|
|
@ -88,6 +88,8 @@ static Mat getTensorContent(const tensorflow::TensorProto &tensor) |
|
|
|
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone(); |
|
|
|
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone(); |
|
|
|
case tensorflow::DT_DOUBLE: |
|
|
|
case tensorflow::DT_DOUBLE: |
|
|
|
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone(); |
|
|
|
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone(); |
|
|
|
|
|
|
|
case tensorflow::DT_INT32: |
|
|
|
|
|
|
|
return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone(); |
|
|
|
case tensorflow::DT_HALF: |
|
|
|
case tensorflow::DT_HALF: |
|
|
|
{ |
|
|
|
{ |
|
|
|
Mat halfs; |
|
|
|
Mat halfs; |
|
|
@ -563,7 +565,7 @@ void TFImporter::populateNet(Net dstNet) |
|
|
|
|
|
|
|
|
|
|
|
for (int li = 0; li < layersSize; li++) |
|
|
|
for (int li = 0; li < layersSize; li++) |
|
|
|
{ |
|
|
|
{ |
|
|
|
const tensorflow::NodeDef &layer = net.node(li); |
|
|
|
tensorflow::NodeDef layer = net.node(li); |
|
|
|
String name = layer.name(); |
|
|
|
String name = layer.name(); |
|
|
|
String type = layer.op(); |
|
|
|
String type = layer.op(); |
|
|
|
LayerParams layerParams; |
|
|
|
LayerParams layerParams; |
|
|
@ -571,8 +573,38 @@ void TFImporter::populateNet(Net dstNet) |
|
|
|
if(layers_to_ignore.find(li) != layers_to_ignore.end()) |
|
|
|
if(layers_to_ignore.find(li) != layers_to_ignore.end()) |
|
|
|
continue; |
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
|
|
if (type == "Conv2D") |
|
|
|
if (type == "Conv2D" || type == "SpaceToBatchND") |
|
|
|
{ |
|
|
|
{ |
|
|
|
|
|
|
|
// The first node of dilated convolution subgraph.
|
|
|
|
|
|
|
|
// Extract input node, dilation rate and paddings.
|
|
|
|
|
|
|
|
std::string input = layer.input(0); |
|
|
|
|
|
|
|
if (type == "SpaceToBatchND") |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
// op: "SpaceToBatchND"
|
|
|
|
|
|
|
|
// input: "input"
|
|
|
|
|
|
|
|
// input: "SpaceToBatchND/block_shape"
|
|
|
|
|
|
|
|
// input: "SpaceToBatchND/paddings"
|
|
|
|
|
|
|
|
CV_Assert(layer.input_size() == 3); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DictValue dilation = parseDims(getConstBlob(layer, value_id, 1)); |
|
|
|
|
|
|
|
CV_Assert(dilation.size() == 2 && dilation.get<int>(0) == dilation.get<int>(1)); |
|
|
|
|
|
|
|
layerParams.set("dilation", dilation.get<int>(0)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat paddings; |
|
|
|
|
|
|
|
parseTensor<int>(getConstBlob(layer, value_id, 2), paddings); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// paddings is a 2x2 matrix: [[top, bot], [left, right]]
|
|
|
|
|
|
|
|
layerParams.set("pad_h", paddings.at<float>(0)); |
|
|
|
|
|
|
|
layerParams.set("pad_w", paddings.at<float>(2)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
StrIntVector next_layers = getNextLayers(net, name, "Conv2D"); |
|
|
|
|
|
|
|
CV_Assert(next_layers.size() == 1); |
|
|
|
|
|
|
|
layer = net.node(next_layers[0].second); |
|
|
|
|
|
|
|
layers_to_ignore[next_layers[0].second] = next_layers[0].first; |
|
|
|
|
|
|
|
name = layer.name(); |
|
|
|
|
|
|
|
type = layer.op(); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
layerParams.set("bias_term", false); |
|
|
|
layerParams.set("bias_term", false); |
|
|
|
layerParams.blobs.resize(1); |
|
|
|
layerParams.blobs.resize(1); |
|
|
|
|
|
|
|
|
|
|
@ -597,11 +629,21 @@ void TFImporter::populateNet(Net dstNet) |
|
|
|
setStrides(layerParams, layer); |
|
|
|
setStrides(layerParams, layer); |
|
|
|
setPadding(layerParams, layer); |
|
|
|
setPadding(layerParams, layer); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// The final node of dilated convolution subgraph.
|
|
|
|
|
|
|
|
next_layers = getNextLayers(net, name, "BatchToSpaceND"); |
|
|
|
|
|
|
|
if (!next_layers.empty()) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
layerParams.set("pad_mode", ""); // We use padding values.
|
|
|
|
|
|
|
|
CV_Assert(next_layers.size() == 1); |
|
|
|
|
|
|
|
ExcludeLayer(net, next_layers[0].second, 0, false); |
|
|
|
|
|
|
|
layers_to_ignore[next_layers[0].second] = next_layers[0].first; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
int id = dstNet.addLayer(name, "Convolution", layerParams); |
|
|
|
int id = dstNet.addLayer(name, "Convolution", layerParams); |
|
|
|
layer_id[name] = id; |
|
|
|
layer_id[name] = id; |
|
|
|
|
|
|
|
|
|
|
|
// one input only
|
|
|
|
// one input only
|
|
|
|
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0); |
|
|
|
connect(layer_id, dstNet, parsePin(input), id, 0); |
|
|
|
} |
|
|
|
} |
|
|
|
else if (type == "BiasAdd" || type == "Add") |
|
|
|
else if (type == "BiasAdd" || type == "Add") |
|
|
|
{ |
|
|
|
{ |
|
|
|