|
|
|
@ -72,49 +72,91 @@ bool StatModel::train( InputArray samples, int layout, InputArray responses ) |
|
|
|
|
return train(TrainData::create(samples, layout, responses)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float StatModel::calcError( const Ptr<TrainData>& data, bool testerr, OutputArray _resp ) const |
|
|
|
|
class ParallelCalcError : public ParallelLoopBody |
|
|
|
|
{ |
|
|
|
|
private: |
|
|
|
|
const Ptr<TrainData>& data; |
|
|
|
|
bool &testerr; |
|
|
|
|
Mat &resp; |
|
|
|
|
const StatModel &s; |
|
|
|
|
vector<double> &errStrip; |
|
|
|
|
public: |
|
|
|
|
ParallelCalcError(const Ptr<TrainData>& d, bool &t, Mat &_r,const StatModel &w, vector<double> &e) : |
|
|
|
|
data(d), |
|
|
|
|
testerr(t), |
|
|
|
|
resp(_r), |
|
|
|
|
s(w), |
|
|
|
|
errStrip(e) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
virtual void operator()(const Range& range) const |
|
|
|
|
{ |
|
|
|
|
int idxErr = range.start; |
|
|
|
|
CV_TRACE_FUNCTION_SKIP_NESTED(); |
|
|
|
|
Mat samples = data->getSamples(); |
|
|
|
|
int layout = data->getLayout(); |
|
|
|
|
Mat sidx = testerr ? data->getTestSampleIdx() : data->getTrainSampleIdx(); |
|
|
|
|
const int* sidx_ptr = sidx.ptr<int>(); |
|
|
|
|
int i, n = (int)sidx.total(); |
|
|
|
|
bool isclassifier = isClassifier(); |
|
|
|
|
bool isclassifier = s.isClassifier(); |
|
|
|
|
Mat responses = data->getResponses(); |
|
|
|
|
int responses_type = responses.type(); |
|
|
|
|
|
|
|
|
|
if( n == 0 ) |
|
|
|
|
n = data->getNSamples(); |
|
|
|
|
|
|
|
|
|
if( n == 0 ) |
|
|
|
|
return -FLT_MAX; |
|
|
|
|
|
|
|
|
|
Mat resp; |
|
|
|
|
if( _resp.needed() ) |
|
|
|
|
resp.create(n, 1, CV_32F); |
|
|
|
|
|
|
|
|
|
double err = 0; |
|
|
|
|
for( i = 0; i < n; i++ ) |
|
|
|
|
|
|
|
|
|
for (int i = range.start; i < range.end; i++) |
|
|
|
|
{ |
|
|
|
|
int si = sidx_ptr ? sidx_ptr[i] : i; |
|
|
|
|
Mat sample = layout == ROW_SAMPLE ? samples.row(si) : samples.col(si); |
|
|
|
|
float val = predict(sample); |
|
|
|
|
float val = s.predict(sample); |
|
|
|
|
float val0 = (responses_type == CV_32S) ? (float)responses.at<int>(si) : responses.at<float>(si); |
|
|
|
|
|
|
|
|
|
if( isclassifier ) |
|
|
|
|
if (isclassifier) |
|
|
|
|
err += fabs(val - val0) > FLT_EPSILON; |
|
|
|
|
else |
|
|
|
|
err += (val - val0)*(val - val0); |
|
|
|
|
if( !resp.empty() ) |
|
|
|
|
if (!resp.empty()) |
|
|
|
|
resp.at<float>(i) = val; |
|
|
|
|
/*if( i < 100 )
|
|
|
|
|
{ |
|
|
|
|
printf("%d. ref %.1f vs pred %.1f\n", i, val0, val); |
|
|
|
|
}*/ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( _resp.needed() ) |
|
|
|
|
|
|
|
|
|
errStrip[idxErr]=err ; |
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
ParallelCalcError& operator=(const ParallelCalcError &) { |
|
|
|
|
return *this; |
|
|
|
|
}; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float StatModel::calcError(const Ptr<TrainData>& data, bool testerr, OutputArray _resp) const |
|
|
|
|
{ |
|
|
|
|
CV_TRACE_FUNCTION_SKIP_NESTED(); |
|
|
|
|
Mat samples = data->getSamples(); |
|
|
|
|
Mat sidx = testerr ? data->getTestSampleIdx() : data->getTrainSampleIdx(); |
|
|
|
|
int n = (int)sidx.total(); |
|
|
|
|
bool isclassifier = isClassifier(); |
|
|
|
|
Mat responses = data->getResponses(); |
|
|
|
|
|
|
|
|
|
if (n == 0) |
|
|
|
|
n = data->getNSamples(); |
|
|
|
|
|
|
|
|
|
if (n == 0) |
|
|
|
|
return -FLT_MAX; |
|
|
|
|
|
|
|
|
|
Mat resp; |
|
|
|
|
if (_resp.needed()) |
|
|
|
|
resp.create(n, 1, CV_32F); |
|
|
|
|
|
|
|
|
|
double err = 0; |
|
|
|
|
vector<double> errStrip(n,0.0); |
|
|
|
|
ParallelCalcError x(data, testerr, resp, *this,errStrip); |
|
|
|
|
|
|
|
|
|
parallel_for_(Range(0,n),x); |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < errStrip.size(); i++) |
|
|
|
|
err += errStrip[i]; |
|
|
|
|
|
|
|
|
|
if (_resp.needed()) |
|
|
|
|
resp.copyTo(_resp); |
|
|
|
|
|
|
|
|
|
return (float)(err / n * (isclassifier ? 100 : 1)); |
|
|
|
|