|
|
|
@ -16,11 +16,13 @@ default values: |
|
|
|
|
-w: 4 |
|
|
|
|
-h: 6 |
|
|
|
|
-t: chessboard |
|
|
|
|
--square_size: 50 |
|
|
|
|
--marker_size: 25 |
|
|
|
|
--square_size: 10 |
|
|
|
|
--marker_size: 5 |
|
|
|
|
--aruco_dict: DICT_4X4_50 |
|
|
|
|
--threads: 4 |
|
|
|
|
<image mask> defaults to ../data/left*.jpg |
|
|
|
|
|
|
|
|
|
NOTE: Chessboard size is defined in inner corners. Charuco board size is defined in units. |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
# Python 2/3 compatibility |
|
|
|
@ -67,45 +69,38 @@ def main(): |
|
|
|
|
marker_size = float(args.get('--marker_size')) |
|
|
|
|
aruco_dict_name = str(args.get('--aruco_dict')) |
|
|
|
|
|
|
|
|
|
pattern_size = (height, width) |
|
|
|
|
pattern_size = (width, height) |
|
|
|
|
if pattern_type == 'chessboard': |
|
|
|
|
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32) |
|
|
|
|
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2) |
|
|
|
|
pattern_points *= square_size |
|
|
|
|
elif pattern_type == 'charucoboard': |
|
|
|
|
pattern_points = np.zeros((np.prod((height-1, width-1)), 3), np.float32) |
|
|
|
|
pattern_points[:, :2] = np.indices((height-1, width-1)).T.reshape(-1, 2) |
|
|
|
|
pattern_points *= square_size |
|
|
|
|
else: |
|
|
|
|
print("unknown pattern") |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
obj_points = [] |
|
|
|
|
img_points = [] |
|
|
|
|
h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2] # TODO: use imquery call to retrieve results |
|
|
|
|
|
|
|
|
|
aruco_dicts = { |
|
|
|
|
'DICT_4X4_50':cv.aruco.DICT_4X4_50, |
|
|
|
|
'DICT_4X4_100':cv.aruco.DICT_4X4_100, |
|
|
|
|
'DICT_4X4_250':cv.aruco.DICT_4X4_250, |
|
|
|
|
'DICT_4X4_1000':cv.aruco.DICT_4X4_1000, |
|
|
|
|
'DICT_5X5_50':cv.aruco.DICT_5X5_50, |
|
|
|
|
'DICT_5X5_100':cv.aruco.DICT_5X5_100, |
|
|
|
|
'DICT_5X5_250':cv.aruco.DICT_5X5_250, |
|
|
|
|
'DICT_5X5_1000':cv.aruco.DICT_5X5_1000, |
|
|
|
|
'DICT_6X6_50':cv.aruco.DICT_6X6_50, |
|
|
|
|
'DICT_6X6_100':cv.aruco.DICT_6X6_100, |
|
|
|
|
'DICT_6X6_250':cv.aruco.DICT_6X6_250, |
|
|
|
|
'DICT_6X6_1000':cv.aruco.DICT_6X6_1000, |
|
|
|
|
'DICT_7X7_50':cv.aruco.DICT_7X7_50, |
|
|
|
|
'DICT_7X7_100':cv.aruco.DICT_7X7_100, |
|
|
|
|
'DICT_7X7_250':cv.aruco.DICT_7X7_250, |
|
|
|
|
'DICT_7X7_1000':cv.aruco.DICT_7X7_1000, |
|
|
|
|
'DICT_ARUCO_ORIGINAL':cv.aruco.DICT_ARUCO_ORIGINAL, |
|
|
|
|
'DICT_APRILTAG_16h5':cv.aruco.DICT_APRILTAG_16h5, |
|
|
|
|
'DICT_APRILTAG_25h9':cv.aruco.DICT_APRILTAG_25h9, |
|
|
|
|
'DICT_APRILTAG_36h10':cv.aruco.DICT_APRILTAG_36h10, |
|
|
|
|
'DICT_APRILTAG_36h11':cv.aruco.DICT_APRILTAG_36h11 |
|
|
|
|
'DICT_4X4_50': cv.aruco.DICT_4X4_50, |
|
|
|
|
'DICT_4X4_100': cv.aruco.DICT_4X4_100, |
|
|
|
|
'DICT_4X4_250': cv.aruco.DICT_4X4_250, |
|
|
|
|
'DICT_4X4_1000': cv.aruco.DICT_4X4_1000, |
|
|
|
|
'DICT_5X5_50': cv.aruco.DICT_5X5_50, |
|
|
|
|
'DICT_5X5_100': cv.aruco.DICT_5X5_100, |
|
|
|
|
'DICT_5X5_250': cv.aruco.DICT_5X5_250, |
|
|
|
|
'DICT_5X5_1000': cv.aruco.DICT_5X5_1000, |
|
|
|
|
'DICT_6X6_50': cv.aruco.DICT_6X6_50, |
|
|
|
|
'DICT_6X6_100': cv.aruco.DICT_6X6_100, |
|
|
|
|
'DICT_6X6_250': cv.aruco.DICT_6X6_250, |
|
|
|
|
'DICT_6X6_1000': cv.aruco.DICT_6X6_1000, |
|
|
|
|
'DICT_7X7_50': cv.aruco.DICT_7X7_50, |
|
|
|
|
'DICT_7X7_100': cv.aruco.DICT_7X7_100, |
|
|
|
|
'DICT_7X7_250': cv.aruco.DICT_7X7_250, |
|
|
|
|
'DICT_7X7_1000': cv.aruco.DICT_7X7_1000, |
|
|
|
|
'DICT_ARUCO_ORIGINAL': cv.aruco.DICT_ARUCO_ORIGINAL, |
|
|
|
|
'DICT_APRILTAG_16h5': cv.aruco.DICT_APRILTAG_16h5, |
|
|
|
|
'DICT_APRILTAG_25h9': cv.aruco.DICT_APRILTAG_25h9, |
|
|
|
|
'DICT_APRILTAG_36h10': cv.aruco.DICT_APRILTAG_36h10, |
|
|
|
|
'DICT_APRILTAG_36h11': cv.aruco.DICT_APRILTAG_36h11 |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (aruco_dict_name not in set(aruco_dicts.keys())): |
|
|
|
@ -130,19 +125,27 @@ def main(): |
|
|
|
|
if found: |
|
|
|
|
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1) |
|
|
|
|
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term) |
|
|
|
|
frame_img_points = corners.reshape(-1, 2) |
|
|
|
|
frame_obj_points = pattern_points |
|
|
|
|
elif pattern_type == 'charucoboard': |
|
|
|
|
corners, _charucoIds, _markerCorners_svg, _markerIds_svg = charuco_detector.detectBoard(img) |
|
|
|
|
if (len(corners) == (height-1)*(width-1)): |
|
|
|
|
corners, charucoIds, _, _ = charuco_detector.detectBoard(img) |
|
|
|
|
if (len(corners) > 0): |
|
|
|
|
frame_obj_points, frame_img_points = board.matchImagePoints(corners, charucoIds) |
|
|
|
|
found = True |
|
|
|
|
else: |
|
|
|
|
found = False |
|
|
|
|
else: |
|
|
|
|
print("unknown pattern type", pattern_type) |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
if debug_dir: |
|
|
|
|
vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR) |
|
|
|
|
cv.drawChessboardCorners(vis, pattern_size, corners, found) |
|
|
|
|
if pattern_type == 'chessboard': |
|
|
|
|
cv.drawChessboardCorners(vis, pattern_size, corners, found) |
|
|
|
|
elif pattern_type == 'charucoboard': |
|
|
|
|
cv.aruco.drawDetectedCornersCharuco(vis, corners, charucoIds=charucoIds) |
|
|
|
|
_path, name, _ext = splitfn(fn) |
|
|
|
|
outfile = os.path.join(debug_dir, name + '_chess.png') |
|
|
|
|
outfile = os.path.join(debug_dir, name + '_board.png') |
|
|
|
|
cv.imwrite(outfile, vis) |
|
|
|
|
|
|
|
|
|
if not found: |
|
|
|
@ -150,7 +153,7 @@ def main(): |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
print(' %s... OK' % fn) |
|
|
|
|
return (corners.reshape(-1, 2), pattern_points) |
|
|
|
|
return (frame_img_points, frame_obj_points) |
|
|
|
|
|
|
|
|
|
threads_num = int(args.get('--threads')) |
|
|
|
|
if threads_num <= 1: |
|
|
|
@ -177,7 +180,7 @@ def main(): |
|
|
|
|
print('') |
|
|
|
|
for fn in img_names if debug_dir else []: |
|
|
|
|
_path, name, _ext = splitfn(fn) |
|
|
|
|
img_found = os.path.join(debug_dir, name + '_chess.png') |
|
|
|
|
img_found = os.path.join(debug_dir, name + '_board.png') |
|
|
|
|
outfile = os.path.join(debug_dir, name + '_undistorted.png') |
|
|
|
|
|
|
|
|
|
img = cv.imread(img_found) |
|
|
|
|