|
|
|
@ -56,6 +56,9 @@ void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&, |
|
|
|
|
void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&, |
|
|
|
|
const Mat&, const Mat&, GpuMat&, const Stream&) { throw_nogpu(); } |
|
|
|
|
|
|
|
|
|
void cv::gpu::solvePnpRansac(const Mat&, const Mat&, const Mat&, const Mat&, |
|
|
|
|
Mat&, Mat&, SolvePnpRansacParams) { throw_nogpu(); } |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
using namespace cv; |
|
|
|
@ -103,6 +106,7 @@ namespace cv { namespace gpu { namespace project_points |
|
|
|
|
const float* proj, DevMem2D_<float2> dst, cudaStream_t stream); |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, |
|
|
|
@ -138,4 +142,139 @@ void cv::gpu::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, |
|
|
|
|
::projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace solve_pnp_ransac |
|
|
|
|
{ |
|
|
|
|
void computeHypothesisScores( |
|
|
|
|
const int num_hypotheses, const int num_points, const float* rot_matrices, |
|
|
|
|
const float3* transl_vectors, const float3* object, const float2* image, |
|
|
|
|
const float3* camera_mat, const float dist_threshold, int* hypothesis_scores); |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
// Selects subset_size random different points from [0, num_points - 1] range
|
|
|
|
|
void selectRandom(int subset_size, int num_points, vector<int>& subset) |
|
|
|
|
{ |
|
|
|
|
subset.resize(subset_size); |
|
|
|
|
for (int i = 0; i < subset_size; ++i) |
|
|
|
|
{ |
|
|
|
|
bool was; |
|
|
|
|
do |
|
|
|
|
{ |
|
|
|
|
subset[i] = rand() % num_points; |
|
|
|
|
was = false; |
|
|
|
|
for (int j = 0; j < i; ++j) |
|
|
|
|
if (subset[j] == subset[i]) |
|
|
|
|
{ |
|
|
|
|
was = true; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} while (was); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::solvePnpRansac(const Mat& object, const Mat& image, const Mat& camera_mat, |
|
|
|
|
const Mat& dist_coef, Mat& rvec, Mat& tvec, SolvePnpRansacParams params) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3); |
|
|
|
|
CV_Assert(image.rows == 1 && image.cols > 1 && image.type() == CV_32FC2); |
|
|
|
|
CV_Assert(object.cols == image.cols); |
|
|
|
|
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); |
|
|
|
|
CV_Assert(dist_coef.empty()); // We don't support undistortion for now
|
|
|
|
|
CV_Assert(!params.use_extrinsic_guess); // We don't support initial guess for now
|
|
|
|
|
|
|
|
|
|
const int num_points = object.cols; |
|
|
|
|
|
|
|
|
|
// Current hypothesis input
|
|
|
|
|
vector<int> subset_indices(params.subset_size); |
|
|
|
|
Mat_<Point3f> object_subset(1, params.subset_size); |
|
|
|
|
Mat_<Point2f> image_subset(1, params.subset_size); |
|
|
|
|
|
|
|
|
|
// Current hypothesis result
|
|
|
|
|
Mat rot_vec(1, 3, CV_64F); |
|
|
|
|
Mat rot_mat(3, 3, CV_64F); |
|
|
|
|
Mat transl_vec(1, 3, CV_64F); |
|
|
|
|
|
|
|
|
|
// All hypotheses results
|
|
|
|
|
Mat rot_matrices(1, params.num_iters * 9, CV_32F); |
|
|
|
|
Mat transl_vectors(1, params.num_iters * 3, CV_32F); |
|
|
|
|
|
|
|
|
|
// Generate set of (rotation, translation) hypotheses using small subsets
|
|
|
|
|
// of the input data
|
|
|
|
|
for (int iter = 0; iter < params.num_iters; ++iter) // TODO TBB?
|
|
|
|
|
{ |
|
|
|
|
selectRandom(params.subset_size, num_points, subset_indices); |
|
|
|
|
for (int i = 0; i < params.subset_size; ++i) |
|
|
|
|
{ |
|
|
|
|
object_subset(0, i) = object.at<Point3f>(subset_indices[i]); |
|
|
|
|
image_subset(0, i) = image.at<Point2f>(subset_indices[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
solvePnP(object_subset, image_subset, camera_mat, dist_coef, rot_vec, transl_vec); |
|
|
|
|
|
|
|
|
|
// Remember translation vector
|
|
|
|
|
Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3); |
|
|
|
|
transl_vec = transl_vec.reshape(0, 1); |
|
|
|
|
transl_vec.convertTo(transl_vec_, CV_32F); |
|
|
|
|
|
|
|
|
|
// Remember rotation matrix
|
|
|
|
|
Rodrigues(rot_vec, rot_mat); |
|
|
|
|
Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3); |
|
|
|
|
rot_mat.convertTo(rot_mat_, CV_32F); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Compute scores (i.e. number of inliers) for each hypothesis
|
|
|
|
|
GpuMat d_object(object); |
|
|
|
|
GpuMat d_image(image); |
|
|
|
|
GpuMat d_hypothesis_scores(1, params.num_iters, CV_32S); |
|
|
|
|
solve_pnp_ransac::computeHypothesisScores( |
|
|
|
|
params.num_iters, num_points, rot_matrices.ptr<float>(), transl_vectors.ptr<float3>(), |
|
|
|
|
d_object.ptr<float3>(), d_image.ptr<float2>(), camera_mat.ptr<float3>(), |
|
|
|
|
params.max_dist * params.max_dist, d_hypothesis_scores.ptr<int>()); |
|
|
|
|
|
|
|
|
|
// Find the best hypothesis index
|
|
|
|
|
Point best_idx; |
|
|
|
|
double best_score; |
|
|
|
|
minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx); |
|
|
|
|
int num_inliers = static_cast<int>(best_score); |
|
|
|
|
|
|
|
|
|
// Extract the best hypothesis data
|
|
|
|
|
rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3); |
|
|
|
|
Rodrigues(rot_mat, rvec); |
|
|
|
|
rvec = rvec.reshape(0, 1); |
|
|
|
|
tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone(); |
|
|
|
|
tvec = tvec.reshape(0, 1); |
|
|
|
|
|
|
|
|
|
// Build vector of inlier indices
|
|
|
|
|
if (params.inliers != NULL) |
|
|
|
|
{ |
|
|
|
|
params.inliers->resize(num_inliers); |
|
|
|
|
|
|
|
|
|
Point3f p; |
|
|
|
|
Point3f p_transf; |
|
|
|
|
Point2f p_proj; |
|
|
|
|
const float* rot = rot_mat.ptr<float>(); |
|
|
|
|
const float* transl = tvec.ptr<float>(); |
|
|
|
|
int inlier_id = 0; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < num_points; ++i) |
|
|
|
|
{ |
|
|
|
|
p = object.at<Point3f>(0, i); |
|
|
|
|
p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0]; |
|
|
|
|
p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1]; |
|
|
|
|
p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2]; |
|
|
|
|
if (p_transf.z > 0.f) |
|
|
|
|
{ |
|
|
|
|
p_proj.x = camera_mat.at<float>(0, 0) * p_transf.x / p_transf.z + camera_mat.at<float>(0, 2); |
|
|
|
|
p_proj.y = camera_mat.at<float>(1, 1) * p_transf.x / p_transf.z + camera_mat.at<float>(1, 2); |
|
|
|
|
if (norm(p_proj - image.at<Point2f>(0, i)) < params.max_dist) |
|
|
|
|
(*params.inliers)[inlier_id++] = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|