Merge pull request #2391 from ilya-lavrenov:tapi_match_template

pull/2436/merge
Andrey Pavlenko 11 years ago committed by OpenCV Buildbot
commit c9d8025fab
  1. 488
      modules/imgproc/src/opencl/match_template.cl
  2. 190
      modules/imgproc/src/templmatch.cpp
  3. 3
      modules/imgproc/test/ocl/test_match_template.cpp

@ -32,259 +32,315 @@
#define DATA_SIZE ((int)sizeof(type))
#define ELEM_TYPE elem_type
#define ELEM_SIZE ((int)sizeof(elem_type))
#define CN cn
#define SQSUMS_PTR(ox, oy) mad24(gidy + oy, img_sqsums_step, gidx*CN + img_sqsums_offset + ox*CN)
#define SUMS_PTR(ox, oy) mad24(gidy + oy, img_sums_step, gidx*CN + img_sums_offset + ox*CN)
#define SQSUMS_PTR(ox, oy) mad24(y + oy, src_sqsums_step, mad24(x + ox, cn, src_sqsums_offset))
#define SUMS_PTR(ox, oy) mad24(y + oy, src_sums_step, mad24(x + ox, cn, src_sums_offset))
inline float normAcc(float num, float denum)
{
if(fabs(num) < denum)
{
if (fabs(num) < denum)
return num / denum;
}
if(fabs(num) < denum * 1.125f)
{
if (fabs(num) < denum * 1.125f)
return num > 0 ? 1 : -1;
}
return 0;
}
inline float normAcc_SQDIFF(float num, float denum)
{
if(fabs(num) < denum)
{
if (fabs(num) < denum)
return num / denum;
}
if(fabs(num) < denum * 1.125f)
{
if (fabs(num) < denum * 1.125f)
return num > 0 ? 1 : -1;
}
return 1;
}
//////////////////////////////////////////CCORR/////////////////////////////////////////////////////////////////////////
#define noconvert
#if cn == 1
#define convertToDT(value) (float)(value)
#elif cn == 2
#define convertToDT(value) (float)(value.x + value.y)
#elif cn == 4
#define convertToDT(value) (float)(value.x + value.y + value.z + value.w)
#else
#error "cn should be 1, 2 or 4"
#endif
__kernel void matchTemplate_Naive_CCORR (__global const uchar * img,int img_step,int img_offset,
__global const uchar * tpl,int tpl_step,int tpl_offset,int tpl_rows, int tpl_cols,
__global uchar * res,int res_step,int res_offset,int res_rows,int res_cols)
#ifdef CALC_SUM
__kernel void calcSum(__global const uchar * srcptr, int src_step, int src_offset,
int cols, int total, __global float * dst)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float sum = 0;
int lid = get_local_id(0), id = get_global_id(0);
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
__local WT localmem[WGS2_ALIGNED];
WT accumulator = (WT)(0), tmp;
if(gidx < res_cols && gidy < res_rows)
for ( ; id < total; id += WGS)
{
for(i = 0; i < tpl_rows; i ++)
{
__global const ELEM_TYPE * img_ptr = (__global const ELEM_TYPE *)(img + mad24(gidy + i, img_step, gidx*DATA_SIZE + img_offset));
__global const ELEM_TYPE * tpl_ptr = (__global const ELEM_TYPE *)(tpl + mad24(i, tpl_step, tpl_offset));
for(j = 0; j < tpl_cols; j ++)
int src_index = mad24(id / cols, src_step, mad24(id % cols, (int)sizeof(T), src_offset));
__global const T * src = (__global const T *)(srcptr + src_index);
tmp = convertToWT(src[0]);
#if wdepth == 4
accumulator = mad24(tmp, tmp, accumulator);
#else
accumulator = mad(tmp, tmp, accumulator);
#endif
}
#pragma unroll
for (int c = 0; c < CN; c++)
if (lid < WGS2_ALIGNED)
localmem[lid] = accumulator;
barrier(CLK_LOCAL_MEM_FENCE);
sum += (float)(img_ptr[j*CN+c] * tpl_ptr[j*CN+c]);
if (lid >= WGS2_ALIGNED && total >= WGS2_ALIGNED)
localmem[lid - WGS2_ALIGNED] += accumulator;
barrier(CLK_LOCAL_MEM_FENCE);
for (int lsize = WGS2_ALIGNED >> 1; lsize > 0; lsize >>= 1)
{
if (lid < lsize)
{
int lid2 = lsize + lid;
localmem[lid] += localmem[lid2];
}
__global float * result = (__global float *)(res+res_idx);
*result = sum;
barrier(CLK_LOCAL_MEM_FENCE);
}
if (lid == 0)
dst[0] = convertToDT(localmem[0]);
}
__kernel void matchTemplate_CCORR_NORMED ( __global const uchar * img_sqsums, int img_sqsums_step, int img_sqsums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int tpl_rows, int tpl_cols, float tpl_sqsum)
#elif defined CCORR
__kernel void matchTemplate_Naive_CCORR(__global const uchar * srcptr, int src_step, int src_offset,
__global const uchar * templateptr, int template_step, int template_offset, int template_rows, int template_cols,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int x = get_global_id(0);
int y = get_global_id(1);
img_sqsums_step /= sizeof(float);
img_sqsums_offset /= sizeof(float);
if (x < dst_cols && y < dst_rows)
{
WT sum = (WT)(0);
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
__global const T * src = (__global const T *)(srcptr + mad24(y, src_step, mad24(x, (int)sizeof(T), src_offset)));
__global const T * template = (__global const T *)(templateptr + template_offset);
if(gidx < res_cols && gidy < res_rows)
{
__global float * sqsum = (__global float*)(img_sqsums);
float image_sqsum_ = (float)(
(sqsum[SQSUMS_PTR(tpl_cols, tpl_rows)] - sqsum[SQSUMS_PTR(tpl_cols, 0)]) -
(sqsum[SQSUMS_PTR(0, tpl_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
for (int i = 0; i < template_rows; ++i)
{
for (int j = 0; j < template_cols; ++j)
#if wdepth == 4
sum = mad24(convertToWT(src[j]), convertToWT(template[j]), sum);
#else
sum = mad(convertToWT(src[j]), convertToWT(template[j]), sum);
#endif
src = (__global const T *)((__global const uchar *)src + src_step);
template = (__global const T *)((__global const uchar *)template + template_step);
}
__global float * result = (__global float *)(res+res_idx);
*result = normAcc(*result, sqrt(image_sqsum_ * tpl_sqsum));
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
*(__global float *)(dst + dst_idx) = convertToDT(sum);
}
}
////////////////////////////////////////////SQDIFF////////////////////////////////////////////////////////////////////////
#elif defined CCORR_NORMED
__kernel void matchTemplate_Naive_SQDIFF(__global const uchar * img,int img_step,int img_offset,
__global const uchar * tpl,int tpl_step,int tpl_offset,int tpl_rows, int tpl_cols,
__global uchar * res,int res_step,int res_offset,int res_rows,int res_cols)
__kernel void matchTemplate_CCORR_NORMED(__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int template_rows, int template_cols, __global const float * template_sqsum)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float delta;
float sum = 0;
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
int x = get_global_id(0);
int y = get_global_id(1);
if(gidx < res_cols && gidy < res_rows)
if (x < dst_cols && y < dst_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
__global const ELEM_TYPE * img_ptr = (__global const ELEM_TYPE *)(img + mad24(gidy + i, img_step, gidx*DATA_SIZE + img_offset));
__global const ELEM_TYPE * tpl_ptr = (__global const ELEM_TYPE *)(tpl + mad24(i, tpl_step, tpl_offset));
__global const float * sqsum = (__global const float *)(src_sqsums);
for(j = 0; j < tpl_cols; j ++)
src_sqsums_step /= sizeof(float);
src_sqsums_offset /= sizeof(float);
float image_sqsum_ = (float)(sqsum[SQSUMS_PTR(template_cols, template_rows)] - sqsum[SQSUMS_PTR(template_cols, 0)] -
sqsum[SQSUMS_PTR(0, template_rows)] + sqsum[SQSUMS_PTR(0, 0)]);
#pragma unroll
for (int c = 0; c < CN; c++)
{
delta = (float)(img_ptr[j*CN+c] - tpl_ptr[j*CN+c]);
sum += delta*delta;
}
}
__global float * result = (__global float *)(res+res_idx);
*result = sum;
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst + dst_idx);
*dstult = normAcc(*dstult, sqrt(image_sqsum_ * template_sqsum[0]));
}
}
__kernel void matchTemplate_SQDIFF_NORMED ( __global const uchar * img_sqsums, int img_sqsums_step, int img_sqsums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int tpl_rows, int tpl_cols, float tpl_sqsum)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sqsums_step /= sizeof(float);
img_sqsums_offset /= sizeof(float);
#elif defined SQDIFF
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
__kernel void matchTemplate_Naive_SQDIFF(__global const uchar * srcptr, int src_step, int src_offset,
__global const uchar * templateptr, int template_step, int template_offset, int template_rows, int template_cols,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(gidx < res_cols && gidy < res_rows)
if (x < dst_cols && y < dst_rows)
{
__global float * sqsum = (__global float*)(img_sqsums);
float image_sqsum_ = (float)(
(sqsum[SQSUMS_PTR(tpl_cols, tpl_rows)] - sqsum[SQSUMS_PTR(tpl_cols, 0)]) -
(sqsum[SQSUMS_PTR(0, tpl_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
__global const T * src = (__global const T *)(srcptr + mad24(y, src_step, mad24(x, (int)sizeof(T), src_offset)));
__global const T * template = (__global const T *)(templateptr + template_offset);
__global float * result = (__global float *)(res+res_idx);
WT sum = (WT)(0), value;
*result = normAcc_SQDIFF(image_sqsum_ - 2.f * result[0] + tpl_sqsum, sqrt(image_sqsum_ * tpl_sqsum));
for (int i = 0; i < template_rows; ++i)
{
for (int j = 0; j < template_cols; ++j)
{
value = convertToWT(src[j]) - convertToWT(template[j]);
#if wdepth == 4
sum = mad24(value, value, sum);
#else
sum = mad(value, value, sum);
#endif
}
src = (__global const T *)((__global const uchar *)src + src_step);
template = (__global const T *)((__global const uchar *)template + template_step);
}
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
*(__global float *)(dst + dst_idx) = convertToDT(sum);
}
}
////////////////////////////////////////////CCOEFF/////////////////////////////////////////////////////////////////
#elif defined SQDIFF_NORMED
__kernel void matchTemplate_Prepared_CCOEFF_C1 (__global const uchar * img_sums, int img_sums_step, int img_sums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int tpl_rows, int tpl_cols, float tpl_sum)
__kernel void matchTemplate_SQDIFF_NORMED(__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int template_rows, int template_cols, __global const float * template_sqsum)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sums_step /= ELEM_SIZE;
img_sums_offset /= ELEM_SIZE;
int x = get_global_id(0);
int y = get_global_id(1);
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
float image_sum_ = 0;
if(gidx < res_cols && gidy < res_rows)
if (x < dst_cols && y < dst_rows)
{
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(img_sums);
src_sqsums_step /= sizeof(float);
src_sqsums_offset /= sizeof(float);
image_sum_ += (float)((sum[SUMS_PTR(tpl_cols, tpl_rows)] - sum[SUMS_PTR(tpl_cols, 0)])-
(sum[SUMS_PTR(0, tpl_rows)] - sum[SUMS_PTR(0, 0)])) * tpl_sum;
__global const float * sqsum = (__global const float *)(src_sqsums);
float image_sqsum_ = (float)(
(sqsum[SQSUMS_PTR(template_cols, template_rows)] - sqsum[SQSUMS_PTR(template_cols, 0)]) -
(sqsum[SQSUMS_PTR(0, template_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
float template_sqsum_value = template_sqsum[0];
__global float * result = (__global float *)(res+res_idx);
*result -= image_sum_;
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst + dst_idx);
*dstult = normAcc_SQDIFF(image_sqsum_ - 2.0f * dstult[0] + template_sqsum_value, sqrt(image_sqsum_ * template_sqsum_value));
}
}
__kernel void matchTemplate_Prepared_CCOEFF_C2 (__global const uchar * img_sums, int img_sums_step, int img_sums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int tpl_rows, int tpl_cols, float tpl_sum_0,float tpl_sum_1)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
#elif defined CCOEFF
img_sums_step /= ELEM_SIZE;
img_sums_offset /= ELEM_SIZE;
#if cn == 1
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
float image_sum_ = 0;
__kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int template_rows, int template_cols, float template_sum)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(gidx < res_cols && gidy < res_rows)
if (x < dst_cols && y < dst_rows)
{
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(img_sums);
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
image_sum_ += tpl_sum_0 * (float)((sum[SUMS_PTR(tpl_cols, tpl_rows)] - sum[SUMS_PTR(tpl_cols, 0)]) -(sum[SUMS_PTR(0, tpl_rows)] - sum[SUMS_PTR(0, 0)]));
image_sum_ += tpl_sum_1 * (float)((sum[SUMS_PTR(tpl_cols, tpl_rows)+1] - sum[SUMS_PTR(tpl_cols, 0)+1])-(sum[SUMS_PTR(0, tpl_rows)+1] - sum[SUMS_PTR(0, 0)+1]));
src_sums_step /= ELEM_SIZE;
src_sums_offset /= ELEM_SIZE;
float image_sum_ = (float)((sum[SUMS_PTR(template_cols, template_rows)] - sum[SUMS_PTR(template_cols, 0)])-
(sum[SUMS_PTR(0, template_rows)] - sum[SUMS_PTR(0, 0)])) * template_sum;
__global float * result = (__global float *)(res+res_idx);
*result -= image_sum_;
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst + dst_idx);
*dstult -= image_sum_;
}
}
__kernel void matchTemplate_Prepared_CCOEFF_C4 (__global const uchar * img_sums, int img_sums_step, int img_sums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int tpl_rows, int tpl_cols, float tpl_sum_0,float tpl_sum_1,float tpl_sum_2,float tpl_sum_3)
#elif cn == 2
__kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int template_rows, int template_cols, float template_sum_0, float template_sum_1)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
src_sums_step /= ELEM_SIZE;
src_sums_offset /= ELEM_SIZE;
img_sums_step /= ELEM_SIZE;
img_sums_offset /= ELEM_SIZE;
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
float image_sum_ = 0;
float image_sum_ = template_sum_0 * (float)((sum[SUMS_PTR(template_cols, template_rows)] - sum[SUMS_PTR(template_cols, 0)]) -(sum[SUMS_PTR(0, template_rows)] - sum[SUMS_PTR(0, 0)]));
image_sum_ += template_sum_1 * (float)((sum[SUMS_PTR(template_cols, template_rows)+1] - sum[SUMS_PTR(template_cols, 0)+1])-(sum[SUMS_PTR(0, template_rows)+1] - sum[SUMS_PTR(0, 0)+1]));
if(gidx < res_cols && gidy < res_rows)
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst+dst_idx);
*dstult -= image_sum_;
}
}
#elif cn == 4
__kernel void matchTemplate_Prepared_CCOEFF(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int template_rows, int template_cols, float template_sum_0, float template_sum_1, float template_sum_2, float template_sum_3)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(img_sums);
src_sums_step /= ELEM_SIZE;
src_sums_offset /= ELEM_SIZE;
int c_r = SUMS_PTR(tpl_cols, tpl_rows);
int c_o = SUMS_PTR(tpl_cols, 0);
int o_r = SUMS_PTR(0,tpl_rows);
int oo = SUMS_PTR(0, 0);
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
image_sum_ += tpl_sum_0 * (float)((sum[c_r] - sum[c_o]) -(sum[o_r] - sum[oo]));
image_sum_ += tpl_sum_1 * (float)((sum[c_r+1] - sum[c_o+1])-(sum[o_r+1] - sum[oo+1]));
image_sum_ += tpl_sum_2 * (float)((sum[c_r+2] - sum[c_o+2])-(sum[o_r+2] - sum[oo+2]));
image_sum_ += tpl_sum_3 * (float)((sum[c_r+3] - sum[c_o+3])-(sum[o_r+3] - sum[oo+3]));
int c_r = SUMS_PTR(template_cols, template_rows);
int c_o = SUMS_PTR(template_cols, 0);
int o_r = SUMS_PTR(0,template_rows);
int oo = SUMS_PTR(0, 0);
__global float * result = (__global float *)(res+res_idx);
float image_sum_ = template_sum_0 * (float)((sum[c_r] - sum[c_o]) -(sum[o_r] - sum[oo]));
image_sum_ += template_sum_1 * (float)((sum[c_r+1] - sum[c_o+1])-(sum[o_r+1] - sum[oo+1]));
image_sum_ += template_sum_2 * (float)((sum[c_r+2] - sum[c_o+2])-(sum[o_r+2] - sum[oo+2]));
image_sum_ += template_sum_3 * (float)((sum[c_r+3] - sum[c_o+3])-(sum[o_r+3] - sum[oo+3]));
*result -= image_sum_;
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst+dst_idx);
*dstult -= image_sum_;
}
}
__kernel void matchTemplate_CCOEFF_NORMED_C1 (__global const uchar * img_sums, int img_sums_step, int img_sums_offset,
__global const uchar * img_sqsums, int img_sqsums_step, int img_sqsums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int t_rows, int t_cols, float weight, float tpl_sum, float tpl_sqsum)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
#else
#error "cn should be 1, 2 or 4"
#endif
img_sums_offset /= ELEM_SIZE;
img_sums_step /= ELEM_SIZE;
img_sqsums_step /= sizeof(float);
img_sqsums_offset /= sizeof(float);
#elif defined CCOEFF_NORMED
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
#if cn == 1
__kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int t_rows, int t_cols, float weight, float template_sum, float template_sqsum)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(gidx < res_cols && gidy < res_rows)
if (x < dst_cols && y < dst_rows)
{
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(img_sums);
__global float * sqsum = (__global float*)(img_sqsums);
src_sums_offset /= ELEM_SIZE;
src_sums_step /= ELEM_SIZE;
src_sqsums_step /= sizeof(float);
src_sqsums_offset /= sizeof(float);
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
__global float * sqsum = (__global float*)(src_sqsums);
float image_sum_ = (float)((sum[SUMS_PTR(t_cols, t_rows)] - sum[SUMS_PTR(t_cols, 0)]) -
(sum[SUMS_PTR(0, t_rows)] - sum[SUMS_PTR(0, 0)]));
@ -292,35 +348,35 @@ __kernel void matchTemplate_CCOEFF_NORMED_C1 (__global const uchar * img_sums, i
float image_sqsum_ = (float)((sqsum[SQSUMS_PTR(t_cols, t_rows)] - sqsum[SQSUMS_PTR(t_cols, 0)]) -
(sqsum[SQSUMS_PTR(0, t_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
__global float * result = (__global float *)(res+res_idx);
*result = normAcc((*result) - image_sum_ * tpl_sum,
sqrt(tpl_sqsum * (image_sqsum_ - weight * image_sum_ * image_sum_)));
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst+dst_idx);
*dstult = normAcc((*dstult) - image_sum_ * template_sum,
sqrt(template_sqsum * (image_sqsum_ - weight * image_sum_ * image_sum_)));
}
}
__kernel void matchTemplate_CCOEFF_NORMED_C2 (__global const uchar * img_sums, int img_sums_step, int img_sums_offset,
__global const uchar * img_sqsums, int img_sqsums_step, int img_sqsums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int t_rows, int t_cols, float weight, float tpl_sum_0, float tpl_sum_1, float tpl_sqsum)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sums_offset /= ELEM_SIZE;
img_sums_step /= ELEM_SIZE;
img_sqsums_step /= sizeof(float);
img_sqsums_offset /= sizeof(float);
#elif cn == 2
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
__kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int t_rows, int t_cols, float weight, float template_sum_0, float template_sum_1, float template_sqsum)
{
int x = get_global_id(0);
int y = get_global_id(1);
float sum_[2];
float sqsum_[2];
if(gidx < res_cols && gidy < res_rows)
if (x < dst_cols && y < dst_rows)
{
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(img_sums);
__global float * sqsum = (__global float*)(img_sqsums);
src_sums_offset /= ELEM_SIZE;
src_sums_step /= ELEM_SIZE;
src_sqsums_step /= sizeof(float);
src_sqsums_offset /= sizeof(float);
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
__global float * sqsum = (__global float*)(src_sqsums);
sum_[0] = (float)((sum[SUMS_PTR(t_cols, t_rows)] - sum[SUMS_PTR(t_cols, 0)])-(sum[SUMS_PTR(0, t_rows)] - sum[SUMS_PTR(0, 0)]));
sum_[1] = (float)((sum[SUMS_PTR(t_cols, t_rows)+1] - sum[SUMS_PTR(t_cols, 0)+1])-(sum[SUMS_PTR(0, t_rows)+1] - sum[SUMS_PTR(0, 0)+1]));
@ -328,40 +384,41 @@ __kernel void matchTemplate_CCOEFF_NORMED_C2 (__global const uchar * img_sums, i
sqsum_[0] = (float)((sqsum[SQSUMS_PTR(t_cols, t_rows)] - sqsum[SQSUMS_PTR(t_cols, 0)])-(sqsum[SQSUMS_PTR(0, t_rows)] - sqsum[SQSUMS_PTR(0, 0)]));
sqsum_[1] = (float)((sqsum[SQSUMS_PTR(t_cols, t_rows)+1] - sqsum[SQSUMS_PTR(t_cols, 0)+1])-(sqsum[SQSUMS_PTR(0, t_rows)+1] - sqsum[SQSUMS_PTR(0, 0)+1]));
float num = sum_[0]*tpl_sum_0 + sum_[1]*tpl_sum_1;
float num = sum_[0]*template_sum_0 + sum_[1]*template_sum_1;
float denum = sqrt( tpl_sqsum * (sqsum_[0] - weight * sum_[0]* sum_[0] +
float denum = sqrt( template_sqsum * (sqsum_[0] - weight * sum_[0]* sum_[0] +
sqsum_[1] - weight * sum_[1]* sum_[1]));
__global float * result = (__global float *)(res+res_idx);
*result = normAcc((*result) - num, denum);
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst+dst_idx);
*dstult = normAcc((*dstult) - num, denum);
}
}
__kernel void matchTemplate_CCOEFF_NORMED_C4 (__global const uchar * img_sums, int img_sums_step, int img_sums_offset,
__global const uchar * img_sqsums, int img_sqsums_step, int img_sqsums_offset,
__global uchar * res, int res_step, int res_offset, int res_rows, int res_cols,
int t_rows, int t_cols, float weight,
float tpl_sum_0,float tpl_sum_1,float tpl_sum_2,float tpl_sum_3,
float tpl_sqsum)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sums_offset /= ELEM_SIZE;
img_sums_step /= ELEM_SIZE;
img_sqsums_step /= sizeof(float);
img_sqsums_offset /= sizeof(float);
#elif cn == 4
int res_idx = mad24(gidy, res_step, res_offset + gidx * (int)sizeof(float));
__kernel void matchTemplate_CCOEFF_NORMED(__global const uchar * src_sums, int src_sums_step, int src_sums_offset,
__global const uchar * src_sqsums, int src_sqsums_step, int src_sqsums_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int t_rows, int t_cols, float weight,
float template_sum_0, float template_sum_1, float template_sum_2, float template_sum_3,
float template_sqsum)
{
int x = get_global_id(0);
int y = get_global_id(1);
float sum_[4];
float sqsum_[4];
if(gidx < res_cols && gidy < res_rows)
if (x < dst_cols && y < dst_rows)
{
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(img_sums);
__global float * sqsum = (__global float*)(img_sqsums);
src_sums_offset /= ELEM_SIZE;
src_sums_step /= ELEM_SIZE;
src_sqsums_step /= sizeof(float);
src_sqsums_offset /= sizeof(float);
__global ELEM_TYPE* sum = (__global ELEM_TYPE*)(src_sums);
__global float * sqsum = (__global float*)(src_sqsums);
int c_r = SUMS_PTR(t_cols, t_rows);
int c_o = SUMS_PTR(t_cols, 0);
@ -383,15 +440,22 @@ __kernel void matchTemplate_CCOEFF_NORMED_C4 (__global const uchar * img_sums, i
sqsum_[2] = (float)((sqsum[c_r+2] - sqsum[c_o+2])-(sqsum[o_r+2] - sqsum[o_o+2]));
sqsum_[3] = (float)((sqsum[c_r+3] - sqsum[c_o+3])-(sqsum[o_r+3] - sqsum[o_o+3]));
float num = sum_[0]*tpl_sum_0 + sum_[1]*tpl_sum_1 + sum_[2]*tpl_sum_2 + sum_[3]*tpl_sum_3;
float num = sum_[0]*template_sum_0 + sum_[1]*template_sum_1 + sum_[2]*template_sum_2 + sum_[3]*template_sum_3;
float denum = sqrt( tpl_sqsum * (
float denum = sqrt( template_sqsum * (
sqsum_[0] - weight * sum_[0]* sum_[0] +
sqsum_[1] - weight * sum_[1]* sum_[1] +
sqsum_[2] - weight * sum_[2]* sum_[2] +
sqsum_[3] - weight * sum_[3]* sum_[3] ));
__global float * result = (__global float *)(res+res_idx);
*result = normAcc((*result) - num, denum);
int dst_idx = mad24(y, dst_step, mad24(x, (int)sizeof(float), dst_offset));
__global float * dstult = (__global float *)(dst+dst_idx);
*dstult = normAcc((*dstult) - num, denum);
}
}
#else
#error "cn should be 1, 2 or 4"
#endif
#endif

@ -49,80 +49,95 @@ namespace cv
#ifdef HAVE_OPENCL
static bool useNaive(int method, int depth, const Size & size)
/////////////////////////////////////////////////// CCORR //////////////////////////////////////////////////////////////
enum
{
#ifdef HAVE_CLAMDFFT
if (method == TM_SQDIFF && depth == CV_32F)
return true;
else if(method == TM_CCORR || (method == TM_SQDIFF && depth == CV_8U))
return size.height < 18 && size.width < 18;
else
SUM_1 = 0, SUM_2 = 1
};
static bool sumTemplate(InputArray _src, UMat & result)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
int wdepth = std::max(CV_32S, depth), wtype = CV_MAKE_TYPE(wdepth, cn);
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
int wgs2_aligned = 1;
while (wgs2_aligned < (int)wgs)
wgs2_aligned <<= 1;
wgs2_aligned >>= 1;
char cvt[40];
ocl::Kernel k("calcSum", ocl::imgproc::match_template_oclsrc,
format("-D CALC_SUM -D T=%s -D WT=%s -D cn=%d -D convertToWT=%s -D WGS=%d -D WGS2_ALIGNED=%d -D wdepth=%d",
ocl::typeToStr(type), ocl::typeToStr(wtype), cn,
ocl::convertTypeStr(depth, wdepth, cn, cvt),
(int)wgs, wgs2_aligned, wdepth));
if (k.empty())
return false;
#else
(void)(method);
(void)(depth);
(void)(size);
return true;
#endif
}
/////////////////////////////////////////////////// CCORR //////////////////////////////////////////////////////////////
UMat src = _src.getUMat();
result.create(1, 1, CV_32FC1);
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
resarg = ocl::KernelArg::PtrWriteOnly(result);
k.args(srcarg, src.cols, (int)src.total(), resarg);
size_t globalsize = wgs;
return k.run(1, &globalsize, &wgs, false);
}
static bool matchTemplateNaive_CCORR(InputArray _image, InputArray _templ, OutputArray _result)
{
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
int wdepth = std::max(depth, CV_32S), wtype = CV_MAKE_TYPE(wdepth, cn);
char cvt[40];
ocl::Kernel k("matchTemplate_Naive_CCORR", ocl::imgproc::match_template_oclsrc,
format("-D type=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
format("-D CCORR -D T=%s -D WT=%s -D convertToWT=%s -D cn=%d -D wdepth=%d", ocl::typeToStr(type), ocl::typeToStr(wtype),
ocl::convertTypeStr(depth, wdepth, cn, cvt), cn, wdepth));
if (k.empty())
return false;
UMat image = _image.getUMat(), templ = _templ.getUMat();
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
UMat result = _result.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::ReadOnly(templ),
ocl::KernelArg::WriteOnly(result));
size_t globalsize[2] = { result.cols, result.rows };
return k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::ReadOnly(templ),
ocl::KernelArg::WriteOnly(result)).run(2, globalsize, NULL, false);
return k.run(2, globalsize, NULL, false);
}
static bool matchTemplate_CCORR_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
{
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
int type = _image.type(), cn = CV_MAT_CN(type);
ocl::Kernel k("matchTemplate_CCORR_NORMED", ocl::imgproc::match_template_oclsrc,
format("-D type=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type),
ocl::typeToStr(depth), cn));
format("-D CCORR_NORMED -D T=%s -D cn=%d", ocl::typeToStr(type), cn));
if (k.empty())
return false;
UMat image = _image.getUMat(), templ = _templ.getUMat();
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
UMat result = _result.getUMat();
UMat image_sums, image_sqsums;
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F);
UMat temp;
multiply(templ, templ, temp, 1, CV_32F);
Scalar s = sum(temp);
float templ_sqsum = 0;
for (int i = 0; i < cn; ++i)
templ_sqsum += static_cast<float>(s[i]);
UMat templ_sqsum;
if (!sumTemplate(templ, templ_sqsum))
return false;
size_t globalsize[2] = { result.cols, result.rows };
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
templ.rows, templ.cols, templ_sqsum).run(2, globalsize, NULL, false);
}
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum));
static bool matchTemplate_CCORR(InputArray _image, InputArray _templ, OutputArray _result)
{
if (useNaive(TM_CCORR, _image.depth(), _templ.size()) )
return matchTemplateNaive_CCORR(_image, _templ, _result);
else
return false;
size_t globalsize[2] = { result.cols, result.rows };
return k.run(2, globalsize, NULL, false);
}
////////////////////////////////////// SQDIFF //////////////////////////////////////////////////////////////
@ -130,10 +145,12 @@ static bool matchTemplate_CCORR(InputArray _image, InputArray _templ, OutputArra
static bool matchTemplateNaive_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result)
{
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
int wdepth = std::max(depth, CV_32S), wtype = CV_MAKE_TYPE(wdepth, cn);
char cvt[40];
ocl::Kernel k("matchTemplate_Naive_SQDIFF", ocl::imgproc::match_template_oclsrc,
format("-D type=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type),
ocl::typeToStr(depth), cn));
format("-D SQDIFF -D T=%s -D WT=%s -D convertToWT=%s -D cn=%d -D wdepth=%d", ocl::typeToStr(type),
ocl::typeToStr(wtype), ocl::convertTypeStr(depth, wdepth, cn, cvt), cn, wdepth));
if (k.empty())
return false;
@ -141,20 +158,21 @@ static bool matchTemplateNaive_SQDIFF(InputArray _image, InputArray _templ, Outp
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
UMat result = _result.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::ReadOnly(templ),
ocl::KernelArg::WriteOnly(result));
size_t globalsize[2] = { result.cols, result.rows };
return k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::ReadOnly(templ),
ocl::KernelArg::WriteOnly(result)).run(2, globalsize, NULL, false);
return k.run(2, globalsize, NULL, false);
}
static bool matchTemplate_SQDIFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
{
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
int type = _image.type(), cn = CV_MAT_CN(type);
ocl::Kernel k("matchTemplate_SQDIFF_NORMED", ocl::imgproc::match_template_oclsrc,
format("-D type=%s -D elem_type=%s -D cn=%d",
ocl::typeToStr(type), ocl::typeToStr(depth), cn));
format("-D SQDIFF_NORMED -D T=%s -D cn=%d", ocl::typeToStr(type), cn));
if (k.empty())
return false;
@ -165,24 +183,15 @@ static bool matchTemplate_SQDIFF_NORMED(InputArray _image, InputArray _templ, Ou
UMat image_sums, image_sqsums;
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F);
UMat temp;
multiply(templ, templ, temp, 1, CV_32F);
Scalar s = sum(temp);
float templ_sqsum = 0;
for (int i = 0; i < cn; ++i)
templ_sqsum += (float)s[i];
UMat templ_sqsum;
if (!sumTemplate(_templ, templ_sqsum))
return false;
size_t globalsize[2] = { result.cols, result.rows };
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
templ.rows, templ.cols, templ_sqsum).run(2, globalsize, NULL, false);
}
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum));
static bool matchTemplate_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result)
{
if (useNaive(TM_SQDIFF, _image.depth(), _templ.size()))
return matchTemplateNaive_SQDIFF(_image, _templ, _result);
else
return false;
size_t globalsize[2] = { result.cols, result.rows };
return k.run(2, globalsize, NULL, false);
}
///////////////////////////////////// CCOEFF /////////////////////////////////////////////////////////////////
@ -194,15 +203,15 @@ static bool matchTemplate_CCOEFF(InputArray _image, InputArray _templ, OutputArr
UMat image_sums, temp;
integral(_image, temp);
if(temp.depth() == CV_64F)
if (temp.depth() == CV_64F)
temp.convertTo(image_sums, CV_32F);
else
image_sums = temp;
int type = image_sums.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
ocl::Kernel k(cv::format("matchTemplate_Prepared_CCOEFF_C%d", cn).c_str(), ocl::imgproc::match_template_oclsrc,
format("-D type=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
ocl::Kernel k("matchTemplate_Prepared_CCOEFF", ocl::imgproc::match_template_oclsrc,
format("-D CCOEFF -D T=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
if (k.empty())
return false;
@ -211,25 +220,28 @@ static bool matchTemplate_CCOEFF(InputArray _image, InputArray _templ, OutputArr
_result.create(size.height - templ.rows + 1, size.width - templ.cols + 1, CV_32F);
UMat result = _result.getUMat();
size_t globalsize[2] = { result.cols, result.rows };
if (cn == 1)
{
float templ_sum = static_cast<float>(sum(_templ)[0]) / tsize.area();
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result),
templ.rows, templ.cols, templ_sum).run(2, globalsize, NULL, false);
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result),
templ.rows, templ.cols, templ_sum);
}
else
{
Vec4f templ_sum = Vec4f::all(0);
templ_sum = sum(templ) / tsize.area();
if (cn == 2)
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
templ_sum[0], templ_sum[1]).run(2, globalsize, NULL, false);
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
templ_sum[0], templ_sum[1], templ_sum[2], templ_sum[3]).run(2, globalsize, NULL, false);
if (cn == 2)
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
templ_sum[0], templ_sum[1]);
else
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols,
templ_sum[0], templ_sum[1], templ_sum[2], templ_sum[3]);
}
size_t globalsize[2] = { result.cols, result.rows };
return k.run(2, globalsize, NULL, false);
}
static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
@ -241,8 +253,8 @@ static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, Ou
int type = image_sums.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
ocl::Kernel k(format("matchTemplate_CCOEFF_NORMED_C%d", cn).c_str(), ocl::imgproc::match_template_oclsrc,
format("-D type=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
ocl::Kernel k("matchTemplate_CCOEFF_NORMED", ocl::imgproc::match_template_oclsrc,
format("-D CCOEFF_NORMED -D type=%s -D elem_type=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
if (k.empty())
return false;
@ -251,7 +263,6 @@ static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, Ou
_result.create(size.height - templ.rows + 1, size.width - templ.cols + 1, CV_32F);
UMat result = _result.getUMat();
size_t globalsize[2] = { result.cols, result.rows };
float scale = 1.f / tsize.area();
if (cn == 1)
@ -270,9 +281,8 @@ static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, Ou
return true;
}
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale, templ_sum, templ_sqsum)
.run(2,globalsize,NULL,false);
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale, templ_sum, templ_sqsum);
}
else
{
@ -295,15 +305,17 @@ static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, Ou
}
if (cn == 2)
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
templ_sum[0], templ_sum[1], templ_sqsum_sum).run(2, globalsize, NULL, false);
return k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
templ_sum[0], templ_sum[1], templ_sum[2], templ_sum[3],
templ_sqsum_sum).run(2, globalsize, NULL, false);
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
templ_sum[0], templ_sum[1], templ_sqsum_sum);
else
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
templ_sum[0], templ_sum[1], templ_sum[2], templ_sum[3], templ_sqsum_sum);
}
size_t globalsize[2] = { result.cols, result.rows };
return k.run(2, globalsize, NULL, false);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -319,7 +331,7 @@ static bool ocl_matchTemplate( InputArray _img, InputArray _templ, OutputArray _
static const Caller callers[] =
{
matchTemplate_SQDIFF, matchTemplate_SQDIFF_NORMED, matchTemplate_CCORR,
matchTemplateNaive_SQDIFF, matchTemplate_SQDIFF_NORMED, matchTemplateNaive_CCORR,
matchTemplate_CCORR_NORMED, matchTemplate_CCOEFF, matchTemplate_CCOEFF_NORMED
};
const Caller caller = callers[method];

@ -53,8 +53,7 @@ namespace ocl {
///////////////////////////////////////////// matchTemplate //////////////////////////////////////////////////////////
CV_ENUM(MatchTemplType, CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR,
CV_TM_CCORR_NORMED, CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)
CV_ENUM(MatchTemplType, CV_TM_CCORR, CV_TM_CCORR_NORMED, CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)
PARAM_TEST_CASE(MatchTemplate, MatDepth, Channels, MatchTemplType, bool)
{

Loading…
Cancel
Save