Add Java and Python code for the following tutorials:

- Changing the contrast and brightness of an image!
      - Operations with images
pull/11942/head
catree 7 years ago
parent a29d11240e
commit c9fe6f1afe
  1. 168
      doc/tutorials/core/basic_linear_transform/basic_linear_transform.markdown
  2. 313
      doc/tutorials/core/mat_operations.markdown
  3. 6
      doc/tutorials/core/table_of_content_core.markdown
  4. 29
      samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp
  5. 34
      samples/cpp/tutorial_code/ImgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.cpp
  6. 180
      samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp
  7. 86
      samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java
  8. 202
      samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/ChangingContrastBrightnessImageDemo.java
  9. 130
      samples/java/tutorial_code/core/mat_operations/MatOperations.java
  10. 92
      samples/python/tutorial_code/core/mat_operations/mat_operations.py
  11. 55
      samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py
  12. 74
      samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.py

@ -53,48 +53,143 @@ Theory
Code
----
@add_toggle_cpp
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp)
- The following code performs the operation \f$g(i,j) = \alpha \cdot f(i,j) + \beta\f$ :
@include BasicLinearTransforms.cpp
@include samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp
@end_toggle
@add_toggle_java
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/3.4/samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java)
- The following code performs the operation \f$g(i,j) = \alpha \cdot f(i,j) + \beta\f$ :
@include samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java
@end_toggle
@add_toggle_python
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/3.4/samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py)
- The following code performs the operation \f$g(i,j) = \alpha \cdot f(i,j) + \beta\f$ :
@include samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py
@end_toggle
Explanation
-----------
-# We begin by creating parameters to save \f$\alpha\f$ and \f$\beta\f$ to be entered by the user:
@snippet BasicLinearTransforms.cpp basic-linear-transform-parameters
- We load an image using @ref cv::imread and save it in a Mat object:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp basic-linear-transform-load
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java basic-linear-transform-load
@end_toggle
-# We load an image using @ref cv::imread and save it in a Mat object:
@snippet BasicLinearTransforms.cpp basic-linear-transform-load
-# Now, since we will make some transformations to this image, we need a new Mat object to store
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py basic-linear-transform-load
@end_toggle
- Now, since we will make some transformations to this image, we need a new Mat object to store
it. Also, we want this to have the following features:
- Initial pixel values equal to zero
- Same size and type as the original image
@snippet BasicLinearTransforms.cpp basic-linear-transform-output
We observe that @ref cv::Mat::zeros returns a Matlab-style zero initializer based on
*image.size()* and *image.type()*
-# Now, to perform the operation \f$g(i,j) = \alpha \cdot f(i,j) + \beta\f$ we will access to each
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp basic-linear-transform-output
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java basic-linear-transform-output
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py basic-linear-transform-output
@end_toggle
We observe that @ref cv::Mat::zeros returns a Matlab-style zero initializer based on
*image.size()* and *image.type()*
- We ask now the values of \f$\alpha\f$ and \f$\beta\f$ to be entered by the user:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp basic-linear-transform-parameters
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java basic-linear-transform-parameters
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py basic-linear-transform-parameters
@end_toggle
- Now, to perform the operation \f$g(i,j) = \alpha \cdot f(i,j) + \beta\f$ we will access to each
pixel in image. Since we are operating with BGR images, we will have three values per pixel (B,
G and R), so we will also access them separately. Here is the piece of code:
@snippet BasicLinearTransforms.cpp basic-linear-transform-operation
Notice the following:
- To access each pixel in the images we are using this syntax: *image.at\<Vec3b\>(y,x)[c]*
where *y* is the row, *x* is the column and *c* is R, G or B (0, 1 or 2).
- Since the operation \f$\alpha \cdot p(i,j) + \beta\f$ can give values out of range or not
integers (if \f$\alpha\f$ is float), we use cv::saturate_cast to make sure the
values are valid.
-# Finally, we create windows and show the images, the usual way.
@snippet BasicLinearTransforms.cpp basic-linear-transform-display
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp basic-linear-transform-operation
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java basic-linear-transform-operation
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py basic-linear-transform-operation
@end_toggle
Notice the following (**C++ code only**):
- To access each pixel in the images we are using this syntax: *image.at\<Vec3b\>(y,x)[c]*
where *y* is the row, *x* is the column and *c* is R, G or B (0, 1 or 2).
- Since the operation \f$\alpha \cdot p(i,j) + \beta\f$ can give values out of range or not
integers (if \f$\alpha\f$ is float), we use cv::saturate_cast to make sure the
values are valid.
- Finally, we create windows and show the images, the usual way.
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/BasicLinearTransforms.cpp basic-linear-transform-display
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/BasicLinearTransformsDemo.java basic-linear-transform-display
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py basic-linear-transform-display
@end_toggle
@note
Instead of using the **for** loops to access each pixel, we could have simply used this command:
@code{.cpp}
image.convertTo(new_image, -1, alpha, beta);
@endcode
where @ref cv::Mat::convertTo would effectively perform *new_image = a*image + beta\*. However, we
wanted to show you how to access each pixel. In any case, both methods give the same result but
convertTo is more optimized and works a lot faster.
@add_toggle_cpp
@code{.cpp}
image.convertTo(new_image, -1, alpha, beta);
@endcode
@end_toggle
@add_toggle_java
@code{.java}
image.convertTo(newImage, -1, alpha, beta);
@endcode
@end_toggle
@add_toggle_python
@code{.py}
new_image = cv.convertScaleAbs(image, alpha=alpha, beta=beta)
@endcode
@end_toggle
where @ref cv::Mat::convertTo would effectively perform *new_image = a*image + beta\*. However, we
wanted to show you how to access each pixel. In any case, both methods give the same result but
convertTo is more optimized and works a lot faster.
Result
------
@ -185,10 +280,31 @@ and are not intended to be used as a replacement of a raster graphics editor!**
### Code
@add_toggle_cpp
Code for the tutorial is [here](https://github.com/opencv/opencv/blob/3.4/samples/cpp/tutorial_code/ImgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.cpp).
@end_toggle
@add_toggle_java
Code for the tutorial is [here](https://github.com/opencv/opencv/blob/3.4/samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/ChangingContrastBrightnessImageDemo.java).
@end_toggle
@add_toggle_python
Code for the tutorial is [here](https://github.com/opencv/opencv/blob/3.4/samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.py).
@end_toggle
Code for the gamma correction:
@snippet changing_contrast_brightness_image.cpp changing-contrast-brightness-gamma-correction
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.cpp changing-contrast-brightness-gamma-correction
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/ImgProc/changing_contrast_brightness_image/ChangingContrastBrightnessImageDemo.java changing-contrast-brightness-gamma-correction
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.py changing-contrast-brightness-gamma-correction
@end_toggle
A look-up table is used to improve the performance of the computation as only 256 values needs to be calculated once.

@ -7,25 +7,50 @@ Input/Output
### Images
Load an image from a file:
@code{.cpp}
Mat img = imread(filename)
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Load an image from a file
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Load an image from a file
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Load an image from a file
@end_toggle
If you read a jpg file, a 3 channel image is created by default. If you need a grayscale image, use:
@code{.cpp}
Mat img = imread(filename, IMREAD_GRAYSCALE);
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Load an image from a file in grayscale
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Load an image from a file in grayscale
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Load an image from a file in grayscale
@end_toggle
@note Format of the file is determined by its content (first few bytes). To save an image to a file:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Save image
@end_toggle
@note format of the file is determined by its content (first few bytes) Save an image to a file:
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Save image
@end_toggle
@code{.cpp}
imwrite(filename, img);
@endcode
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Save image
@end_toggle
@note format of the file is determined by its extension.
@note Format of the file is determined by its extension.
@note use imdecode and imencode to read and write image from/to memory rather than a file.
@note Use cv::imdecode and cv::imencode to read and write an image from/to memory rather than a file.
Basic operations with images
----------------------------
@ -35,49 +60,65 @@ Basic operations with images
In order to get pixel intensity value, you have to know the type of an image and the number of
channels. Here is an example for a single channel grey scale image (type 8UC1) and pixel coordinates
x and y:
@code{.cpp}
Scalar intensity = img.at<uchar>(y, x);
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Pixel access 1
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Pixel access 1
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Pixel access 1
@end_toggle
C++ version only:
intensity.val[0] contains a value from 0 to 255. Note the ordering of x and y. Since in OpenCV
images are represented by the same structure as matrices, we use the same convention for both
cases - the 0-based row index (or y-coordinate) goes first and the 0-based column index (or
x-coordinate) follows it. Alternatively, you can use the following notation:
@code{.cpp}
Scalar intensity = img.at<uchar>(Point(x, y));
@endcode
x-coordinate) follows it. Alternatively, you can use the following notation (**C++ only**):
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Pixel access 2
Now let us consider a 3 channel image with BGR color ordering (the default format returned by
imread):
@code{.cpp}
Vec3b intensity = img.at<Vec3b>(y, x);
uchar blue = intensity.val[0];
uchar green = intensity.val[1];
uchar red = intensity.val[2];
@endcode
**C++ code**
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Pixel access 3
**Python Python**
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Pixel access 3
You can use the same method for floating-point images (for example, you can get such an image by
running Sobel on a 3 channel image):
@code{.cpp}
Vec3f intensity = img.at<Vec3f>(y, x);
float blue = intensity.val[0];
float green = intensity.val[1];
float red = intensity.val[2];
@endcode
running Sobel on a 3 channel image) (**C++ only**):
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Pixel access 4
The same method can be used to change pixel intensities:
@code{.cpp}
img.at<uchar>(y, x) = 128;
@endcode
There are functions in OpenCV, especially from calib3d module, such as projectPoints, that take an
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Pixel access 5
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Pixel access 5
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Pixel access 5
@end_toggle
There are functions in OpenCV, especially from calib3d module, such as cv::projectPoints, that take an
array of 2D or 3D points in the form of Mat. Matrix should contain exactly one column, each row
corresponds to a point, matrix type should be 32FC2 or 32FC3 correspondingly. Such a matrix can be
easily constructed from `std::vector`:
@code{.cpp}
vector<Point2f> points;
//... fill the array
Mat pointsMat = Mat(points);
@endcode
One can access a point in this matrix using the same method Mat::at :
@code{.cpp}
Point2f point = pointsMat.at<Point2f>(i, 0);
@endcode
easily constructed from `std::vector` (**C++ only**):
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Mat from points vector
One can access a point in this matrix using the same method `Mat::at` (**C++ only**):
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Point access
### Memory management and reference counting
@ -85,91 +126,141 @@ Mat is a structure that keeps matrix/image characteristics (rows and columns num
and a pointer to data. So nothing prevents us from having several instances of Mat corresponding to
the same data. A Mat keeps a reference count that tells if data has to be deallocated when a
particular instance of Mat is destroyed. Here is an example of creating two matrices without copying
data:
@code{.cpp}
std::vector<Point3f> points;
// .. fill the array
Mat pointsMat = Mat(points).reshape(1);
@endcode
As a result we get a 32FC1 matrix with 3 columns instead of 32FC3 matrix with 1 column. pointsMat
data (**C++ only**):
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Reference counting 1
As a result, we get a 32FC1 matrix with 3 columns instead of 32FC3 matrix with 1 column. `pointsMat`
uses data from points and will not deallocate the memory when destroyed. In this particular
instance, however, developer has to make sure that lifetime of points is longer than of pointsMat.
instance, however, developer has to make sure that lifetime of `points` is longer than of `pointsMat`
If we need to copy the data, this is done using, for example, cv::Mat::copyTo or cv::Mat::clone:
@code{.cpp}
Mat img = imread("image.jpg");
Mat img1 = img.clone();
@endcode
To the contrary with C API where an output image had to be created by developer, an empty output Mat
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Reference counting 2
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Reference counting 2
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Reference counting 2
@end_toggle
To the contrary with C API where an output image had to be created by the developer, an empty output Mat
can be supplied to each function. Each implementation calls Mat::create for a destination matrix.
This method allocates data for a matrix if it is empty. If it is not empty and has the correct size
and type, the method does nothing. If, however, size or type are different from input arguments, the
and type, the method does nothing. If however, size or type are different from the input arguments, the
data is deallocated (and lost) and a new data is allocated. For example:
@code{.cpp}
Mat img = imread("image.jpg");
Mat sobelx;
Sobel(img, sobelx, CV_32F, 1, 0);
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Reference counting 3
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Reference counting 3
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Reference counting 3
@end_toggle
### Primitive operations
There is a number of convenient operators defined on a matrix. For example, here is how we can make
a black image from an existing greyscale image \`img\`:
@code{.cpp}
img = Scalar(0);
@endcode
a black image from an existing greyscale image `img`
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Set image to black
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Set image to black
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Set image to black
@end_toggle
Selecting a region of interest:
@code{.cpp}
Rect r(10, 10, 100, 100);
Mat smallImg = img(r);
@endcode
A conversion from Mat to C API data structures:
@code{.cpp}
Mat img = imread("image.jpg");
IplImage img1 = img;
CvMat m = img;
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Select ROI
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Select ROI
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Select ROI
@end_toggle
A conversion from Mat to C API data structures (**C++ only**):
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp C-API conversion
Note that there is no data copying here.
Conversion from color to grey scale:
@code{.cpp}
Mat img = imread("image.jpg"); // loading a 8UC3 image
Mat grey;
cvtColor(img, grey, COLOR_BGR2GRAY);
@endcode
Conversion from color to greyscale:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp BGR to Gray
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java BGR to Gray
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py BGR to Gray
@end_toggle
Change image type from 8UC1 to 32FC1:
@code{.cpp}
src.convertTo(dst, CV_32F);
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp Convert to CV_32F
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java Convert to CV_32F
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py Convert to CV_32F
@end_toggle
### Visualizing images
It is very useful to see intermediate results of your algorithm during development process. OpenCV
provides a convenient way of visualizing images. A 8U image can be shown using:
@code{.cpp}
Mat img = imread("image.jpg");
namedWindow("image", WINDOW_AUTOSIZE);
imshow("image", img);
waitKey();
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp imshow 1
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java imshow 1
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py imshow 1
@end_toggle
A call to waitKey() starts a message passing cycle that waits for a key stroke in the "image"
window. A 32F image needs to be converted to 8U type. For example:
@code{.cpp}
Mat img = imread("image.jpg");
Mat grey;
cvtColor(img, grey, COLOR_BGR2GRAY);
Mat sobelx;
Sobel(grey, sobelx, CV_32F, 1, 0);
double minVal, maxVal;
minMaxLoc(sobelx, &minVal, &maxVal); //find minimum and maximum intensities
Mat draw;
sobelx.convertTo(draw, CV_8U, 255.0/(maxVal - minVal), -minVal * 255.0/(maxVal - minVal));
namedWindow("image", WINDOW_AUTOSIZE);
imshow("image", draw);
waitKey();
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_operations/mat_operations.cpp imshow 2
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_operations/MatOperations.java imshow 2
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_operations/mat_operations.py imshow 2
@end_toggle
@note Here cv::namedWindow is not necessary since it is immediately followed by cv::imshow.
Nevertheless, it can be used to change the window properties or when using cv::createTrackbar

@ -36,6 +36,10 @@ understanding how to manipulate the images on a pixel level.
- @subpage tutorial_mat_operations
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
Reading/writing images from file, accessing pixels, primitive operations, visualizing images.
- @subpage tutorial_adding_images
@ -50,6 +54,8 @@ understanding how to manipulate the images on a pixel level.
- @subpage tutorial_basic_linear_transform
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán

@ -20,29 +20,32 @@ using namespace cv;
*/
int main( int argc, char** argv )
{
//! [basic-linear-transform-parameters]
double alpha = 1.0; /*< Simple contrast control */
int beta = 0; /*< Simple brightness control */
//! [basic-linear-transform-parameters]
/// Read image given by user
//! [basic-linear-transform-load]
String imageName("../data/lena.jpg"); // by default
if (argc > 1)
CommandLineParser parser( argc, argv, "{@input | ../data/lena.jpg | input image}" );
Mat image = imread( parser.get<String>( "@input" ) );
if( image.empty() )
{
imageName = argv[1];
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
Mat image = imread( imageName );
//! [basic-linear-transform-load]
//! [basic-linear-transform-output]
Mat new_image = Mat::zeros( image.size(), image.type() );
//! [basic-linear-transform-output]
//! [basic-linear-transform-parameters]
double alpha = 1.0; /*< Simple contrast control */
int beta = 0; /*< Simple brightness control */
/// Initialize values
cout << " Basic Linear Transforms " << endl;
cout << "-------------------------" << endl;
cout << "* Enter the alpha value [1.0-3.0]: "; cin >> alpha;
cout << "* Enter the beta value [0-100]: "; cin >> beta;
//! [basic-linear-transform-parameters]
/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
/// Instead of these 'for' loops we could have used simply:
@ -51,19 +54,15 @@ int main( int argc, char** argv )
//! [basic-linear-transform-operation]
for( int y = 0; y < image.rows; y++ ) {
for( int x = 0; x < image.cols; x++ ) {
for( int c = 0; c < 3; c++ ) {
for( int c = 0; c < image.channels(); c++ ) {
new_image.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
saturate_cast<uchar>( alpha*image.at<Vec3b>(y,x)[c] + beta );
}
}
}
//! [basic-linear-transform-operation]
//! [basic-linear-transform-display]
/// Create Windows
namedWindow("Original Image", WINDOW_AUTOSIZE);
namedWindow("New Image", WINDOW_AUTOSIZE);
/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);

@ -3,6 +3,8 @@
#include "opencv2/highgui.hpp"
// we're NOT "using namespace std;" here, to avoid collisions between the beta variable and std::beta in c++17
using std::cout;
using std::endl;
using namespace cv;
namespace
@ -19,12 +21,13 @@ void basicLinearTransform(const Mat &img, const double alpha_, const int beta_)
img.convertTo(res, -1, alpha_, beta_);
hconcat(img, res, img_corrected);
imshow("Brightness and contrast adjustments", img_corrected);
}
void gammaCorrection(const Mat &img, const double gamma_)
{
CV_Assert(gamma_ >= 0);
//![changing-contrast-brightness-gamma-correction]
//! [changing-contrast-brightness-gamma-correction]
Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.ptr();
for( int i = 0; i < 256; ++i)
@ -32,9 +35,10 @@ void gammaCorrection(const Mat &img, const double gamma_)
Mat res = img.clone();
LUT(img, lookUpTable, res);
//![changing-contrast-brightness-gamma-correction]
//! [changing-contrast-brightness-gamma-correction]
hconcat(img, res, img_gamma_corrected);
imshow("Gamma correction", img_gamma_corrected);
}
void on_linear_transform_alpha_trackbar(int, void *)
@ -60,36 +64,32 @@ void on_gamma_correction_trackbar(int, void *)
int main( int argc, char** argv )
{
String imageName("../data/lena.jpg"); // by default
if (argc > 1)
CommandLineParser parser( argc, argv, "{@input | ../data/lena.jpg | input image}" );
img_original = imread( parser.get<String>( "@input" ) );
if( img_original.empty() )
{
imageName = argv[1];
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
img_original = imread( imageName );
img_corrected = Mat(img_original.rows, img_original.cols*2, img_original.type());
img_gamma_corrected = Mat(img_original.rows, img_original.cols*2, img_original.type());
hconcat(img_original, img_original, img_corrected);
hconcat(img_original, img_original, img_gamma_corrected);
namedWindow("Brightness and contrast adjustments", WINDOW_AUTOSIZE);
namedWindow("Gamma correction", WINDOW_AUTOSIZE);
namedWindow("Brightness and contrast adjustments");
namedWindow("Gamma correction");
createTrackbar("Alpha gain (contrast)", "Brightness and contrast adjustments", &alpha, 500, on_linear_transform_alpha_trackbar);
createTrackbar("Beta bias (brightness)", "Brightness and contrast adjustments", &beta, 200, on_linear_transform_beta_trackbar);
createTrackbar("Gamma correction", "Gamma correction", &gamma_cor, 200, on_gamma_correction_trackbar);
while (true)
{
imshow("Brightness and contrast adjustments", img_corrected);
imshow("Gamma correction", img_gamma_corrected);
on_linear_transform_alpha_trackbar(0, 0);
on_gamma_correction_trackbar(0, 0);
int c = waitKey(30);
if (c == 27)
break;
}
waitKey();
imwrite("linear_transform_correction.png", img_corrected);
imwrite("gamma_correction.png", img_gamma_corrected);

@ -0,0 +1,180 @@
/* Snippet code for Operations with images tutorial (not intended to be run but should built successfully) */
#include "opencv2/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main(int,char**)
{
std::string filename = "";
// Input/Output
{
//! [Load an image from a file]
Mat img = imread(filename);
//! [Load an image from a file]
CV_UNUSED(img);
}
{
//! [Load an image from a file in grayscale]
Mat img = imread(filename, IMREAD_GRAYSCALE);
//! [Load an image from a file in grayscale]
CV_UNUSED(img);
}
{
Mat img(4,4,CV_8U);
//! [Save image]
imwrite(filename, img);
//! [Save image]
}
// Accessing pixel intensity values
{
Mat img(4,4,CV_8U);
int y = 0, x = 0;
{
//! [Pixel access 1]
Scalar intensity = img.at<uchar>(y, x);
//! [Pixel access 1]
CV_UNUSED(intensity);
}
{
//! [Pixel access 2]
Scalar intensity = img.at<uchar>(Point(x, y));
//! [Pixel access 2]
CV_UNUSED(intensity);
}
{
//! [Pixel access 3]
Vec3b intensity = img.at<Vec3b>(y, x);
uchar blue = intensity.val[0];
uchar green = intensity.val[1];
uchar red = intensity.val[2];
//! [Pixel access 3]
CV_UNUSED(blue);
CV_UNUSED(green);
CV_UNUSED(red);
}
{
//! [Pixel access 4]
Vec3f intensity = img.at<Vec3f>(y, x);
float blue = intensity.val[0];
float green = intensity.val[1];
float red = intensity.val[2];
//! [Pixel access 4]
CV_UNUSED(blue);
CV_UNUSED(green);
CV_UNUSED(red);
}
{
//! [Pixel access 5]
img.at<uchar>(y, x) = 128;
//! [Pixel access 5]
}
{
int i = 0;
//! [Mat from points vector]
vector<Point2f> points;
//... fill the array
Mat pointsMat = Mat(points);
//! [Mat from points vector]
//! [Point access]
Point2f point = pointsMat.at<Point2f>(i, 0);
//! [Point access]
CV_UNUSED(point);
}
}
// Memory management and reference counting
{
//! [Reference counting 1]
std::vector<Point3f> points;
// .. fill the array
Mat pointsMat = Mat(points).reshape(1);
//! [Reference counting 1]
CV_UNUSED(pointsMat);
}
{
//! [Reference counting 2]
Mat img = imread("image.jpg");
Mat img1 = img.clone();
//! [Reference counting 2]
CV_UNUSED(img1);
}
{
//! [Reference counting 3]
Mat img = imread("image.jpg");
Mat sobelx;
Sobel(img, sobelx, CV_32F, 1, 0);
//! [Reference counting 3]
}
// Primitive operations
{
Mat img;
{
//! [Set image to black]
img = Scalar(0);
//! [Set image to black]
}
{
//! [Select ROI]
Rect r(10, 10, 100, 100);
Mat smallImg = img(r);
//! [Select ROI]
CV_UNUSED(smallImg);
}
}
{
//! [C-API conversion]
Mat img = imread("image.jpg");
IplImage img1 = img;
CvMat m = img;
//! [C-API conversion]
CV_UNUSED(img1);
CV_UNUSED(m);
}
{
//! [BGR to Gray]
Mat img = imread("image.jpg"); // loading a 8UC3 image
Mat grey;
cvtColor(img, grey, COLOR_BGR2GRAY);
//! [BGR to Gray]
}
{
Mat dst, src;
//! [Convert to CV_32F]
src.convertTo(dst, CV_32F);
//! [Convert to CV_32F]
}
// Visualizing images
{
//! [imshow 1]
Mat img = imread("image.jpg");
namedWindow("image", WINDOW_AUTOSIZE);
imshow("image", img);
waitKey();
//! [imshow 1]
}
{
//! [imshow 2]
Mat img = imread("image.jpg");
Mat grey;
cvtColor(img, grey, COLOR_BGR2GRAY);
Mat sobelx;
Sobel(grey, sobelx, CV_32F, 1, 0);
double minVal, maxVal;
minMaxLoc(sobelx, &minVal, &maxVal); //find minimum and maximum intensities
Mat draw;
sobelx.convertTo(draw, CV_8U, 255.0/(maxVal - minVal), -minVal * 255.0/(maxVal - minVal));
namedWindow("image", WINDOW_AUTOSIZE);
imshow("image", draw);
waitKey();
//! [imshow 2]
}
return 0;
}

@ -0,0 +1,86 @@
import java.util.Scanner;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
class BasicLinearTransforms {
private byte saturate(double val) {
int iVal = (int) Math.round(val);
iVal = iVal > 255 ? 255 : (iVal < 0 ? 0 : iVal);
return (byte) iVal;
}
public void run(String[] args) {
/// Read image given by user
//! [basic-linear-transform-load]
String imagePath = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat image = Imgcodecs.imread(imagePath);
if (image.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
//! [basic-linear-transform-load]
//! [basic-linear-transform-output]
Mat newImage = Mat.zeros(image.size(), image.type());
//! [basic-linear-transform-output]
//! [basic-linear-transform-parameters]
double alpha = 1.0; /*< Simple contrast control */
int beta = 0; /*< Simple brightness control */
/// Initialize values
System.out.println(" Basic Linear Transforms ");
System.out.println("-------------------------");
try (Scanner scanner = new Scanner(System.in)) {
System.out.print("* Enter the alpha value [1.0-3.0]: ");
alpha = scanner.nextDouble();
System.out.print("* Enter the beta value [0-100]: ");
beta = scanner.nextInt();
}
//! [basic-linear-transform-parameters]
/// Do the operation newImage(i,j) = alpha*image(i,j) + beta
/// Instead of these 'for' loops we could have used simply:
/// image.convertTo(newImage, -1, alpha, beta);
/// but we wanted to show you how to access the pixels :)
//! [basic-linear-transform-operation]
byte[] imageData = new byte[(int) (image.total()*image.channels())];
image.get(0, 0, imageData);
byte[] newImageData = new byte[(int) (newImage.total()*newImage.channels())];
for (int y = 0; y < image.rows(); y++) {
for (int x = 0; x < image.cols(); x++) {
for (int c = 0; c < image.channels(); c++) {
double pixelValue = imageData[(y * image.cols() + x) * image.channels() + c];
/// Java byte range is [-128, 127]
pixelValue = pixelValue < 0 ? pixelValue + 256 : pixelValue;
newImageData[(y * image.cols() + x) * image.channels() + c]
= saturate(alpha * pixelValue + beta);
}
}
}
newImage.put(0, 0, newImageData);
//! [basic-linear-transform-operation]
//! [basic-linear-transform-display]
/// Show stuff
HighGui.imshow("Original Image", image);
HighGui.imshow("New Image", newImage);
/// Wait until user press some key
HighGui.waitKey();
//! [basic-linear-transform-display]
System.exit(0);
}
}
public class BasicLinearTransformsDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new BasicLinearTransforms().run(args);
}
}

@ -0,0 +1,202 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JCheckBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
class ChangingContrastBrightnessImage {
private static int MAX_VALUE_ALPHA = 500;
private static int MAX_VALUE_BETA_GAMMA = 200;
private static final String WINDOW_NAME = "Changing the contrast and brightness of an image demo";
private static final String ALPHA_NAME = "Alpha gain (contrast)";
private static final String BETA_NAME = "Beta bias (brightness)";
private static final String GAMMA_NAME = "Gamma correction";
private JFrame frame;
private Mat matImgSrc = new Mat();
private JLabel imgSrcLabel;
private JLabel imgModifLabel;
private JPanel controlPanel;
private JPanel alphaBetaPanel;
private JPanel gammaPanel;
private double alphaValue = 1.0;
private double betaValue = 0.0;
private double gammaValue = 1.0;
private JCheckBox methodCheckBox;
private JSlider sliderAlpha;
private JSlider sliderBeta;
private JSlider sliderGamma;
public ChangingContrastBrightnessImage(String[] args) {
String imagePath = args.length > 0 ? args[0] : "../data/lena.jpg";
matImgSrc = Imgcodecs.imread(imagePath);
if (matImgSrc.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
// Create and set up the window.
frame = new JFrame(WINDOW_NAME);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(matImgSrc);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
controlPanel = new JPanel();
controlPanel.setLayout(new BoxLayout(controlPanel, BoxLayout.PAGE_AXIS));
methodCheckBox = new JCheckBox("Do gamma correction");
methodCheckBox.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
JCheckBox cb = (JCheckBox) e.getSource();
if (cb.isSelected()) {
controlPanel.remove(alphaBetaPanel);
controlPanel.add(gammaPanel);
performGammaCorrection();
frame.revalidate();
frame.repaint();
frame.pack();
} else {
controlPanel.remove(gammaPanel);
controlPanel.add(alphaBetaPanel);
performLinearTransformation();
frame.revalidate();
frame.repaint();
frame.pack();
}
}
});
controlPanel.add(methodCheckBox);
alphaBetaPanel = new JPanel();
alphaBetaPanel.setLayout(new BoxLayout(alphaBetaPanel, BoxLayout.PAGE_AXIS));
alphaBetaPanel.add(new JLabel(ALPHA_NAME));
sliderAlpha = new JSlider(0, MAX_VALUE_ALPHA, 100);
sliderAlpha.setMajorTickSpacing(50);
sliderAlpha.setMinorTickSpacing(10);
sliderAlpha.setPaintTicks(true);
sliderAlpha.setPaintLabels(true);
sliderAlpha.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
alphaValue = sliderAlpha.getValue() / 100.0;
performLinearTransformation();
}
});
alphaBetaPanel.add(sliderAlpha);
alphaBetaPanel.add(new JLabel(BETA_NAME));
sliderBeta = new JSlider(0, MAX_VALUE_BETA_GAMMA, 100);
sliderBeta.setMajorTickSpacing(20);
sliderBeta.setMinorTickSpacing(5);
sliderBeta.setPaintTicks(true);
sliderBeta.setPaintLabels(true);
sliderBeta.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
betaValue = sliderBeta.getValue() - 100;
performLinearTransformation();
}
});
alphaBetaPanel.add(sliderBeta);
controlPanel.add(alphaBetaPanel);
gammaPanel = new JPanel();
gammaPanel.setLayout(new BoxLayout(gammaPanel, BoxLayout.PAGE_AXIS));
gammaPanel.add(new JLabel(GAMMA_NAME));
sliderGamma = new JSlider(0, MAX_VALUE_BETA_GAMMA, 100);
sliderGamma.setMajorTickSpacing(20);
sliderGamma.setMinorTickSpacing(5);
sliderGamma.setPaintTicks(true);
sliderGamma.setPaintLabels(true);
sliderGamma.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
gammaValue = sliderGamma.getValue() / 100.0;
performGammaCorrection();
}
});
gammaPanel.add(sliderGamma);
pane.add(controlPanel, BorderLayout.PAGE_START);
JPanel framePanel = new JPanel();
imgSrcLabel = new JLabel(new ImageIcon(img));
framePanel.add(imgSrcLabel);
imgModifLabel = new JLabel(new ImageIcon(img));
framePanel.add(imgModifLabel);
pane.add(framePanel, BorderLayout.CENTER);
}
private void performLinearTransformation() {
Mat img = new Mat();
matImgSrc.convertTo(img, -1, alphaValue, betaValue);
imgModifLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(img)));
frame.repaint();
}
private byte saturate(double val) {
int iVal = (int) Math.round(val);
iVal = iVal > 255 ? 255 : (iVal < 0 ? 0 : iVal);
return (byte) iVal;
}
private void performGammaCorrection() {
//! [changing-contrast-brightness-gamma-correction]
Mat lookUpTable = new Mat(1, 256, CvType.CV_8U);
byte[] lookUpTableData = new byte[(int) (lookUpTable.total()*lookUpTable.channels())];
for (int i = 0; i < lookUpTable.cols(); i++) {
lookUpTableData[i] = saturate(Math.pow(i / 255.0, gammaValue) * 255.0);
}
lookUpTable.put(0, 0, lookUpTableData);
Mat img = new Mat();
Core.LUT(matImgSrc, lookUpTable, img);
//! [changing-contrast-brightness-gamma-correction]
imgModifLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(img)));
frame.repaint();
}
}
public class ChangingContrastBrightnessImageDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new ChangingContrastBrightnessImage(args);
}
});
}
}

@ -0,0 +1,130 @@
import java.util.Arrays;
import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class MatOperations {
@SuppressWarnings("unused")
public static void main(String[] args) {
/* Snippet code for Operations with images tutorial (not intended to be run) */
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
String filename = "";
// Input/Output
{
//! [Load an image from a file]
Mat img = Imgcodecs.imread(filename);
//! [Load an image from a file]
}
{
//! [Load an image from a file in grayscale]
Mat img = Imgcodecs.imread(filename, Imgcodecs.IMREAD_GRAYSCALE);
//! [Load an image from a file in grayscale]
}
{
Mat img = new Mat(4, 4, CvType.CV_8U);
//! [Save image]
Imgcodecs.imwrite(filename, img);
//! [Save image]
}
// Accessing pixel intensity values
{
Mat img = new Mat(4, 4, CvType.CV_8U);
int y = 0, x = 0;
{
//! [Pixel access 1]
byte[] imgData = new byte[(int) (img.total() * img.channels())];
img.get(0, 0, imgData);
byte intensity = imgData[y * img.cols() + x];
//! [Pixel access 1]
}
{
//! [Pixel access 5]
byte[] imgData = new byte[(int) (img.total() * img.channels())];
imgData[y * img.cols() + x] = (byte) 128;
img.put(0, 0, imgData);
//! [Pixel access 5]
}
}
// Memory management and reference counting
{
//! [Reference counting 2]
Mat img = Imgcodecs.imread("image.jpg");
Mat img1 = img.clone();
//! [Reference counting 2]
}
{
//! [Reference counting 3]
Mat img = Imgcodecs.imread("image.jpg");
Mat sobelx = new Mat();
Imgproc.Sobel(img, sobelx, CvType.CV_32F, 1, 0);
//! [Reference counting 3]
}
// Primitive operations
{
Mat img = new Mat(400, 400, CvType.CV_8UC3);
{
//! [Set image to black]
byte[] imgData = new byte[(int) (img.total() * img.channels())];
Arrays.fill(imgData, (byte) 0);
img.put(0, 0, imgData);
//! [Set image to black]
}
{
//! [Select ROI]
Rect r = new Rect(10, 10, 100, 100);
Mat smallImg = img.submat(r);
//! [Select ROI]
}
}
{
//! [BGR to Gray]
Mat img = Imgcodecs.imread("image.jpg"); // loading a 8UC3 image
Mat grey = new Mat();
Imgproc.cvtColor(img, grey, Imgproc.COLOR_BGR2GRAY);
//! [BGR to Gray]
}
{
Mat dst = new Mat(), src = new Mat();
//! [Convert to CV_32F]
src.convertTo(dst, CvType.CV_32F);
//! [Convert to CV_32F]
}
// Visualizing images
{
//! [imshow 1]
Mat img = Imgcodecs.imread("image.jpg");
HighGui.namedWindow("image", HighGui.WINDOW_AUTOSIZE);
HighGui.imshow("image", img);
HighGui.waitKey();
//! [imshow 1]
}
{
//! [imshow 2]
Mat img = Imgcodecs.imread("image.jpg");
Mat grey = new Mat();
Imgproc.cvtColor(img, grey, Imgproc.COLOR_BGR2GRAY);
Mat sobelx = new Mat();
Imgproc.Sobel(grey, sobelx, CvType.CV_32F, 1, 0);
MinMaxLocResult res = Core.minMaxLoc(sobelx); // find minimum and maximum intensities
Mat draw = new Mat();
double maxVal = res.maxVal, minVal = res.minVal;
sobelx.convertTo(draw, CvType.CV_8U, 255.0 / (maxVal - minVal), -minVal * 255.0 / (maxVal - minVal));
HighGui.namedWindow("image", HighGui.WINDOW_AUTOSIZE);
HighGui.imshow("image", draw);
HighGui.waitKey();
//! [imshow 2]
}
System.exit(0);
}
}

@ -0,0 +1,92 @@
from __future__ import division
import cv2 as cv
import numpy as np
# Snippet code for Operations with images tutorial (not intended to be run)
def load():
# Input/Output
filename = 'img.jpg'
## [Load an image from a file]
img = cv.imread(filename)
## [Load an image from a file]
## [Load an image from a file in grayscale]
img = cv.imread(filename, cv.IMREAD_GRAYSCALE)
## [Load an image from a file in grayscale]
## [Save image]
cv.imwrite(filename, img)
## [Save image]
def access_pixel():
# Accessing pixel intensity values
img = np.empty((4,4,3), np.uint8)
y = 0
x = 0
## [Pixel access 1]
intensity = img[y,x]
## [Pixel access 1]
## [Pixel access 3]
blue = img[y,x,0]
green = img[y,x,1]
red = img[y,x,2]
## [Pixel access 3]
## [Pixel access 5]
img[y,x] = 128
## [Pixel access 5]
def reference_counting():
# Memory management and reference counting
## [Reference counting 2]
img = cv.imread('image.jpg')
img1 = np.copy(img)
## [Reference counting 2]
## [Reference counting 3]
img = cv.imread('image.jpg')
sobelx = cv.Sobel(img, cv.CV_32F, 1, 0);
## [Reference counting 3]
def primitive_operations():
img = np.empty((4,4,3), np.uint8)
## [Set image to black]
img[:] = 0
## [Set image to black]
## [Select ROI]
smallImg = img[10:110,10:110]
## [Select ROI]
## [BGR to Gray]
img = cv.imread('image.jpg')
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
## [BGR to Gray]
src = np.ones((4,4), np.uint8)
## [Convert to CV_32F]
dst = src.astype(np.float32)
## [Convert to CV_32F]
def visualize_images():
## [imshow 1]
img = cv.imread('image.jpg')
cv.namedWindow('image', cv.WINDOW_AUTOSIZE)
cv.imshow('image', img)
cv.waitKey()
## [imshow 1]
## [imshow 2]
img = cv.imread('image.jpg')
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
sobelx = cv.Sobel(grey, cv.CV_32F, 1, 0)
# find minimum and maximum intensities
minVal = np.amin(sobelx)
maxVal = np.amax(sobelx)
draw = cv.convertScaleAbs(sobelx, alpha=255.0/(maxVal - minVal), beta=-minVal * 255.0/(maxVal - minVal))
cv.namedWindow('image', cv.WINDOW_AUTOSIZE)
cv.imshow('image', draw)
cv.waitKey()
## [imshow 2]

@ -0,0 +1,55 @@
from __future__ import print_function
from builtins import input
import cv2 as cv
import numpy as np
import argparse
# Read image given by user
## [basic-linear-transform-load]
parser = argparse.ArgumentParser(description='Code for Changing the contrast and brightness of an image! tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
args = parser.parse_args()
image = cv.imread(args.input)
if image is None:
print('Could not open or find the image: ', args.input)
exit(0)
## [basic-linear-transform-load]
## [basic-linear-transform-output]
new_image = np.zeros(image.shape, image.dtype)
## [basic-linear-transform-output]
## [basic-linear-transform-parameters]
alpha = 1.0 # Simple contrast control
beta = 0 # Simple brightness control
# Initialize values
print(' Basic Linear Transforms ')
print('-------------------------')
try:
alpha = float(input('* Enter the alpha value [1.0-3.0]: '))
beta = int(input('* Enter the beta value [0-100]: '))
except ValueError:
print('Error, not a number')
## [basic-linear-transform-parameters]
# Do the operation new_image(i,j) = alpha*image(i,j) + beta
# Instead of these 'for' loops we could have used simply:
# new_image = cv.convertScaleAbs(image, alpha=alpha, beta=beta)
# but we wanted to show you how to access the pixels :)
## [basic-linear-transform-operation]
for y in range(image.shape[0]):
for x in range(image.shape[1]):
for c in range(image.shape[2]):
new_image[y,x,c] = np.clip(alpha*image[y,x,c] + beta, 0, 255)
## [basic-linear-transform-operation]
## [basic-linear-transform-display]
# Show stuff
cv.imshow('Original Image', image)
cv.imshow('New Image', new_image)
# Wait until user press some key
cv.waitKey()
## [basic-linear-transform-display]

@ -0,0 +1,74 @@
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
alpha = 1.0
alpha_max = 500
beta = 0
beta_max = 200
gamma = 1.0
gamma_max = 200
def basicLinearTransform():
res = cv.convertScaleAbs(img_original, alpha=alpha, beta=beta)
img_corrected = cv.hconcat([img_original, res])
cv.imshow("Brightness and contrast adjustments", img_corrected)
def gammaCorrection():
## [changing-contrast-brightness-gamma-correction]
lookUpTable = np.empty((1,256), np.uint8)
for i in range(256):
lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255)
res = cv.LUT(img_original, lookUpTable)
## [changing-contrast-brightness-gamma-correction]
img_gamma_corrected = cv.hconcat([img_original, res]);
cv.imshow("Gamma correction", img_gamma_corrected);
def on_linear_transform_alpha_trackbar(val):
global alpha
alpha = val / 100
basicLinearTransform()
def on_linear_transform_beta_trackbar(val):
global beta
beta = val - 100
basicLinearTransform()
def on_gamma_correction_trackbar(val):
global gamma
gamma = val / 100
gammaCorrection()
parser = argparse.ArgumentParser(description='Code for Changing the contrast and brightness of an image! tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
args = parser.parse_args()
img_original = cv.imread(args.input)
if img_original is None:
print('Could not open or find the image: ', args.input)
exit(0)
img_corrected = np.empty((img_original.shape[0], img_original.shape[1]*2, img_original.shape[2]), img_original.dtype)
img_gamma_corrected = np.empty((img_original.shape[0], img_original.shape[1]*2, img_original.shape[2]), img_original.dtype)
img_corrected = cv.hconcat([img_original, img_original])
img_gamma_corrected = cv.hconcat([img_original, img_original])
cv.namedWindow('Brightness and contrast adjustments')
cv.namedWindow('Gamma correction')
alpha_init = int(alpha *100)
cv.createTrackbar('Alpha gain (contrast)', 'Brightness and contrast adjustments', alpha_init, alpha_max, on_linear_transform_alpha_trackbar)
beta_init = beta + 100
cv.createTrackbar('Beta bias (brightness)', 'Brightness and contrast adjustments', beta_init, beta_max, on_linear_transform_beta_trackbar)
gamma_init = int(gamma * 100)
cv.createTrackbar('Gamma correction', 'Gamma correction', gamma_init, gamma_max, on_gamma_correction_trackbar)
on_linear_transform_alpha_trackbar(alpha_init)
on_gamma_correction_trackbar(gamma_init)
cv.waitKey()
Loading…
Cancel
Save