Merge pull request #22808 from zihaomu:nanotrack

[teset data in opencv_extra](https://github.com/opencv/opencv_extra/pull/1016)

NanoTrack is an extremely lightweight and fast object-tracking model. 
The total size is **1.1 MB**.
And the FPS on M1 chip is **150**, on Raspberry Pi 4 is about **30**. (Float32 CPU only)

With this model, many users can run object tracking on the edge device.

The author of NanoTrack is @HonglinChu.
The original repo is https://github.com/HonglinChu/NanoTrack.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
pull/18377/merge
Zihao Mu 2 years ago committed by GitHub
parent b16f76eede
commit cb8f1dca3b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 37
      modules/video/include/opencv2/video/tracking.hpp
  2. 1
      modules/video/misc/python/pyopencv_video.hpp
  3. 359
      modules/video/src/tracking/tracker_nano.cpp
  4. 103
      modules/video/test/test_trackers.cpp
  5. 183
      samples/dnn/nanotrack_tracker.cpp
  6. 15
      samples/python/tracker.py

@ -849,6 +849,43 @@ public:
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
/** @brief the Nano tracker is a super lightweight dnn-based general object tracking.
*
* Nano tracker is much faster and extremely lightweight due to special model structure, the whole model size is about 1.1 MB.
* Nano tracker needs two models: one for feature extraction (backbone) and the another for localization (neckhead).
* Please download these two onnx models at:https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack/models/onnx.
* Original repo is here: https://github.com/HonglinChu/NanoTrack
* Author:HongLinChu, 1628464345@qq.com
*/
class CV_EXPORTS_W TrackerNano : public Tracker
{
protected:
TrackerNano(); // use ::create()
public:
virtual ~TrackerNano() CV_OVERRIDE;
struct CV_EXPORTS_W_SIMPLE Params
{
CV_WRAP Params();
CV_PROP_RW std::string backbone;
CV_PROP_RW std::string neckhead;
CV_PROP_RW int backend;
CV_PROP_RW int target;
};
/** @brief Constructor
@param parameters NanoTrack parameters TrackerNano::Params
*/
static CV_WRAP
Ptr<TrackerNano> create(const TrackerNano::Params& parameters = TrackerNano::Params());
/** @brief Return tracking score
*/
CV_WRAP virtual float getTrackingScore() = 0;
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
//! @} video_track

@ -2,4 +2,5 @@
typedef TrackerMIL::Params TrackerMIL_Params;
typedef TrackerGOTURN::Params TrackerGOTURN_Params;
typedef TrackerDaSiamRPN::Params TrackerDaSiamRPN_Params;
typedef TrackerNano::Params TrackerNano_Params;
#endif

@ -0,0 +1,359 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// This file is modified from the https://github.com/HonglinChu/NanoTrack/blob/master/ncnn_macos_nanotrack/nanotrack.cpp
// Author, HongLinChu, 1628464345@qq.com
// Adapt to OpenCV, ZihaoMu: zihaomu@outlook.com
// Link to original inference code: https://github.com/HonglinChu/NanoTrack
// Link to original training repo: https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack
#include "../precomp.hpp"
#ifdef HAVE_OPENCV_DNN
#include "opencv2/dnn.hpp"
#endif
namespace cv {
TrackerNano::TrackerNano()
{
// nothing
}
TrackerNano::~TrackerNano()
{
// nothing
}
TrackerNano::Params::Params()
{
backbone = "backbone.onnx";
neckhead = "neckhead.onnx";
#ifdef HAVE_OPENCV_DNN
backend = dnn::DNN_BACKEND_DEFAULT;
target = dnn::DNN_TARGET_CPU;
#else
backend = -1; // invalid value
target = -1; // invalid value
#endif
}
#ifdef HAVE_OPENCV_DNN
static void softmax(const Mat& src, Mat& dst)
{
Mat maxVal;
cv::max(src.row(1), src.row(0), maxVal);
src.row(1) -= maxVal;
src.row(0) -= maxVal;
exp(src, dst);
Mat sumVal = dst.row(0) + dst.row(1);
dst.row(0) = dst.row(0) / sumVal;
dst.row(1) = dst.row(1) / sumVal;
}
static float sizeCal(float w, float h)
{
float pad = (w + h) * 0.5f;
float sz2 = (w + pad) * (h + pad);
return sqrt(sz2);
}
static Mat sizeCal(const Mat& w, const Mat& h)
{
Mat pad = (w + h) * 0.5;
Mat sz2 = (w + pad).mul((h + pad));
cv::sqrt(sz2, sz2);
return sz2;
}
// Similar python code: r = np.maximum(r, 1. / r) # r is matrix
static void elementReciprocalMax(Mat& srcDst)
{
size_t totalV = srcDst.total();
float* ptr = srcDst.ptr<float>(0);
for (size_t i = 0; i < totalV; i++)
{
float val = *(ptr + i);
*(ptr + i) = std::max(val, 1.0f/val);
}
}
class TrackerNanoImpl : public TrackerNano
{
public:
TrackerNanoImpl(const TrackerNano::Params& parameters)
: params(parameters)
{
backbone = dnn::readNet(params.backbone);
neckhead = dnn::readNet(params.neckhead);
CV_Assert(!backbone.empty());
CV_Assert(!neckhead.empty());
backbone.setPreferableBackend(params.backend);
backbone.setPreferableTarget(params.target);
neckhead.setPreferableBackend(params.backend);
neckhead.setPreferableTarget(params.target);
}
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
float getTrackingScore() CV_OVERRIDE;
// Save the target bounding box for each frame.
std::vector<float> targetSz = {0, 0}; // H and W of bounding box
std::vector<float> targetPos = {0, 0}; // center point of bounding box (x, y)
float tracking_score;
TrackerNano::Params params;
struct trackerConfig
{
float windowInfluence = 0.455f;
float lr = 0.37f;
float contextAmount = 0.5;
bool swapRB = true;
int totalStride = 16;
float penaltyK = 0.055f;
};
protected:
const int exemplarSize = 127;
const int instanceSize = 255;
trackerConfig trackState;
int scoreSize;
Size imgSize = {0, 0};
Mat hanningWindow;
Mat grid2searchX, grid2searchY;
dnn::Net backbone, neckhead;
Mat image;
void getSubwindow(Mat& dstCrop, Mat& srcImg, int originalSz, int resizeSz);
void generateGrids();
};
void TrackerNanoImpl::generateGrids()
{
int sz = scoreSize;
const int sz2 = sz / 2;
std::vector<float> x1Vec(sz, 0);
for (int i = 0; i < sz; i++)
{
x1Vec[i] = i - sz2;
}
Mat x1M(1, sz, CV_32FC1, x1Vec.data());
cv::repeat(x1M, sz, 1, grid2searchX);
cv::repeat(x1M.t(), 1, sz, grid2searchY);
grid2searchX *= trackState.totalStride;
grid2searchY *= trackState.totalStride;
grid2searchX += instanceSize/2;
grid2searchY += instanceSize/2;
}
void TrackerNanoImpl::init(InputArray image_, const Rect &boundingBox_)
{
scoreSize = (instanceSize - exemplarSize) / trackState.totalStride + 8;
trackState = trackerConfig();
image = image_.getMat().clone();
// convert Rect2d from left-up to center.
targetPos[0] = float(boundingBox_.x) + float(boundingBox_.width) * 0.5f;
targetPos[1] = float(boundingBox_.y) + float(boundingBox_.height) * 0.5f;
targetSz[0] = float(boundingBox_.width);
targetSz[1] = float(boundingBox_.height);
imgSize = image.size();
// Extent the bounding box.
float sumSz = targetSz[0] + targetSz[1];
float wExtent = targetSz[0] + trackState.contextAmount * (sumSz);
float hExtent = targetSz[1] + trackState.contextAmount * (sumSz);
int sz = int(cv::sqrt(wExtent * hExtent));
Mat crop;
getSubwindow(crop, image, sz, exemplarSize);
Mat blob = dnn::blobFromImage(crop, 1.0, Size(), Scalar(), trackState.swapRB);
backbone.setInput(blob);
Mat out = backbone.forward(); // Feature extraction.
neckhead.setInput(out, "input1");
createHanningWindow(hanningWindow, Size(scoreSize, scoreSize), CV_32F);
generateGrids();
}
void TrackerNanoImpl::getSubwindow(Mat& dstCrop, Mat& srcImg, int originalSz, int resizeSz)
{
Scalar avgChans = mean(srcImg);
Size imgSz = srcImg.size();
int c = (originalSz + 1) / 2;
int context_xmin = targetPos[0] - c;
int context_xmax = context_xmin + originalSz - 1;
int context_ymin = targetPos[1] - c;
int context_ymax = context_ymin + originalSz - 1;
int left_pad = std::max(0, -context_xmin);
int top_pad = std::max(0, -context_ymin);
int right_pad = std::max(0, context_xmax - imgSz.width + 1);
int bottom_pad = std::max(0, context_ymax - imgSz.height + 1);
context_xmin += left_pad;
context_xmax += left_pad;
context_ymin += top_pad;
context_ymax += top_pad;
Mat cropImg;
if (left_pad == 0 && top_pad == 0 && right_pad == 0 && bottom_pad == 0)
{
// Crop image without padding.
cropImg = srcImg(cv::Rect(context_xmin, context_ymin,
context_xmax - context_xmin + 1, context_ymax - context_ymin + 1));
}
else // Crop image with padding, and the padding value is avgChans
{
cv::Mat tmpMat;
cv::copyMakeBorder(srcImg, tmpMat, top_pad, bottom_pad, left_pad, right_pad, cv::BORDER_CONSTANT, avgChans);
cropImg = tmpMat(cv::Rect(context_xmin, context_ymin, context_xmax - context_xmin + 1, context_ymax - context_ymin + 1));
}
resize(cropImg, dstCrop, Size(resizeSz, resizeSz));
}
bool TrackerNanoImpl::update(InputArray image_, Rect &boundingBoxRes)
{
image = image_.getMat().clone();
int targetSzSum = targetSz[0] + targetSz[1];
float wc = targetSz[0] + trackState.contextAmount * targetSzSum;
float hc = targetSz[1] + trackState.contextAmount * targetSzSum;
float sz = cv::sqrt(wc * hc);
float scale_z = exemplarSize / sz;
float sx = sz * (instanceSize / exemplarSize);
targetSz[0] *= scale_z;
targetSz[1] *= scale_z;
Mat crop;
getSubwindow(crop, image, int(sx), instanceSize);
Mat blob = dnn::blobFromImage(crop, 1.0, Size(), Scalar(), trackState.swapRB);
backbone.setInput(blob);
Mat xf = backbone.forward();
neckhead.setInput(xf, "input2");
std::vector<String> outputName = {"output1", "output2"};
std::vector<Mat> outs;
neckhead.forward(outs, outputName);
CV_Assert(outs.size() == 2);
Mat clsScore = outs[0]; // 1x2x16x16
Mat bboxPred = outs[1]; // 1x4x16x16
clsScore = clsScore.reshape(0, {2, scoreSize, scoreSize});
bboxPred = bboxPred.reshape(0, {4, scoreSize, scoreSize});
Mat scoreSoftmax; // 2x16x16
softmax(clsScore, scoreSoftmax);
Mat score = scoreSoftmax.row(1);
score = score.reshape(0, {scoreSize, scoreSize});
Mat predX1 = grid2searchX - bboxPred.row(0).reshape(0, {scoreSize, scoreSize});
Mat predY1 = grid2searchY - bboxPred.row(1).reshape(0, {scoreSize, scoreSize});
Mat predX2 = grid2searchX + bboxPred.row(2).reshape(0, {scoreSize, scoreSize});
Mat predY2 = grid2searchY + bboxPred.row(3).reshape(0, {scoreSize, scoreSize});
// size penalty
// scale penalty
Mat sc = sizeCal(predX2 - predX1, predY2 - predY1)/sizeCal(targetPos[0], targetPos[1]);
elementReciprocalMax(sc);
// ratio penalty
float ratioVal = targetSz[0] / targetSz[1];
Mat ratioM(scoreSize, scoreSize, CV_32FC1, Scalar::all(ratioVal));
Mat rc = ratioM / ((predX2 - predX1) / (predY2 - predY1));
elementReciprocalMax(rc);
Mat penalty;
exp(((rc.mul(sc) - 1) * trackState.penaltyK * (-1)), penalty);
Mat pscore = penalty.mul(score);
// Window penalty
pscore = pscore * (1.0 - trackState.windowInfluence) + hanningWindow * trackState.windowInfluence;
// get Max
int bestID[2] = { 0, 0 };
minMaxIdx(pscore, 0, 0, 0, bestID);
tracking_score = pscore.at<float>(bestID);
float x1Val = predX1.at<float>(bestID);
float x2Val = predX2.at<float>(bestID);
float y1Val = predY1.at<float>(bestID);
float y2Val = predY2.at<float>(bestID);
float predXs = (x1Val + x2Val)/2;
float predYs = (y1Val + y2Val)/2;
float predW = (x2Val - x1Val)/scale_z;
float predH = (y2Val - y1Val)/scale_z;
float diffXs = (predXs - instanceSize / 2) / scale_z;
float diffYs = (predYs - instanceSize / 2) / scale_z;
targetSz[0] /= scale_z;
targetSz[1] /= scale_z;
float lr = penalty.at<float>(bestID) * score.at<float>(bestID) * trackState.lr;
float resX = targetPos[0] + diffXs;
float resY = targetPos[1] + diffYs;
float resW = predW * lr + (1 - lr) * targetSz[0];
float resH = predH * lr + (1 - lr) * targetSz[1];
resX = std::max(0.f, std::min((float)imgSize.width, resX));
resY = std::max(0.f, std::min((float)imgSize.height, resY));
resW = std::max(10.f, std::min((float)imgSize.width, resW));
resH = std::max(10.f, std::min((float)imgSize.height, resH));
targetPos[0] = resX;
targetPos[1] = resY;
targetSz[0] = resW;
targetSz[1] = resH;
// convert center to Rect.
boundingBoxRes = { int(resX - resW/2), int(resY - resH/2), int(resW), int(resH)};
return true;
}
float TrackerNanoImpl::getTrackingScore()
{
return tracking_score;
}
Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters)
{
return makePtr<TrackerNanoImpl>(parameters);
}
#else // OPENCV_HAVE_DNN
Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters)
{
CV_UNUSED(parameters);
CV_Error(cv::Error::StsNotImplemented, "to use NanoTrack, the tracking module needs to be built with opencv_dnn !");
}
#endif // OPENCV_HAVE_DNN
}

@ -64,40 +64,67 @@ TEST_P(DistanceAndOverlap, GOTURN)
INSTANTIATE_TEST_CASE_P(Tracking, DistanceAndOverlap, TESTSET_NAMES);
TEST(GOTURN, memory_usage)
static bool checkIOU(const Rect& r0, const Rect& r1, double threshold)
{
cv::Rect roi(145, 70, 85, 85);
int interArea = (r0 & r1).area();
double iouVal = (interArea * 1.0 )/ (r0.area() + r1.area() - interArea);;
if (iouVal > threshold)
return true;
else
{
std::cout <<"Unmatched IOU: expect IOU val ("<<iouVal <<") > the IOU threadhold ("<<threshold<<")! Box 0 is "
<< r0 <<", and Box 1 is "<<r1<< std::endl;
return false;
}
}
static void checkTrackingAccuracy(cv::Ptr<Tracker>& tracker, double iouThreshold = 0.8)
{
// Template image
Mat img0 = imread(findDataFile("tracking/bag/00000001.jpg"), 1);
// Tracking image sequence.
std::vector<Mat> imgs;
imgs.push_back(imread(findDataFile("tracking/bag/00000002.jpg"), 1));
imgs.push_back(imread(findDataFile("tracking/bag/00000003.jpg"), 1));
imgs.push_back(imread(findDataFile("tracking/bag/00000004.jpg"), 1));
imgs.push_back(imread(findDataFile("tracking/bag/00000005.jpg"), 1));
imgs.push_back(imread(findDataFile("tracking/bag/00000006.jpg"), 1));
cv::Rect roi(325, 164, 100, 100);
std::vector<Rect> targetRois;
targetRois.push_back(cv::Rect(278, 133, 99, 104));
targetRois.push_back(cv::Rect(293, 88, 93, 110));
targetRois.push_back(cv::Rect(287, 76, 89, 116));
targetRois.push_back(cv::Rect(297, 74, 82, 122));
targetRois.push_back(cv::Rect(311, 83, 78, 125));
tracker->init(img0, roi);
CV_Assert(targetRois.size() == imgs.size());
for (int i = 0; i < (int)imgs.size(); i++)
{
bool res = tracker->update(imgs[i], roi);
ASSERT_TRUE(res);
ASSERT_TRUE(checkIOU(roi, targetRois[i], iouThreshold)) << cv::format("Fail at img %d.",i);
}
}
TEST(GOTURN, accuracy)
{
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
cv::TrackerGOTURN::Params params;
params.modelTxt = model;
params.modelBin = weights;
cv::Ptr<Tracker> tracker = TrackerGOTURN::create(params);
string inputVideo = cvtest::findDataFile("tracking/david/data/david.webm");
cv::VideoCapture video(inputVideo);
ASSERT_TRUE(video.isOpened()) << inputVideo;
cv::Mat frame;
video >> frame;
ASSERT_FALSE(frame.empty()) << inputVideo;
tracker->init(frame, roi);
string ground_truth_bb;
for (int nframes = 0; nframes < 15; ++nframes)
{
std::cout << "Frame: " << nframes << std::endl;
video >> frame;
bool res = tracker->update(frame, roi);
ASSERT_TRUE(res);
std::cout << "Predicted ROI: " << roi << std::endl;
}
// TODO! GOTURN have low accuracy. Try to remove this api at 5.x.
checkTrackingAccuracy(tracker, 0.08);
}
TEST(DaSiamRPN, memory_usage)
TEST(DaSiamRPN, accuracy)
{
cv::Rect roi(145, 70, 85, 85);
std::string model = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_model.onnx", false);
std::string kernel_r1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_r1.onnx", false);
std::string kernel_cls1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_cls1.onnx", false);
@ -106,24 +133,18 @@ TEST(DaSiamRPN, memory_usage)
params.kernel_r1 = kernel_r1;
params.kernel_cls1 = kernel_cls1;
cv::Ptr<Tracker> tracker = TrackerDaSiamRPN::create(params);
string inputVideo = cvtest::findDataFile("tracking/david/data/david.webm");
cv::VideoCapture video(inputVideo);
ASSERT_TRUE(video.isOpened()) << inputVideo;
cv::Mat frame;
video >> frame;
ASSERT_FALSE(frame.empty()) << inputVideo;
tracker->init(frame, roi);
string ground_truth_bb;
for (int nframes = 0; nframes < 15; ++nframes)
{
std::cout << "Frame: " << nframes << std::endl;
video >> frame;
bool res = tracker->update(frame, roi);
ASSERT_TRUE(res);
std::cout << "Predicted ROI: " << roi << std::endl;
}
checkTrackingAccuracy(tracker, 0.7);
}
TEST(NanoTrack, accuracy)
{
std::string backbonePath = cvtest::findDataFile("dnn/onnx/models/nanotrack_backbone_sim.onnx", false);
std::string neckheadPath = cvtest::findDataFile("dnn/onnx/models/nanotrack_head_sim.onnx", false);
cv::TrackerNano::Params params;
params.backbone = backbonePath;
params.neckhead = neckheadPath;
cv::Ptr<Tracker> tracker = TrackerNano::create(params);
checkTrackingAccuracy(tracker);
}
}} // namespace opencv_test::

@ -0,0 +1,183 @@
// NanoTrack
// Link to original inference code: https://github.com/HonglinChu/NanoTrack
// Link to original training repo: https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack
// backBone model: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_backbone_sim.onnx
// headNeck model: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_head_sim.onnx
#include <iostream>
#include <cmath>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace cv::dnn;
const char *keys =
"{ help h | | Print help message }"
"{ input i | | Full path to input video folder, the specific camera index. (empty for camera 0) }"
"{ backbone | backbone.onnx | Path to onnx model of backbone.onnx}"
"{ headneck | headneck.onnx | Path to onnx model of headneck.onnx }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation, "
"4: VKCOM, "
"5: CUDA },"
"{ target | 0 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU, "
"4: Vulkan, "
"6: CUDA, "
"7: CUDA fp16 (half-float preprocess) }"
;
static
int run(int argc, char** argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string inputName = parser.get<String>("input");
std::string backbone = parser.get<String>("backbone");
std::string headneck = parser.get<String>("headneck");
int backend = parser.get<int>("backend");
int target = parser.get<int>("target");
Ptr<TrackerNano> tracker;
try
{
TrackerNano::Params params;
params.backbone = samples::findFile(backbone);
params.neckhead = samples::findFile(headneck);
params.backend = backend;
params.target = target;
tracker = TrackerNano::create(params);
}
catch (const cv::Exception& ee)
{
std::cerr << "Exception: " << ee.what() << std::endl;
std::cout << "Can't load the network by using the following files:" << std::endl;
std::cout << "backbone : " << backbone << std::endl;
std::cout << "headneck : " << headneck << std::endl;
return 2;
}
const std::string winName = "NanoTrack";
namedWindow(winName, WINDOW_AUTOSIZE);
// Open a video file or an image file or a camera stream.
VideoCapture cap;
if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1))
{
int c = inputName.empty() ? 0 : inputName[0] - '0';
std::cout << "Trying to open camera #" << c << " ..." << std::endl;
if (!cap.open(c))
{
std::cout << "Capture from camera #" << c << " didn't work. Specify -i=<video> parameter to read from video file" << std::endl;
return 2;
}
}
else if (inputName.size())
{
inputName = samples::findFileOrKeep(inputName);
if (!cap.open(inputName))
{
std::cout << "Could not open: " << inputName << std::endl;
return 2;
}
}
// Read the first image.
Mat image;
cap >> image;
if (image.empty())
{
std::cerr << "Can't capture frame!" << std::endl;
return 2;
}
Mat image_select = image.clone();
putText(image_select, "Select initial bounding box you want to track.", Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
putText(image_select, "And Press the ENTER key.", Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
Rect selectRect = selectROI(winName, image_select);
std::cout << "ROI=" << selectRect << std::endl;
tracker->init(image, selectRect);
TickMeter tickMeter;
for (int count = 0; ; ++count)
{
cap >> image;
if (image.empty())
{
std::cerr << "Can't capture frame " << count << ". End of video stream?" << std::endl;
break;
}
Rect rect;
tickMeter.start();
bool ok = tracker->update(image, rect);
tickMeter.stop();
float score = tracker->getTrackingScore();
std::cout << "frame " << count <<
": predicted score=" << score <<
" rect=" << rect <<
" time=" << tickMeter.getTimeMilli() << "ms" <<
std::endl;
Mat render_image = image.clone();
if (ok)
{
rectangle(render_image, rect, Scalar(0, 255, 0), 2);
std::string timeLabel = format("Inference time: %.2f ms", tickMeter.getTimeMilli());
std::string scoreLabel = format("Score: %f", score);
putText(render_image, timeLabel, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
putText(render_image, scoreLabel, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
}
imshow(winName, render_image);
tickMeter.reset();
int c = waitKey(1);
if (c == 27 /*ESC*/)
break;
}
std::cout << "Exit" << std::endl;
return 0;
}
int main(int argc, char **argv)
{
try
{
return run(argc, argv);
}
catch (const std::exception& e)
{
std::cerr << "FATAL: C++ exception: " << e.what() << std::endl;
return 1;
}
}

@ -9,6 +9,9 @@ For DaSiamRPN:
network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
For NanoTrack:
nanotrack_backbone: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_backbone_sim.onnx
nanotrack_headneck: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_head_sim.onnx
USAGE:
tracker.py [-h] [--input INPUT] [--tracker_algo TRACKER_ALGO]
@ -18,6 +21,7 @@ USAGE:
[--dasiamrpn_kernel_cls1 DASIAMRPN_KERNEL_CLS1]
[--dasiamrpn_backend DASIAMRPN_BACKEND]
[--dasiamrpn_target DASIAMRPN_TARGET]
[--nanotrack_backbone NANOTRACK_BACKEND] [--nanotrack_headneck NANOTRACK_TARGET]
'''
# Python 2/3 compatibility
@ -52,8 +56,13 @@ class App(object):
params.kernel_cls1 = self.args.dasiamrpn_kernel_cls1
params.kernel_r1 = self.args.dasiamrpn_kernel_r1
tracker = cv.TrackerDaSiamRPN_create(params)
elif self.trackerAlgorithm == 'nanotrack':
params = cv.TrackerNano_Params()
params.backbone = args.nanotrack_backbone
params.neckhead = args.nanotrack_headneck
tracker = cv.TrackerNano_create(params)
else:
sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn.".format(self.trackerAlgorithm))
sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn, nanotrack.".format(self.trackerAlgorithm))
return tracker
def initializeTracker(self, image):
@ -117,12 +126,14 @@ if __name__ == '__main__':
print(__doc__)
parser = argparse.ArgumentParser(description="Run tracker")
parser.add_argument("--input", type=str, default="vtest.avi", help="Path to video source")
parser.add_argument("--tracker_algo", type=str, default="mil", help="One of available tracking algorithms: mil, goturn, dasiamrpn")
parser.add_argument("--tracker_algo", type=str, default="nanotrack", help="One of available tracking algorithms: mil, goturn, dasiamrpn, nanotrack")
parser.add_argument("--goturn", type=str, default="goturn.prototxt", help="Path to GOTURN architecture")
parser.add_argument("--goturn_model", type=str, default="goturn.caffemodel", help="Path to GOTERN model")
parser.add_argument("--dasiamrpn_net", type=str, default="dasiamrpn_model.onnx", help="Path to onnx model of DaSiamRPN net")
parser.add_argument("--dasiamrpn_kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Path to onnx model of DaSiamRPN kernel_r1")
parser.add_argument("--dasiamrpn_kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Path to onnx model of DaSiamRPN kernel_cls1")
parser.add_argument("--nanotrack_backbone", type=str, default="nanotrack_backbone_sim.onnx", help="Path to onnx model of NanoTrack backBone")
parser.add_argument("--nanotrack_headneck", type=str, default="nanotrack_head_sim.onnx", help="Path to onnx model of NanoTrack headNeck")
args = parser.parse_args()
App(args).run()

Loading…
Cancel
Save