Merge pull request #11970 from dkurt:dnn_enable_tf_tests

pull/12029/head
Alexander Alekhin 6 years ago
commit c9439476da
  1. 6
      modules/dnn/src/layers/detection_output_layer.cpp
  2. 13
      modules/dnn/src/layers/softmax_layer.cpp
  3. 61
      modules/dnn/test/test_tf_importer.cpp

@ -295,7 +295,9 @@ public:
for (int i = 0; i < num; i++)
confPreds.push_back(Mat(2, shape, CV_32F));
UMat umat = inp1.reshape(1, num * numPredsPerClass);
shape[0] = num * numPredsPerClass;
shape[1] = inp1.total() / shape[0];
UMat umat = inp1.reshape(1, 2, &shape[0]);
for (int i = 0; i < num; ++i)
{
Range ranges[] = { Range(i * numPredsPerClass, (i + 1) * numPredsPerClass), Range::all() };
@ -342,7 +344,7 @@ public:
// Decode all loc predictions to bboxes
bool ret = ocl_DecodeBBoxesAll(inputs[0], inputs[2], num, numPriors,
_shareLocation, _numLocClasses, _backgroundLabelId,
_codeType, _varianceEncodedInTarget, false,
_codeType, _varianceEncodedInTarget, _clip,
allDecodedBBoxes);
if (!ret)
return false;

@ -110,27 +110,26 @@ public:
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
UMat& src = inputs[0];
UMat& dstMat = outputs[0];
int axis = clamp(axisRaw, src.dims);
if (softmaxOp.empty())
{
OCL4DNNSoftmaxConfig config;
config.in_shape = shape(inputs[0]);
config.axis = axisRaw;
config.channels = inputs[0].size[axisRaw];
config.axis = axis;
config.channels = inputs[0].size[axis];
config.logsoftmax = logSoftMax;
config.use_half = use_half;
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config));
}
UMat& src = inputs[0];
UMat& dstMat = outputs[0];
if (softmaxOp->Forward(src, dstMat))
return true;
UMat& bufMat = internals[0];
int axis = clamp(axisRaw, src.dims);
MatShape s = shape(src);
size_t outerSize = total(s, 0, axis);
size_t channels = src.size[axis];

@ -243,10 +243,15 @@ TEST_P(Test_TensorFlow_layers, l2_normalize_3d)
runTensorFlowNet("l2_normalize_3d");
}
typedef testing::TestWithParam<Target> Test_TensorFlow_nets;
class Test_TensorFlow_nets : public DNNTestLayer {};
TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
{
checkBackend();
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false);
std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false);
std::string imgPath = findDataFile("dnn/street.png", false);
@ -260,29 +265,30 @@ TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
outNames[1] = "concat_1";
outNames[2] = "detection_out";
std::vector<Mat> target(outNames.size());
std::vector<Mat> refs(outNames.size());
for (int i = 0; i < outNames.size(); ++i)
{
std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false);
target[i] = blobFromNPY(path);
refs[i] = blobFromNPY(path);
}
Net net = readNetFromTensorflow(netPath, netConfig);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableTarget(GetParam());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(inp);
std::vector<Mat> output;
net.forward(output, outNames);
normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4);
normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4);
normAssertDetections(target[2], output[2], "", 0.2);
normAssert(refs[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4);
normAssert(refs[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4);
normAssertDetections(refs[2], output[2], "", 0.2);
}
TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
{
checkBackend();
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false);
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
@ -290,8 +296,8 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
Mat img = imread(findDataFile("dnn/street.png", false));
Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableTarget(GetParam());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
@ -302,16 +308,24 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
normAssertDetections(ref, out, "", 0.5);
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 5e-3 : default_l1;
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.025 : default_lInf;
normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
}
TEST_P(Test_TensorFlow_nets, Inception_v2_Faster_RCNN)
{
checkBackend();
if (backend == DNN_BACKEND_INFERENCE_ENGINE ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
std::string proto = findDataFile("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt", false);
std::string model = findDataFile("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb", false);
Net net = readNetFromTensorflow(model, proto);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat img = imread(findDataFile("dnn/dog416.png", false));
Mat blob = blobFromImage(img, 1.0f / 127.5, Size(800, 600), Scalar(127.5, 127.5, 127.5), true, false);
@ -324,6 +338,11 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_Faster_RCNN)
TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
{
checkBackend();
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD))
throw SkipTestException("");
std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt", false);
std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false);
@ -331,9 +350,8 @@ TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableTarget(GetParam());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
@ -346,7 +364,9 @@ TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
normAssertDetections(ref, out, "", 0.9, 3.4e-3, 1e-2);
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 3.4e-3;
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.017 : 1e-2;
normAssertDetections(ref, out, "", 0.9, scoreDiff, iouDiff);
}
// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
@ -360,6 +380,10 @@ TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
// np.save('east_text_detection.geometry.npy', geometry)
TEST_P(Test_TensorFlow_nets, EAST_text_detection)
{
checkBackend();
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
throw SkipTestException("");
std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
@ -367,7 +391,8 @@ TEST_P(Test_TensorFlow_nets, EAST_text_detection)
Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
net.setPreferableTarget(GetParam());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat img = imread(imgPath);
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
@ -386,7 +411,7 @@ TEST_P(Test_TensorFlow_nets, EAST_text_detection)
normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", 1e-4, 3e-3);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets());
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets());
TEST_P(Test_TensorFlow_layers, fp16_weights)
{

Loading…
Cancel
Save