1: OpenCL, " |
||||
"2: OpenCL fp16 (half-float precision), " |
||||
"3: VPU, " |
||||
"4: Vulkan, " |
||||
"6: CUDA, " |
||||
"7: CUDA fp16 (half-float preprocess) }" |
||||
; |
||||
|
||||
static |
||||
int run(int argc, char** argv) |
||||
{ |
||||
// Parse command line arguments.
|
||||
CommandLineParser parser(argc, argv, keys); |
||||
|
||||
if (parser.has("help")) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
|
||||
std::string inputName = parser.get<String>("input"); |
||||
std::string backbone = parser.get<String>("backbone"); |
||||
std::string headneck = parser.get<String>("headneck"); |
||||
int backend = parser.get<int>("backend"); |
||||
int target = parser.get<int>("target"); |
||||
|
||||
Ptr<TrackerNano> tracker; |
||||
try |
||||
{ |
||||
TrackerNano::Params params; |
||||
params.backbone = samples::findFile(backbone); |
||||
params.neckhead = samples::findFile(headneck); |
||||
params.backend = backend; |
||||
params.target = target; |
||||
tracker = TrackerNano::create(params); |
||||
} |
||||
catch (const cv::Exception& ee) |
||||
{ |
||||
std::cerr << "Exception: " << ee.what() << std::endl; |
||||
std::cout << "Can't load the network by using the following files:" << std::endl; |
||||
std::cout << "backbone : " << backbone << std::endl; |
||||
std::cout << "headneck : " << headneck << std::endl; |
||||
return 2; |
||||
} |
||||
|
||||
const std::string winName = "NanoTrack"; |
||||
namedWindow(winName, WINDOW_AUTOSIZE); |
||||
|
||||
// Open a video file or an image file or a camera stream.
|
||||
VideoCapture cap; |
||||
|
||||
if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1)) |
||||
{ |
||||
int c = inputName.empty() ? 0 : inputName[0] - '0'; |
||||
std::cout << "Trying to open camera #" << c << " ..." << std::endl; |
||||
if (!cap.open(c)) |
||||
{ |
||||
std::cout << "Capture from camera #" << c << " didn't work. Specify -i=<video> parameter to read from video file" << std::endl; |
||||
return 2; |
||||
} |
||||
} |
||||
else if (inputName.size()) |
||||
{ |
||||
inputName = samples::findFileOrKeep(inputName); |
||||
if (!cap.open(inputName)) |
||||
{ |
||||
std::cout << "Could not open: " << inputName << std::endl; |
||||
return 2; |
||||
} |
||||
} |
||||
|
||||
// Read the first image.
|
||||
Mat image; |
||||
cap >> image; |
||||
if (image.empty()) |
||||
{ |
||||
std::cerr << "Can't capture frame!" << std::endl; |
||||
return 2; |
||||
} |
||||
|
||||
Mat image_select = image.clone(); |
||||
putText(image_select, "Select initial bounding box you want to track.", Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
||||
putText(image_select, "And Press the ENTER key.", Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
||||
|
||||
Rect selectRect = selectROI(winName, image_select); |
||||
std::cout << "ROI=" << selectRect << std::endl; |
||||
|
||||
tracker->init(image, selectRect); |
||||
|
||||
TickMeter tickMeter; |
||||
|
||||
for (int count = 0; ; ++count) |
||||
{ |
||||
cap >> image; |
||||
if (image.empty()) |
||||
{ |
||||
std::cerr << "Can't capture frame " << count << ". End of video stream?" << std::endl; |
||||
break; |
||||
} |
||||
|
||||
Rect rect; |
||||
|
||||
tickMeter.start(); |
||||
bool ok = tracker->update(image, rect); |
||||
tickMeter.stop(); |
||||
|
||||
float score = tracker->getTrackingScore(); |
||||
|
||||
std::cout << "frame " << count << |
||||
": predicted score=" << score << |
||||
" rect=" << rect << |
||||
" time=" << tickMeter.getTimeMilli() << "ms" << |
||||
std::endl; |
||||
|
||||
Mat render_image = image.clone(); |
||||
|
||||
if (ok) |
||||
{ |
||||
rectangle(render_image, rect, Scalar(0, 255, 0), 2); |
||||
|
||||
std::string timeLabel = format("Inference time: %.2f ms", tickMeter.getTimeMilli()); |
||||
std::string scoreLabel = format("Score: %f", score); |
||||
putText(render_image, timeLabel, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
||||
putText(render_image, scoreLabel, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
||||
} |
||||
|
||||
imshow(winName, render_image); |
||||
|
||||
tickMeter.reset(); |
||||
|
||||
int c = waitKey(1); |
||||
if (c == 27 /*ESC*/) |
||||
break; |
||||
} |
||||
|
||||
std::cout << "Exit" << std::endl; |
||||
return 0; |
||||
} |
||||
|
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
try |
||||
{ |
||||
return run(argc, argv); |
||||
} |
||||
catch (const std::exception& e) |
||||
{ |
||||
std::cerr << "FATAL: C++ exception: " << e.what() << std::endl; |
||||
return 1; |
||||
} |
||||
} |
Loading…
Reference in new issue