Merge pull request #10553 from GlueCrow:bgfg_knn_opencl
Add ocl version BackgroundSubtractorKNN (#10553) * Add ocl version bgfg_knn * Add ocl KNN perf test * ocl KNN: Avoid unnecessary initializing when non-UMat parameters are used * video: turn off OpenCL for color KNN on Intel devices due performance degradation * video: turn off KNN OpenCL on Apple devices with Intel iGPU due process freeze during clBuildProgram() callpull/10764/head
parent
92fb3fb33f
commit
c8d8b1fbcd
3 changed files with 583 additions and 37 deletions
@ -0,0 +1,95 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../perf_precomp.hpp" |
||||
#include "opencv2/ts/ocl_perf.hpp" |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
#ifdef HAVE_VIDEO_INPUT |
||||
#include "../perf_bgfg_utils.hpp" |
||||
|
||||
namespace cvtest { |
||||
namespace ocl { |
||||
|
||||
//////////////////////////// KNN//////////////////////////
|
||||
|
||||
typedef tuple<string, int> VideoKNNParamType; |
||||
typedef TestBaseWithParam<VideoKNNParamType> KNN_Apply; |
||||
typedef TestBaseWithParam<VideoKNNParamType> KNN_GetBackgroundImage; |
||||
|
||||
using namespace opencv_test; |
||||
|
||||
OCL_PERF_TEST_P(KNN_Apply, KNN, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1,3))) |
||||
{ |
||||
VideoKNNParamType params = GetParam(); |
||||
|
||||
const string inputFile = getDataPath(get<0>(params)); |
||||
|
||||
const int cn = get<1>(params); |
||||
int nFrame = 5; |
||||
|
||||
vector<Mat> frame_buffer(nFrame); |
||||
|
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
prepareData(cap, cn, frame_buffer); |
||||
|
||||
UMat u_foreground; |
||||
|
||||
OCL_TEST_CYCLE() |
||||
{ |
||||
Ptr<cv::BackgroundSubtractorKNN> knn = createBackgroundSubtractorKNN(); |
||||
knn->setDetectShadows(false); |
||||
u_foreground.release(); |
||||
for (int i = 0; i < nFrame; i++) |
||||
{ |
||||
knn->apply(frame_buffer[i], u_foreground); |
||||
} |
||||
} |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
OCL_PERF_TEST_P(KNN_GetBackgroundImage, KNN, Values( |
||||
std::make_pair<string, int>("gpu/video/768x576.avi", 5), |
||||
std::make_pair<string, int>("gpu/video/1920x1080.avi", 5))) |
||||
{ |
||||
VideoKNNParamType params = GetParam(); |
||||
|
||||
const string inputFile = getDataPath(get<0>(params)); |
||||
|
||||
const int cn = 3; |
||||
const int skipFrames = get<1>(params); |
||||
int nFrame = 10; |
||||
|
||||
vector<Mat> frame_buffer(nFrame); |
||||
|
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
prepareData(cap, cn, frame_buffer, skipFrames); |
||||
|
||||
UMat u_foreground, u_background; |
||||
|
||||
OCL_TEST_CYCLE() |
||||
{ |
||||
Ptr<cv::BackgroundSubtractorKNN> knn = createBackgroundSubtractorKNN(); |
||||
knn->setDetectShadows(false); |
||||
u_foreground.release(); |
||||
u_background.release(); |
||||
for (int i = 0; i < nFrame; i++) |
||||
{ |
||||
knn->apply(frame_buffer[i], u_foreground); |
||||
} |
||||
knn->getBackgroundImage(u_background); |
||||
} |
||||
#ifdef DEBUG_BGFG |
||||
imwrite(format("fg_%d_%d_knn_ocl.png", frame_buffer[0].rows, cn), u_foreground.getMat(ACCESS_READ)); |
||||
imwrite(format("bg_%d_%d_knn_ocl.png", frame_buffer[0].rows, cn), u_background.getMat(ACCESS_READ)); |
||||
#endif |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
}}// namespace cvtest::ocl
|
||||
|
||||
#endif |
||||
#endif |
@ -0,0 +1,248 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2018 Ya-Chiu Wu, all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Ya-Chiu Wu, yacwu@cs.nctu.edu.tw |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if CN==1 |
||||
|
||||
#define T_MEAN float |
||||
#define F_ZERO (0.0f) |
||||
|
||||
#define frameToMean(a, b) (b) = *(a); |
||||
#define meanToFrame(a, b) *b = convert_uchar_sat(a); |
||||
|
||||
#else |
||||
|
||||
#define T_MEAN float4 |
||||
#define F_ZERO (0.0f, 0.0f, 0.0f, 0.0f) |
||||
|
||||
#define meanToFrame(a, b)\ |
||||
b[0] = convert_uchar_sat(a.x); \ |
||||
b[1] = convert_uchar_sat(a.y); \ |
||||
b[2] = convert_uchar_sat(a.z); |
||||
|
||||
#define frameToMean(a, b)\ |
||||
b.x = a[0]; \ |
||||
b.y = a[1]; \ |
||||
b.z = a[2]; \ |
||||
b.w = 0.0f; |
||||
|
||||
#endif |
||||
|
||||
__kernel void knn_kernel(__global const uchar* frame, int frame_step, int frame_offset, int frame_row, int frame_col, |
||||
__global const uchar* nNextLongUpdate, |
||||
__global const uchar* nNextMidUpdate, |
||||
__global const uchar* nNextShortUpdate, |
||||
__global uchar* aModelIndexLong, |
||||
__global uchar* aModelIndexMid, |
||||
__global uchar* aModelIndexShort, |
||||
__global uchar* flag, |
||||
__global uchar* sample, |
||||
__global uchar* fgmask, int fgmask_step, int fgmask_offset, |
||||
int nLongCounter, int nMidCounter, int nShortCounter, |
||||
float c_Tb, int c_nkNN, float c_tau |
||||
#ifdef SHADOW_DETECT |
||||
, uchar c_shadowVal |
||||
#endif |
||||
) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if( x < frame_col && y < frame_row) |
||||
{ |
||||
__global const uchar* _frame = (frame + mad24(y, frame_step, mad24(x, CN, frame_offset))); |
||||
T_MEAN pix; |
||||
frameToMean(_frame, pix); |
||||
|
||||
uchar foreground = 255; // 0 - the pixel classified as background |
||||
|
||||
int Pbf = 0; |
||||
int Pb = 0; |
||||
uchar include = 0; |
||||
|
||||
int pt_idx = mad24(y, frame_col, x); |
||||
int idx_step = frame_row * frame_col; |
||||
|
||||
__global T_MEAN* _sample = (__global T_MEAN*)(sample); |
||||
|
||||
for (uchar n = 0; n < (NSAMPLES) * 3 ; ++n) |
||||
{ |
||||
int n_idx = mad24(n, idx_step, pt_idx); |
||||
|
||||
T_MEAN c_mean = _sample[n_idx]; |
||||
|
||||
uchar c_flag = flag[n_idx]; |
||||
|
||||
T_MEAN diff = c_mean - pix; |
||||
float dist2 = dot(diff, diff); |
||||
|
||||
if (dist2 < c_Tb) |
||||
{ |
||||
Pbf++; |
||||
if (c_flag) |
||||
{ |
||||
Pb++; |
||||
if (Pb >= c_nkNN) |
||||
{ |
||||
include = 1; |
||||
foreground = 0; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
if (Pbf >= c_nkNN) |
||||
{ |
||||
include = 1; |
||||
} |
||||
|
||||
#ifdef SHADOW_DETECT |
||||
if (foreground) |
||||
{ |
||||
int Ps = 0; |
||||
for (uchar n = 0; n < (NSAMPLES) * 3 ; ++n) |
||||
{ |
||||
int n_idx = mad24(n, idx_step, pt_idx); |
||||
uchar c_flag = flag[n_idx]; |
||||
|
||||
if (c_flag) |
||||
{ |
||||
T_MEAN c_mean = _sample[n_idx]; |
||||
|
||||
float numerator = dot(pix, c_mean); |
||||
float denominator = dot(c_mean, c_mean); |
||||
|
||||
if (denominator == 0) |
||||
break; |
||||
|
||||
if (numerator <= denominator && numerator >= c_tau * denominator) |
||||
{ |
||||
float a = numerator / denominator; |
||||
|
||||
T_MEAN dD = mad(a, c_mean, -pix); |
||||
|
||||
if (dot(dD, dD) < c_Tb * a * a) |
||||
{ |
||||
Ps++; |
||||
if (Ps >= c_nkNN) |
||||
{ |
||||
foreground = c_shadowVal; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
#endif |
||||
__global uchar* _fgmask = fgmask + mad24(y, fgmask_step, x + fgmask_offset); |
||||
*_fgmask = (uchar)foreground; |
||||
|
||||
__global const uchar* _nNextLongUpdate = nNextLongUpdate + pt_idx; |
||||
__global const uchar* _nNextMidUpdate = nNextMidUpdate + pt_idx; |
||||
__global const uchar* _nNextShortUpdate = nNextShortUpdate + pt_idx; |
||||
__global uchar* _aModelIndexLong = aModelIndexLong + pt_idx; |
||||
__global uchar* _aModelIndexMid = aModelIndexMid + pt_idx; |
||||
__global uchar* _aModelIndexShort = aModelIndexShort + pt_idx; |
||||
|
||||
uchar nextLongUpdate = _nNextLongUpdate[0]; |
||||
uchar nextMidUpdate = _nNextMidUpdate[0]; |
||||
uchar nextShortUpdate = _nNextShortUpdate[0]; |
||||
uchar modelIndexLong = _aModelIndexLong[0]; |
||||
uchar modelIndexMid = _aModelIndexMid[0]; |
||||
uchar modelIndexShort = _aModelIndexShort[0]; |
||||
int offsetLong = mad24(mad24(2, (NSAMPLES), modelIndexLong), idx_step, pt_idx); |
||||
int offsetMid = mad24((NSAMPLES)+modelIndexMid, idx_step, pt_idx); |
||||
int offsetShort = mad24(modelIndexShort, idx_step, pt_idx); |
||||
if (nextLongUpdate == nLongCounter) |
||||
{ |
||||
_sample[offsetLong] = _sample[offsetMid]; |
||||
flag[offsetLong] = flag[offsetMid]; |
||||
_aModelIndexLong[0] = (modelIndexLong >= ((NSAMPLES)-1)) ? 0 : (modelIndexLong + 1); |
||||
} |
||||
|
||||
if (nextMidUpdate == nMidCounter) |
||||
{ |
||||
_sample[offsetMid] = _sample[offsetShort]; |
||||
flag[offsetMid] = flag[offsetShort]; |
||||
_aModelIndexMid[0] = (modelIndexMid >= ((NSAMPLES)-1)) ? 0 : (modelIndexMid + 1); |
||||
} |
||||
|
||||
if (nextShortUpdate == nShortCounter) |
||||
{ |
||||
_sample[offsetShort] = pix; |
||||
flag[offsetShort] = include; |
||||
_aModelIndexShort[0] = (modelIndexShort >= ((NSAMPLES)-1)) ? 0 : (modelIndexShort + 1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
__kernel void getBackgroundImage2_kernel(__global const uchar* flag, |
||||
__global const uchar* sample, |
||||
__global uchar* dst, int dst_step, int dst_offset, int dst_row, int dst_col) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < dst_col && y < dst_row) |
||||
{ |
||||
int pt_idx = mad24(y, dst_col, x); |
||||
|
||||
T_MEAN meanVal = (T_MEAN)F_ZERO; |
||||
|
||||
__global T_MEAN* _sample = (__global T_MEAN*)(sample); |
||||
int idx_step = dst_row * dst_col; |
||||
for (uchar n = 0; n < (NSAMPLES) * 3 ; ++n) |
||||
{ |
||||
int n_idx = mad24(n, idx_step, pt_idx); |
||||
uchar c_flag = flag[n_idx]; |
||||
if(c_flag) |
||||
{ |
||||
meanVal = _sample[n_idx]; |
||||
break; |
||||
} |
||||
} |
||||
__global uchar* _dst = dst + mad24(y, dst_step, mad24(x, CN, dst_offset)); |
||||
meanToFrame(meanVal, _dst); |
||||
} |
||||
} |
Loading…
Reference in new issue