|
|
@ -373,20 +373,20 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
CV_Assert( I0.type() == I1.type() ); |
|
|
|
CV_Assert( I0.type() == I1.type() ); |
|
|
|
CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) ); |
|
|
|
CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) ); |
|
|
|
CV_Assert( nscales > 0 ); |
|
|
|
CV_Assert( nscales > 0 ); |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
// allocate memory for the pyramid structure
|
|
|
|
// allocate memory for the pyramid structure
|
|
|
|
dm.I0s.resize(nscales); |
|
|
|
dm.I0s.resize(nscales); |
|
|
|
dm.I1s.resize(nscales); |
|
|
|
dm.I1s.resize(nscales); |
|
|
|
dm.u1s.resize(nscales); |
|
|
|
dm.u1s.resize(nscales); |
|
|
|
dm.u2s.resize(nscales); |
|
|
|
dm.u2s.resize(nscales); |
|
|
|
dm.u3s.resize(nscales); |
|
|
|
dm.u3s.resize(nscales); |
|
|
|
|
|
|
|
|
|
|
|
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
|
|
|
|
|
|
|
|
dm.u1s[0].create(I0.size()); |
|
|
|
dm.u1s[0].create(I0.size()); |
|
|
|
dm.u2s[0].create(I0.size()); |
|
|
|
dm.u2s[0].create(I0.size()); |
|
|
|
if (use_gamma) dm.u3s[0].create(I0.size()); |
|
|
|
if (use_gamma) dm.u3s[0].create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
if (useInitialFlow) |
|
|
|
if (useInitialFlow) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -409,25 +409,25 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
|
|
|
|
|
|
|
|
dm.v1_buf.create(I0.size()); |
|
|
|
dm.v1_buf.create(I0.size()); |
|
|
|
dm.v2_buf.create(I0.size()); |
|
|
|
dm.v2_buf.create(I0.size()); |
|
|
|
dm.v3_buf.create(I0.size()); |
|
|
|
dm.v3_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
dm.p11_buf.create(I0.size()); |
|
|
|
dm.p11_buf.create(I0.size()); |
|
|
|
dm.p12_buf.create(I0.size()); |
|
|
|
dm.p12_buf.create(I0.size()); |
|
|
|
dm.p21_buf.create(I0.size()); |
|
|
|
dm.p21_buf.create(I0.size()); |
|
|
|
dm.p22_buf.create(I0.size()); |
|
|
|
dm.p22_buf.create(I0.size()); |
|
|
|
dm.p31_buf.create(I0.size()); |
|
|
|
dm.p31_buf.create(I0.size()); |
|
|
|
dm.p32_buf.create(I0.size()); |
|
|
|
dm.p32_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
dm.div_p1_buf.create(I0.size()); |
|
|
|
dm.div_p1_buf.create(I0.size()); |
|
|
|
dm.div_p2_buf.create(I0.size()); |
|
|
|
dm.div_p2_buf.create(I0.size()); |
|
|
|
dm.div_p3_buf.create(I0.size()); |
|
|
|
dm.div_p3_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
dm.u1x_buf.create(I0.size()); |
|
|
|
dm.u1x_buf.create(I0.size()); |
|
|
|
dm.u1y_buf.create(I0.size()); |
|
|
|
dm.u1y_buf.create(I0.size()); |
|
|
|
dm.u2x_buf.create(I0.size()); |
|
|
|
dm.u2x_buf.create(I0.size()); |
|
|
|
dm.u2y_buf.create(I0.size()); |
|
|
|
dm.u2y_buf.create(I0.size()); |
|
|
|
dm.u3x_buf.create(I0.size()); |
|
|
|
dm.u3x_buf.create(I0.size()); |
|
|
|
dm.u3y_buf.create(I0.size()); |
|
|
|
dm.u3y_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
|
|
// create the scales
|
|
|
|
// create the scales
|
|
|
|
for (int s = 1; s < nscales; ++s) |
|
|
|
for (int s = 1; s < nscales; ++s) |
|
|
@ -454,14 +454,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
dm.u1s[s].create(dm.I0s[s].size()); |
|
|
|
dm.u1s[s].create(dm.I0s[s].size()); |
|
|
|
dm.u2s[s].create(dm.I0s[s].size()); |
|
|
|
dm.u2s[s].create(dm.I0s[s].size()); |
|
|
|
} |
|
|
|
} |
|
|
|
if (use_gamma) dm.u3s[s].create(dm.I0s[s].size()); |
|
|
|
if (use_gamma) dm.u3s[s].create(dm.I0s[s].size()); |
|
|
|
} |
|
|
|
} |
|
|
|
if (!useInitialFlow) |
|
|
|
if (!useInitialFlow) |
|
|
|
{ |
|
|
|
{ |
|
|
|
dm.u1s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
dm.u1s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
dm.u2s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
dm.u2s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
}
|
|
|
|
}
|
|
|
|
if (use_gamma) dm.u3s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
if (use_gamma) dm.u3s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
// pyramidal structure for computing the optical flow
|
|
|
|
// pyramidal structure for computing the optical flow
|
|
|
|
for (int s = nscales - 1; s >= 0; --s) |
|
|
|
for (int s = nscales - 1; s >= 0; --s) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -477,7 +477,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
// zoom the optical flow for the next finer scale
|
|
|
|
// zoom the optical flow for the next finer scale
|
|
|
|
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
if (use_gamma) resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
if (use_gamma) resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
|
|
|
|
|
|
|
|
// scale the optical flow with the appropriate zoom factor (don't scale u3!)
|
|
|
|
// scale the optical flow with the appropriate zoom factor (don't scale u3!)
|
|
|
|
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]); |
|
|
|
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]); |
|
|
@ -944,7 +944,7 @@ struct EstimateVBody : ParallelLoopBody |
|
|
|
|
|
|
|
|
|
|
|
void EstimateVBody::operator() (const Range& range) const |
|
|
|
void EstimateVBody::operator() (const Range& range) const |
|
|
|
{ |
|
|
|
{ |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
for (int y = range.start; y < range.end; ++y) |
|
|
|
for (int y = range.start; y < range.end; ++y) |
|
|
|
{ |
|
|
|
{ |
|
|
|
const float* I1wxRow = I1wx[y]; |
|
|
|
const float* I1wxRow = I1wx[y]; |
|
|
@ -957,12 +957,12 @@ void EstimateVBody::operator() (const Range& range) const |
|
|
|
|
|
|
|
|
|
|
|
float* v1Row = v1[y]; |
|
|
|
float* v1Row = v1[y]; |
|
|
|
float* v2Row = v2[y]; |
|
|
|
float* v2Row = v2[y]; |
|
|
|
float* v3Row = use_gamma ? v3[y]:NULL; |
|
|
|
float* v3Row = use_gamma ? v3[y]:NULL; |
|
|
|
|
|
|
|
|
|
|
|
for (int x = 0; x < I1wx.cols; ++x) |
|
|
|
for (int x = 0; x < I1wx.cols; ++x) |
|
|
|
{ |
|
|
|
{ |
|
|
|
const float rho = use_gamma ? rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x] : |
|
|
|
const float rho = use_gamma ? rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x] : |
|
|
|
rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]); |
|
|
|
rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]); |
|
|
|
float d1 = 0.0f; |
|
|
|
float d1 = 0.0f; |
|
|
|
float d2 = 0.0f; |
|
|
|
float d2 = 0.0f; |
|
|
|
float d3 = 0.0f; |
|
|
|
float d3 = 0.0f; |
|
|
@ -970,25 +970,25 @@ void EstimateVBody::operator() (const Range& range) const |
|
|
|
{ |
|
|
|
{ |
|
|
|
d1 = l_t * I1wxRow[x]; |
|
|
|
d1 = l_t * I1wxRow[x]; |
|
|
|
d2 = l_t * I1wyRow[x]; |
|
|
|
d2 = l_t * I1wyRow[x]; |
|
|
|
if (use_gamma) d3 = l_t * gamma; |
|
|
|
if (use_gamma) d3 = l_t * gamma; |
|
|
|
} |
|
|
|
} |
|
|
|
else if (rho > l_t * gradRow[x]) |
|
|
|
else if (rho > l_t * gradRow[x]) |
|
|
|
{ |
|
|
|
{ |
|
|
|
d1 = -l_t * I1wxRow[x]; |
|
|
|
d1 = -l_t * I1wxRow[x]; |
|
|
|
d2 = -l_t * I1wyRow[x]; |
|
|
|
d2 = -l_t * I1wyRow[x]; |
|
|
|
if (use_gamma) d3 = -l_t * gamma; |
|
|
|
if (use_gamma) d3 = -l_t * gamma; |
|
|
|
} |
|
|
|
} |
|
|
|
else if (gradRow[x] > std::numeric_limits<float>::epsilon()) |
|
|
|
else if (gradRow[x] > std::numeric_limits<float>::epsilon()) |
|
|
|
{ |
|
|
|
{ |
|
|
|
float fi = -rho / gradRow[x]; |
|
|
|
float fi = -rho / gradRow[x]; |
|
|
|
d1 = fi * I1wxRow[x]; |
|
|
|
d1 = fi * I1wxRow[x]; |
|
|
|
d2 = fi * I1wyRow[x]; |
|
|
|
d2 = fi * I1wyRow[x]; |
|
|
|
if (use_gamma) d3 = fi * gamma; |
|
|
|
if (use_gamma) d3 = fi * gamma; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
v1Row[x] = u1Row[x] + d1; |
|
|
|
v1Row[x] = u1Row[x] + d1; |
|
|
|
v2Row[x] = u2Row[x] + d2; |
|
|
|
v2Row[x] = u2Row[x] + d2; |
|
|
|
if (use_gamma) v3Row[x] = u3Row[x] + d3; |
|
|
|
if (use_gamma) v3Row[x] = u3Row[x] + d3; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -1005,17 +1005,17 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa |
|
|
|
CV_DbgAssert( v2.size() == I1wx.size() ); |
|
|
|
CV_DbgAssert( v2.size() == I1wx.size() ); |
|
|
|
|
|
|
|
|
|
|
|
EstimateVBody body; |
|
|
|
EstimateVBody body; |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
body.I1wx = I1wx; |
|
|
|
body.I1wx = I1wx; |
|
|
|
body.I1wy = I1wy; |
|
|
|
body.I1wy = I1wy; |
|
|
|
body.u1 = u1; |
|
|
|
body.u1 = u1; |
|
|
|
body.u2 = u2; |
|
|
|
body.u2 = u2; |
|
|
|
if (use_gamma) body.u3 = u3; |
|
|
|
if (use_gamma) body.u3 = u3; |
|
|
|
body.grad = grad; |
|
|
|
body.grad = grad; |
|
|
|
body.rho_c = rho_c; |
|
|
|
body.rho_c = rho_c; |
|
|
|
body.v1 = v1; |
|
|
|
body.v1 = v1; |
|
|
|
body.v2 = v2; |
|
|
|
body.v2 = v2; |
|
|
|
if (use_gamma) body.v3 = v3; |
|
|
|
if (use_gamma) body.v3 = v3; |
|
|
|
body.l_t = l_t; |
|
|
|
body.l_t = l_t; |
|
|
|
body.gamma = gamma; |
|
|
|
body.gamma = gamma; |
|
|
|
parallel_for_(Range(0, I1wx.rows), body); |
|
|
|
parallel_for_(Range(0, I1wx.rows), body); |
|
|
@ -1035,8 +1035,8 @@ float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& |
|
|
|
CV_DbgAssert( u1.size() == v1.size() ); |
|
|
|
CV_DbgAssert( u1.size() == v1.size() ); |
|
|
|
CV_DbgAssert( u2.size() == v1.size() ); |
|
|
|
CV_DbgAssert( u2.size() == v1.size() ); |
|
|
|
|
|
|
|
|
|
|
|
float error = 0.0f; |
|
|
|
float error = 0.0f; |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
bool use_gamma = gamma != 0; |
|
|
|
for (int y = 0; y < v1.rows; ++y) |
|
|
|
for (int y = 0; y < v1.rows; ++y) |
|
|
|
{ |
|
|
|
{ |
|
|
|
const float* v1Row = v1[y]; |
|
|
|
const float* v1Row = v1[y]; |
|
|
@ -1059,10 +1059,10 @@ float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& |
|
|
|
|
|
|
|
|
|
|
|
u1Row[x] = v1Row[x] + theta * divP1Row[x]; |
|
|
|
u1Row[x] = v1Row[x] + theta * divP1Row[x]; |
|
|
|
u2Row[x] = v2Row[x] + theta * divP2Row[x]; |
|
|
|
u2Row[x] = v2Row[x] + theta * divP2Row[x]; |
|
|
|
if (use_gamma) u3Row[x] = v3Row[x] + theta * divP3Row[x]; |
|
|
|
if (use_gamma) u3Row[x] = v3Row[x] + theta * divP3Row[x]; |
|
|
|
|
|
|
|
|
|
|
|
error += use_gamma?(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k): |
|
|
|
error += use_gamma?(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k): |
|
|
|
(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); |
|
|
|
(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -1089,7 +1089,7 @@ struct EstimateDualVariablesBody : ParallelLoopBody |
|
|
|
mutable Mat_<float> p31; |
|
|
|
mutable Mat_<float> p31; |
|
|
|
mutable Mat_<float> p32; |
|
|
|
mutable Mat_<float> p32; |
|
|
|
float taut; |
|
|
|
float taut; |
|
|
|
bool use_gamma; |
|
|
|
bool use_gamma; |
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
void EstimateDualVariablesBody::operator() (const Range& range) const |
|
|
|
void EstimateDualVariablesBody::operator() (const Range& range) const |
|
|
@ -1118,14 +1118,14 @@ void EstimateDualVariablesBody::operator() (const Range& range) const |
|
|
|
|
|
|
|
|
|
|
|
const float ng1 = 1.0f + taut * g1; |
|
|
|
const float ng1 = 1.0f + taut * g1; |
|
|
|
const float ng2 = 1.0f + taut * g2; |
|
|
|
const float ng2 = 1.0f + taut * g2; |
|
|
|
const float ng3 = 1.0f + taut * g3; |
|
|
|
const float ng3 = 1.0f + taut * g3; |
|
|
|
|
|
|
|
|
|
|
|
p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1; |
|
|
|
p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1; |
|
|
|
p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1; |
|
|
|
p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1; |
|
|
|
p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2; |
|
|
|
p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2; |
|
|
|
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; |
|
|
|
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; |
|
|
|
if (use_gamma) p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3; |
|
|
|
if (use_gamma) p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3; |
|
|
|
if (use_gamma) p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3; |
|
|
|
if (use_gamma) p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -1165,7 +1165,7 @@ void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, |
|
|
|
body.p31 = p31; |
|
|
|
body.p31 = p31; |
|
|
|
body.p32 = p32; |
|
|
|
body.p32 = p32; |
|
|
|
body.taut = taut; |
|
|
|
body.taut = taut; |
|
|
|
body.use_gamma = use_gamma; |
|
|
|
body.use_gamma = use_gamma; |
|
|
|
|
|
|
|
|
|
|
|
parallel_for_(Range(0, u1x.rows), body); |
|
|
|
parallel_for_(Range(0, u1x.rows), body); |
|
|
|
} |
|
|
|
} |
|
|
@ -1283,21 +1283,21 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
p11.setTo(Scalar::all(0)); |
|
|
|
p11.setTo(Scalar::all(0)); |
|
|
|
p12.setTo(Scalar::all(0)); |
|
|
|
p12.setTo(Scalar::all(0)); |
|
|
|
p21.setTo(Scalar::all(0)); |
|
|
|
p21.setTo(Scalar::all(0)); |
|
|
|
p22.setTo(Scalar::all(0)); |
|
|
|
p22.setTo(Scalar::all(0)); |
|
|
|
bool use_gamma = gamma != 0.; |
|
|
|
bool use_gamma = gamma != 0.; |
|
|
|
if (use_gamma) p31.setTo(Scalar::all(0)); |
|
|
|
if (use_gamma) p31.setTo(Scalar::all(0)); |
|
|
|
if (use_gamma) p32.setTo(Scalar::all(0)); |
|
|
|
if (use_gamma) p32.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
|
|
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
@ -1333,20 +1333,20 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> |
|
|
|
for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner) |
|
|
|
for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner) |
|
|
|
{ |
|
|
|
{ |
|
|
|
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
|
|
|
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
|
|
|
estimateV(I1wx, I1wy, u1, u2, u3, grad, rho_c, v1, v2, v3, l_t, static_cast<float>(gamma)); |
|
|
|
estimateV(I1wx, I1wy, u1, u2, u3, grad, rho_c, v1, v2, v3, l_t, static_cast<float>(gamma)); |
|
|
|
|
|
|
|
|
|
|
|
// compute the divergence of the dual variable (p1, p2, p3)
|
|
|
|
// compute the divergence of the dual variable (p1, p2, p3)
|
|
|
|
divergence(p11, p12, div_p1); |
|
|
|
divergence(p11, p12, div_p1); |
|
|
|
divergence(p21, p22, div_p2); |
|
|
|
divergence(p21, p22, div_p2); |
|
|
|
if (use_gamma) divergence(p31, p32, div_p3); |
|
|
|
if (use_gamma) divergence(p31, p32, div_p3); |
|
|
|
|
|
|
|
|
|
|
|
// estimate the values of the optical flow (u1, u2)
|
|
|
|
// estimate the values of the optical flow (u1, u2)
|
|
|
|
error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast<float>(theta), static_cast<float>(gamma)); |
|
|
|
error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast<float>(theta), static_cast<float>(gamma)); |
|
|
|
|
|
|
|
|
|
|
|
// compute the gradient of the optical flow (Du1, Du2)
|
|
|
|
// compute the gradient of the optical flow (Du1, Du2)
|
|
|
|
forwardGradient(u1, u1x, u1y); |
|
|
|
forwardGradient(u1, u1x, u1y); |
|
|
|
forwardGradient(u2, u2x, u2y); |
|
|
|
forwardGradient(u2, u2x, u2y); |
|
|
|
if (use_gamma) forwardGradient(u3, u3x, u3y); |
|
|
|
if (use_gamma) forwardGradient(u3, u3x, u3y); |
|
|
|
|
|
|
|
|
|
|
|
// estimate the values of the dual variable (p1, p2, p3)
|
|
|
|
// estimate the values of the dual variable (p1, p2, p3)
|
|
|
|
estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut, use_gamma); |
|
|
|
estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut, use_gamma); |
|
|
|