mirror of https://github.com/opencv/opencv.git
Merge pull request #11497 from alalek:libjpeg-turbo
commit
c6a9de812b
86 changed files with 37674 additions and 9 deletions
@ -0,0 +1,98 @@ |
||||
project(${JPEG_LIBRARY} C) |
||||
|
||||
ocv_warnings_disable(CMAKE_C_FLAGS -Wunused-parameter -Wsign-compare -Wshorten-64-to-32 -Wimplicit-fallthrough) |
||||
|
||||
set(VERSION_MAJOR 1) |
||||
set(VERSION_MINOR 5) |
||||
set(VERSION_REVISION 3) |
||||
set(VERSION ${VERSION_MAJOR}.${VERSION_MINOR}.${VERSION_REVISION}) |
||||
set(LIBJPEG_TURBO_VERSION_NUMBER 1005003) |
||||
|
||||
string(TIMESTAMP BUILD "opencv-${OPENCV_VERSION}-libjpeg-turbo") |
||||
if(CMAKE_BUILD_TYPE STREQUAL "Debug") |
||||
set(BUILD "${BUILD}-debug") |
||||
endif() |
||||
|
||||
message(STATUS "libjpeg-turbo: VERSION = ${VERSION}, BUILD = ${BUILD}") |
||||
|
||||
option(WITH_ARITH_ENC "Include arithmetic encoding support when emulating the libjpeg v6b API/ABI" TRUE) |
||||
option(WITH_ARITH_DEC "Include arithmetic decoding support when emulating the libjpeg v6b API/ABI" TRUE) |
||||
|
||||
if(NOT DEFINED SIZEOF_SIZE_T) |
||||
if(IOS) # Workaround iOS issues |
||||
set(SIZEOF_SIZE_T "${CMAKE_SIZEOF_VOID_P}") |
||||
message(STATUS "SIZEOF_SIZE_T = ${SIZEOF_SIZE_T}") |
||||
else() |
||||
include(CheckTypeSize) |
||||
CHECK_TYPE_SIZE("size_t" SIZEOF_SIZE_T) |
||||
endif() |
||||
endif() |
||||
|
||||
set(BITS_IN_JSAMPLE 8) |
||||
|
||||
if(WITH_ARITH_ENC) |
||||
set(C_ARITH_CODING_SUPPORTED 1) |
||||
endif() |
||||
|
||||
if(WITH_ARITH_DEC) |
||||
set(D_ARITH_CODING_SUPPORTED 1) |
||||
endif() |
||||
|
||||
set(JPEG_LIB_VERSION 62) |
||||
|
||||
# OpenCV |
||||
set(JPEG_LIB_VERSION "${VERSION}-${JPEG_LIB_VERSION}" PARENT_SCOPE) |
||||
|
||||
if(MSVC) |
||||
add_definitions(-W3 -wd4996 -wd4018) |
||||
endif() |
||||
|
||||
configure_file(jconfig.h.in jconfig.h) |
||||
configure_file(jconfigint.h.in jconfigint.h) |
||||
|
||||
include_directories(${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRENT_SOURCE_DIR}/src) |
||||
|
||||
set(JPEG_SOURCES jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c |
||||
jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c jcphuff.c |
||||
jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c jdatadst.c jdatasrc.c |
||||
jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c |
||||
jdmaster.c jdmerge.c jdphuff.c jdpostct.c jdsample.c jdtrans.c jerror.c |
||||
jfdctflt.c jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c |
||||
jquant1.c jquant2.c jutils.c jmemmgr.c jmemnobs.c) |
||||
|
||||
if(WITH_ARITH_ENC OR WITH_ARITH_DEC) |
||||
set(JPEG_SOURCES ${JPEG_SOURCES} jaricom.c) |
||||
endif() |
||||
|
||||
if(WITH_ARITH_ENC) |
||||
set(JPEG_SOURCES ${JPEG_SOURCES} jcarith.c) |
||||
endif() |
||||
|
||||
if(WITH_ARITH_DEC) |
||||
set(JPEG_SOURCES ${JPEG_SOURCES} jdarith.c) |
||||
endif() |
||||
|
||||
# No SIMD |
||||
set(JPEG_SOURCES ${JPEG_SOURCES} jsimd_none.c) |
||||
|
||||
ocv_list_add_prefix(JPEG_SOURCES src/) |
||||
|
||||
add_library(${JPEG_LIBRARY} STATIC ${JPEG_SOURCES} ${SIMD_OBJS}) |
||||
|
||||
set_target_properties(${JPEG_LIBRARY} |
||||
PROPERTIES OUTPUT_NAME ${JPEG_LIBRARY} |
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}" |
||||
COMPILE_PDB_NAME ${JPEG_LIBRARY} |
||||
COMPILE_PDB_NAME_DEBUG "${JPEG_LIBRARY}${OPENCV_DEBUG_POSTFIX}" |
||||
ARCHIVE_OUTPUT_DIRECTORY ${3P_LIBRARY_OUTPUT_PATH} |
||||
) |
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS) |
||||
set_target_properties(${JPEG_LIBRARY} PROPERTIES FOLDER "3rdparty") |
||||
endif() |
||||
|
||||
if(NOT BUILD_SHARED_LIBS) |
||||
ocv_install_target(${JPEG_LIBRARY} EXPORT OpenCVModules ARCHIVE DESTINATION ${OPENCV_3P_LIB_INSTALL_PATH} COMPONENT dev) |
||||
endif() |
||||
|
||||
ocv_install_3rdparty_licenses(libjpeg-turbo README.md LICENSE.md README.ijg) |
@ -0,0 +1,139 @@ |
||||
libjpeg-turbo Licenses |
||||
====================== |
||||
|
||||
libjpeg-turbo is covered by three compatible BSD-style open source licenses: |
||||
|
||||
- The IJG (Independent JPEG Group) License, which is listed in |
||||
[README.ijg](README.ijg) |
||||
|
||||
This license applies to the libjpeg API library and associated programs |
||||
(any code inherited from libjpeg, and any modifications to that code.) |
||||
|
||||
- The Modified (3-clause) BSD License, which is listed below |
||||
|
||||
This license covers the TurboJPEG API library and associated programs. |
||||
|
||||
- The zlib License, which is listed below |
||||
|
||||
This license is a subset of the other two, and it covers the libjpeg-turbo |
||||
SIMD extensions. |
||||
|
||||
|
||||
Complying with the libjpeg-turbo Licenses |
||||
========================================= |
||||
|
||||
This section provides a roll-up of the libjpeg-turbo licensing terms, to the |
||||
best of our understanding. |
||||
|
||||
1. If you are distributing a modified version of the libjpeg-turbo source, |
||||
then: |
||||
|
||||
1. You cannot alter or remove any existing copyright or license notices |
||||
from the source. |
||||
|
||||
**Origin** |
||||
- Clause 1 of the IJG License |
||||
- Clause 1 of the Modified BSD License |
||||
- Clauses 1 and 3 of the zlib License |
||||
|
||||
2. You must add your own copyright notice to the header of each source |
||||
file you modified, so others can tell that you modified that file (if |
||||
there is not an existing copyright header in that file, then you can |
||||
simply add a notice stating that you modified the file.) |
||||
|
||||
**Origin** |
||||
- Clause 1 of the IJG License |
||||
- Clause 2 of the zlib License |
||||
|
||||
3. You must include the IJG README file, and you must not alter any of the |
||||
copyright or license text in that file. |
||||
|
||||
**Origin** |
||||
- Clause 1 of the IJG License |
||||
|
||||
2. If you are distributing only libjpeg-turbo binaries without the source, or |
||||
if you are distributing an application that statically links with |
||||
libjpeg-turbo, then: |
||||
|
||||
1. Your product documentation must include a message stating: |
||||
|
||||
This software is based in part on the work of the Independent JPEG |
||||
Group. |
||||
|
||||
**Origin** |
||||
- Clause 2 of the IJG license |
||||
|
||||
2. If your binary distribution includes or uses the TurboJPEG API, then |
||||
your product documentation must include the text of the Modified BSD |
||||
License. |
||||
|
||||
**Origin** |
||||
- Clause 2 of the Modified BSD License |
||||
|
||||
3. You cannot use the name of the IJG or The libjpeg-turbo Project or the |
||||
contributors thereof in advertising, publicity, etc. |
||||
|
||||
**Origin** |
||||
- IJG License |
||||
- Clause 3 of the Modified BSD License |
||||
|
||||
4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be |
||||
free of defects, nor do we accept any liability for undesirable |
||||
consequences resulting from your use of the software. |
||||
|
||||
**Origin** |
||||
- IJG License |
||||
- Modified BSD License |
||||
- zlib License |
||||
|
||||
|
||||
The Modified (3-clause) BSD License |
||||
=================================== |
||||
|
||||
Copyright (C)\<YEAR\> \<AUTHOR\>. All Rights Reserved. |
||||
|
||||
Redistribution and use in source and binary forms, with or without |
||||
modification, are permitted provided that the following conditions are met: |
||||
|
||||
- Redistributions of source code must retain the above copyright notice, |
||||
this list of conditions and the following disclaimer. |
||||
- Redistributions in binary form must reproduce the above copyright notice, |
||||
this list of conditions and the following disclaimer in the documentation |
||||
and/or other materials provided with the distribution. |
||||
- Neither the name of the libjpeg-turbo Project nor the names of its |
||||
contributors may be used to endorse or promote products derived from this |
||||
software without specific prior written permission. |
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", |
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE |
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
|
||||
The zlib License |
||||
================ |
||||
|
||||
Copyright (C) \<YEAR\>, \<AUTHOR\>. |
||||
|
||||
This software is provided 'as-is', without any express or implied |
||||
warranty. In no event will the authors be held liable for any damages |
||||
arising from the use of this software. |
||||
|
||||
Permission is granted to anyone to use this software for any purpose, |
||||
including commercial applications, and to alter it and redistribute it |
||||
freely, subject to the following restrictions: |
||||
|
||||
1. The origin of this software must not be misrepresented; you must not |
||||
claim that you wrote the original software. If you use this software |
||||
in a product, an acknowledgment in the product documentation would be |
||||
appreciated but is not required. |
||||
2. Altered source versions must be plainly marked as such, and must not be |
||||
misrepresented as being the original software. |
||||
3. This notice may not be removed or altered from any source distribution. |
@ -0,0 +1,279 @@ |
||||
libjpeg-turbo note: This file has been modified by The libjpeg-turbo Project |
||||
to include only information relevant to libjpeg-turbo, to wordsmith certain |
||||
sections, and to remove impolitic language that existed in the libjpeg v8 |
||||
README. It is included only for reference. Please see README.md for |
||||
information specific to libjpeg-turbo. |
||||
|
||||
|
||||
The Independent JPEG Group's JPEG software |
||||
========================================== |
||||
|
||||
This distribution contains a release of the Independent JPEG Group's free JPEG |
||||
software. You are welcome to redistribute this software and to use it for any |
||||
purpose, subject to the conditions under LEGAL ISSUES, below. |
||||
|
||||
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone, |
||||
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson, |
||||
Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers, |
||||
and other members of the Independent JPEG Group. |
||||
|
||||
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee |
||||
(also known as JPEG, together with ITU-T SG16). |
||||
|
||||
|
||||
DOCUMENTATION ROADMAP |
||||
===================== |
||||
|
||||
This file contains the following sections: |
||||
|
||||
OVERVIEW General description of JPEG and the IJG software. |
||||
LEGAL ISSUES Copyright, lack of warranty, terms of distribution. |
||||
REFERENCES Where to learn more about JPEG. |
||||
ARCHIVE LOCATIONS Where to find newer versions of this software. |
||||
FILE FORMAT WARS Software *not* to get. |
||||
TO DO Plans for future IJG releases. |
||||
|
||||
Other documentation files in the distribution are: |
||||
|
||||
User documentation: |
||||
usage.txt Usage instructions for cjpeg, djpeg, jpegtran, |
||||
rdjpgcom, and wrjpgcom. |
||||
*.1 Unix-style man pages for programs (same info as usage.txt). |
||||
wizard.txt Advanced usage instructions for JPEG wizards only. |
||||
change.log Version-to-version change highlights. |
||||
Programmer and internal documentation: |
||||
libjpeg.txt How to use the JPEG library in your own programs. |
||||
example.c Sample code for calling the JPEG library. |
||||
structure.txt Overview of the JPEG library's internal structure. |
||||
coderules.txt Coding style rules --- please read if you contribute code. |
||||
|
||||
Please read at least usage.txt. Some information can also be found in the JPEG |
||||
FAQ (Frequently Asked Questions) article. See ARCHIVE LOCATIONS below to find |
||||
out where to obtain the FAQ article. |
||||
|
||||
If you want to understand how the JPEG code works, we suggest reading one or |
||||
more of the REFERENCES, then looking at the documentation files (in roughly |
||||
the order listed) before diving into the code. |
||||
|
||||
|
||||
OVERVIEW |
||||
======== |
||||
|
||||
This package contains C software to implement JPEG image encoding, decoding, |
||||
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression |
||||
method for full-color and grayscale images. JPEG's strong suit is compressing |
||||
photographic images or other types of images that have smooth color and |
||||
brightness transitions between neighboring pixels. Images with sharp lines or |
||||
other abrupt features may not compress well with JPEG, and a higher JPEG |
||||
quality may have to be used to avoid visible compression artifacts with such |
||||
images. |
||||
|
||||
JPEG is lossy, meaning that the output pixels are not necessarily identical to |
||||
the input pixels. However, on photographic content and other "smooth" images, |
||||
very good compression ratios can be obtained with no visible compression |
||||
artifacts, and extremely high compression ratios are possible if you are |
||||
willing to sacrifice image quality (by reducing the "quality" setting in the |
||||
compressor.) |
||||
|
||||
This software implements JPEG baseline, extended-sequential, and progressive |
||||
compression processes. Provision is made for supporting all variants of these |
||||
processes, although some uncommon parameter settings aren't implemented yet. |
||||
We have made no provision for supporting the hierarchical or lossless |
||||
processes defined in the standard. |
||||
|
||||
We provide a set of library routines for reading and writing JPEG image files, |
||||
plus two sample applications "cjpeg" and "djpeg", which use the library to |
||||
perform conversion between JPEG and some other popular image file formats. |
||||
The library is intended to be reused in other applications. |
||||
|
||||
In order to support file conversion and viewing software, we have included |
||||
considerable functionality beyond the bare JPEG coding/decoding capability; |
||||
for example, the color quantization modules are not strictly part of JPEG |
||||
decoding, but they are essential for output to colormapped file formats or |
||||
colormapped displays. These extra functions can be compiled out of the |
||||
library if not required for a particular application. |
||||
|
||||
We have also included "jpegtran", a utility for lossless transcoding between |
||||
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple |
||||
applications for inserting and extracting textual comments in JFIF files. |
||||
|
||||
The emphasis in designing this software has been on achieving portability and |
||||
flexibility, while also making it fast enough to be useful. In particular, |
||||
the software is not intended to be read as a tutorial on JPEG. (See the |
||||
REFERENCES section for introductory material.) Rather, it is intended to |
||||
be reliable, portable, industrial-strength code. We do not claim to have |
||||
achieved that goal in every aspect of the software, but we strive for it. |
||||
|
||||
We welcome the use of this software as a component of commercial products. |
||||
No royalty is required, but we do ask for an acknowledgement in product |
||||
documentation, as described under LEGAL ISSUES. |
||||
|
||||
|
||||
LEGAL ISSUES |
||||
============ |
||||
|
||||
In plain English: |
||||
|
||||
1. We don't promise that this software works. (But if you find any bugs, |
||||
please let us know!) |
||||
2. You can use this software for whatever you want. You don't have to pay us. |
||||
3. You may not pretend that you wrote this software. If you use it in a |
||||
program, you must acknowledge somewhere in your documentation that |
||||
you've used the IJG code. |
||||
|
||||
In legalese: |
||||
|
||||
The authors make NO WARRANTY or representation, either express or implied, |
||||
with respect to this software, its quality, accuracy, merchantability, or |
||||
fitness for a particular purpose. This software is provided "AS IS", and you, |
||||
its user, assume the entire risk as to its quality and accuracy. |
||||
|
||||
This software is copyright (C) 1991-2016, Thomas G. Lane, Guido Vollbeding. |
||||
All Rights Reserved except as specified below. |
||||
|
||||
Permission is hereby granted to use, copy, modify, and distribute this |
||||
software (or portions thereof) for any purpose, without fee, subject to these |
||||
conditions: |
||||
(1) If any part of the source code for this software is distributed, then this |
||||
README file must be included, with this copyright and no-warranty notice |
||||
unaltered; and any additions, deletions, or changes to the original files |
||||
must be clearly indicated in accompanying documentation. |
||||
(2) If only executable code is distributed, then the accompanying |
||||
documentation must state that "this software is based in part on the work of |
||||
the Independent JPEG Group". |
||||
(3) Permission for use of this software is granted only if the user accepts |
||||
full responsibility for any undesirable consequences; the authors accept |
||||
NO LIABILITY for damages of any kind. |
||||
|
||||
These conditions apply to any software derived from or based on the IJG code, |
||||
not just to the unmodified library. If you use our work, you ought to |
||||
acknowledge us. |
||||
|
||||
Permission is NOT granted for the use of any IJG author's name or company name |
||||
in advertising or publicity relating to this software or products derived from |
||||
it. This software may be referred to only as "the Independent JPEG Group's |
||||
software". |
||||
|
||||
We specifically permit and encourage the use of this software as the basis of |
||||
commercial products, provided that all warranty or liability claims are |
||||
assumed by the product vendor. |
||||
|
||||
|
||||
The Unix configuration script "configure" was produced with GNU Autoconf. |
||||
It is copyright by the Free Software Foundation but is freely distributable. |
||||
The same holds for its supporting scripts (config.guess, config.sub, |
||||
ltmain.sh). Another support script, install-sh, is copyright by X Consortium |
||||
but is also freely distributable. |
||||
|
||||
The IJG distribution formerly included code to read and write GIF files. |
||||
To avoid entanglement with the Unisys LZW patent (now expired), GIF reading |
||||
support has been removed altogether, and the GIF writer has been simplified |
||||
to produce "uncompressed GIFs". This technique does not use the LZW |
||||
algorithm; the resulting GIF files are larger than usual, but are readable |
||||
by all standard GIF decoders. |
||||
|
||||
We are required to state that |
||||
"The Graphics Interchange Format(c) is the Copyright property of |
||||
CompuServe Incorporated. GIF(sm) is a Service Mark property of |
||||
CompuServe Incorporated." |
||||
|
||||
|
||||
REFERENCES |
||||
========== |
||||
|
||||
We recommend reading one or more of these references before trying to |
||||
understand the innards of the JPEG software. |
||||
|
||||
The best short technical introduction to the JPEG compression algorithm is |
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", |
||||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. |
||||
(Adjacent articles in that issue discuss MPEG motion picture compression, |
||||
applications of JPEG, and related topics.) If you don't have the CACM issue |
||||
handy, a PDF file containing a revised version of Wallace's article is |
||||
available at http://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually |
||||
a preprint for an article that appeared in IEEE Trans. Consumer Electronics) |
||||
omits the sample images that appeared in CACM, but it includes corrections |
||||
and some added material. Note: the Wallace article is copyright ACM and IEEE, |
||||
and it may not be used for commercial purposes. |
||||
|
||||
A somewhat less technical, more leisurely introduction to JPEG can be found in |
||||
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by |
||||
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides |
||||
good explanations and example C code for a multitude of compression methods |
||||
including JPEG. It is an excellent source if you are comfortable reading C |
||||
code but don't know much about data compression in general. The book's JPEG |
||||
sample code is far from industrial-strength, but when you are ready to look |
||||
at a full implementation, you've got one here... |
||||
|
||||
The best currently available description of JPEG is the textbook "JPEG Still |
||||
Image Data Compression Standard" by William B. Pennebaker and Joan L. |
||||
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. |
||||
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG |
||||
standards (DIS 10918-1 and draft DIS 10918-2). |
||||
|
||||
The original JPEG standard is divided into two parts, Part 1 being the actual |
||||
specification, while Part 2 covers compliance testing methods. Part 1 is |
||||
titled "Digital Compression and Coding of Continuous-tone Still Images, |
||||
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS |
||||
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of |
||||
Continuous-tone Still Images, Part 2: Compliance testing" and has document |
||||
numbers ISO/IEC IS 10918-2, ITU-T T.83. |
||||
|
||||
The JPEG standard does not specify all details of an interchangeable file |
||||
format. For the omitted details we follow the "JFIF" conventions, revision |
||||
1.02. JFIF 1.02 has been adopted as an Ecma International Technical Report |
||||
and thus received a formal publication status. It is available as a free |
||||
download in PDF format from |
||||
http://www.ecma-international.org/publications/techreports/E-TR-098.htm. |
||||
A PostScript version of the JFIF document is available at |
||||
http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at |
||||
http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures. |
||||
|
||||
The TIFF 6.0 file format specification can be obtained by FTP from |
||||
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme |
||||
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. |
||||
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). |
||||
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 |
||||
(Compression tag 7). Copies of this Note can be obtained from |
||||
http://www.ijg.org/files/. It is expected that the next revision |
||||
of the TIFF spec will replace the 6.0 JPEG design with the Note's design. |
||||
Although IJG's own code does not support TIFF/JPEG, the free libtiff library |
||||
uses our library to implement TIFF/JPEG per the Note. |
||||
|
||||
|
||||
ARCHIVE LOCATIONS |
||||
================= |
||||
|
||||
The "official" archive site for this software is www.ijg.org. |
||||
The most recent released version can always be found there in |
||||
directory "files". |
||||
|
||||
The JPEG FAQ (Frequently Asked Questions) article is a source of some |
||||
general information about JPEG. |
||||
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/ |
||||
and other news.answers archive sites, including the official news.answers |
||||
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/. |
||||
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu |
||||
with body |
||||
send usenet/news.answers/jpeg-faq/part1 |
||||
send usenet/news.answers/jpeg-faq/part2 |
||||
|
||||
|
||||
FILE FORMAT WARS |
||||
================ |
||||
|
||||
The ISO/IEC JTC1/SC29/WG1 standards committee (also known as JPEG, together |
||||
with ITU-T SG16) currently promotes different formats containing the name |
||||
"JPEG" which are incompatible with original DCT-based JPEG. IJG therefore does |
||||
not support these formats (see REFERENCES). Indeed, one of the original |
||||
reasons for developing this free software was to help force convergence on |
||||
common, interoperable format standards for JPEG files. |
||||
Don't use an incompatible file format! |
||||
(In any case, our decoder will remain capable of reading existing JPEG |
||||
image files indefinitely.) |
||||
|
||||
|
||||
TO DO |
||||
===== |
||||
|
||||
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org. |
@ -0,0 +1,341 @@ |
||||
Background |
||||
========== |
||||
|
||||
libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, |
||||
NEON, AltiVec) to accelerate baseline JPEG compression and decompression on |
||||
x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is |
||||
generally 2-6x as fast as libjpeg, all else being equal. On other types of |
||||
systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by |
||||
virtue of its highly-optimized Huffman coding routines. In many cases, the |
||||
performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. |
||||
|
||||
libjpeg-turbo implements both the traditional libjpeg API as well as the less |
||||
powerful but more straightforward TurboJPEG API. libjpeg-turbo also features |
||||
colorspace extensions that allow it to compress from/decompress to 32-bit and |
||||
big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java |
||||
interface. |
||||
|
||||
libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated |
||||
derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and |
||||
VirtualGL projects made numerous enhancements to the codec in 2009, and in |
||||
early 2010, libjpeg-turbo spun off into an independent project, with the goal |
||||
of making high-speed JPEG compression/decompression technology available to a |
||||
broader range of users and developers. |
||||
|
||||
|
||||
License |
||||
======= |
||||
|
||||
libjpeg-turbo is covered by three compatible BSD-style open source licenses. |
||||
Refer to [LICENSE.md](LICENSE.md) for a roll-up of license terms. |
||||
|
||||
|
||||
Building libjpeg-turbo |
||||
====================== |
||||
|
||||
Refer to [BUILDING.md](BUILDING.md) for complete instructions. |
||||
|
||||
|
||||
Using libjpeg-turbo |
||||
=================== |
||||
|
||||
libjpeg-turbo includes two APIs that can be used to compress and decompress |
||||
JPEG images: |
||||
|
||||
- **TurboJPEG API**<br> |
||||
This API provides an easy-to-use interface for compressing and decompressing |
||||
JPEG images in memory. It also provides some functionality that would not be |
||||
straightforward to achieve using the underlying libjpeg API, such as |
||||
generating planar YUV images and performing multiple simultaneous lossless |
||||
transforms on an image. The Java interface for libjpeg-turbo is written on |
||||
top of the TurboJPEG API. |
||||
|
||||
- **libjpeg API**<br> |
||||
This is the de facto industry-standard API for compressing and decompressing |
||||
JPEG images. It is more difficult to use than the TurboJPEG API but also |
||||
more powerful. The libjpeg API implementation in libjpeg-turbo is both |
||||
API/ABI-compatible and mathematically compatible with libjpeg v6b. It can |
||||
also optionally be configured to be API/ABI-compatible with libjpeg v7 and v8 |
||||
(see below.) |
||||
|
||||
There is no significant performance advantage to either API when both are used |
||||
to perform similar operations. |
||||
|
||||
Colorspace Extensions |
||||
--------------------- |
||||
|
||||
libjpeg-turbo includes extensions that allow JPEG images to be compressed |
||||
directly from (and decompressed directly to) buffers that use BGR, BGRX, |
||||
RGBX, XBGR, and XRGB pixel ordering. This is implemented with ten new |
||||
colorspace constants: |
||||
|
||||
JCS_EXT_RGB /* red/green/blue */ |
||||
JCS_EXT_RGBX /* red/green/blue/x */ |
||||
JCS_EXT_BGR /* blue/green/red */ |
||||
JCS_EXT_BGRX /* blue/green/red/x */ |
||||
JCS_EXT_XBGR /* x/blue/green/red */ |
||||
JCS_EXT_XRGB /* x/red/green/blue */ |
||||
JCS_EXT_RGBA /* red/green/blue/alpha */ |
||||
JCS_EXT_BGRA /* blue/green/red/alpha */ |
||||
JCS_EXT_ABGR /* alpha/blue/green/red */ |
||||
JCS_EXT_ARGB /* alpha/red/green/blue */ |
||||
|
||||
Setting `cinfo.in_color_space` (compression) or `cinfo.out_color_space` |
||||
(decompression) to one of these values will cause libjpeg-turbo to read the |
||||
red, green, and blue values from (or write them to) the appropriate position in |
||||
the pixel when compressing from/decompressing to an RGB buffer. |
||||
|
||||
Your application can check for the existence of these extensions at compile |
||||
time with: |
||||
|
||||
#ifdef JCS_EXTENSIONS |
||||
|
||||
At run time, attempting to use these extensions with a libjpeg implementation |
||||
that does not support them will result in a "Bogus input colorspace" error. |
||||
Applications can trap this error in order to test whether run-time support is |
||||
available for the colorspace extensions. |
||||
|
||||
When using the RGBX, BGRX, XBGR, and XRGB colorspaces during decompression, the |
||||
X byte is undefined, and in order to ensure the best performance, libjpeg-turbo |
||||
can set that byte to whatever value it wishes. If an application expects the X |
||||
byte to be used as an alpha channel, then it should specify `JCS_EXT_RGBA`, |
||||
`JCS_EXT_BGRA`, `JCS_EXT_ABGR`, or `JCS_EXT_ARGB`. When these colorspace |
||||
constants are used, the X byte is guaranteed to be 0xFF, which is interpreted |
||||
as opaque. |
||||
|
||||
Your application can check for the existence of the alpha channel colorspace |
||||
extensions at compile time with: |
||||
|
||||
#ifdef JCS_ALPHA_EXTENSIONS |
||||
|
||||
[jcstest.c](jcstest.c), located in the libjpeg-turbo source tree, demonstrates |
||||
how to check for the existence of the colorspace extensions at compile time and |
||||
run time. |
||||
|
||||
libjpeg v7 and v8 API/ABI Emulation |
||||
----------------------------------- |
||||
|
||||
With libjpeg v7 and v8, new features were added that necessitated extending the |
||||
compression and decompression structures. Unfortunately, due to the exposed |
||||
nature of those structures, extending them also necessitated breaking backward |
||||
ABI compatibility with previous libjpeg releases. Thus, programs that were |
||||
built to use libjpeg v7 or v8 did not work with libjpeg-turbo, since it is |
||||
based on the libjpeg v6b code base. Although libjpeg v7 and v8 are not |
||||
as widely used as v6b, enough programs (including a few Linux distros) made |
||||
the switch that there was a demand to emulate the libjpeg v7 and v8 ABIs |
||||
in libjpeg-turbo. It should be noted, however, that this feature was added |
||||
primarily so that applications that had already been compiled to use libjpeg |
||||
v7+ could take advantage of accelerated baseline JPEG encoding/decoding |
||||
without recompiling. libjpeg-turbo does not claim to support all of the |
||||
libjpeg v7+ features, nor to produce identical output to libjpeg v7+ in all |
||||
cases (see below.) |
||||
|
||||
By passing an argument of `--with-jpeg7` or `--with-jpeg8` to `configure`, or |
||||
an argument of `-DWITH_JPEG7=1` or `-DWITH_JPEG8=1` to `cmake`, you can build a |
||||
version of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so that |
||||
programs that are built against libjpeg v7 or v8 can be run with libjpeg-turbo. |
||||
The following section describes which libjpeg v7+ features are supported and |
||||
which aren't. |
||||
|
||||
### Support for libjpeg v7 and v8 Features |
||||
|
||||
#### Fully supported |
||||
|
||||
- **libjpeg: IDCT scaling extensions in decompressor**<br> |
||||
libjpeg-turbo supports IDCT scaling with scaling factors of 1/8, 1/4, 3/8, |
||||
1/2, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2/1 (only 1/4 |
||||
and 1/2 are SIMD-accelerated.) |
||||
|
||||
- **libjpeg: Arithmetic coding** |
||||
|
||||
- **libjpeg: In-memory source and destination managers**<br> |
||||
See notes below. |
||||
|
||||
- **cjpeg: Separate quality settings for luminance and chrominance**<br> |
||||
Note that the libpjeg v7+ API was extended to accommodate this feature only |
||||
for convenience purposes. It has always been possible to implement this |
||||
feature with libjpeg v6b (see rdswitch.c for an example.) |
||||
|
||||
- **cjpeg: 32-bit BMP support** |
||||
|
||||
- **cjpeg: `-rgb` option** |
||||
|
||||
- **jpegtran: Lossless cropping** |
||||
|
||||
- **jpegtran: `-perfect` option** |
||||
|
||||
- **jpegtran: Forcing width/height when performing lossless crop** |
||||
|
||||
- **rdjpgcom: `-raw` option** |
||||
|
||||
- **rdjpgcom: Locale awareness** |
||||
|
||||
|
||||
#### Not supported |
||||
|
||||
NOTE: As of this writing, extensive research has been conducted into the |
||||
usefulness of DCT scaling as a means of data reduction and SmartScale as a |
||||
means of quality improvement. The reader is invited to peruse the research at |
||||
<http://www.libjpeg-turbo.org/About/SmartScale> and draw his/her own conclusions, |
||||
but it is the general belief of our project that these features have not |
||||
demonstrated sufficient usefulness to justify inclusion in libjpeg-turbo. |
||||
|
||||
- **libjpeg: DCT scaling in compressor**<br> |
||||
`cinfo.scale_num` and `cinfo.scale_denom` are silently ignored. |
||||
There is no technical reason why DCT scaling could not be supported when |
||||
emulating the libjpeg v7+ API/ABI, but without the SmartScale extension (see |
||||
below), only scaling factors of 1/2, 8/15, 4/7, 8/13, 2/3, 8/11, 4/5, and |
||||
8/9 would be available, which is of limited usefulness. |
||||
|
||||
- **libjpeg: SmartScale**<br> |
||||
`cinfo.block_size` is silently ignored. |
||||
SmartScale is an extension to the JPEG format that allows for DCT block |
||||
sizes other than 8x8. Providing support for this new format would be |
||||
feasible (particularly without full acceleration.) However, until/unless |
||||
the format becomes either an official industry standard or, at minimum, an |
||||
accepted solution in the community, we are hesitant to implement it, as |
||||
there is no sense of whether or how it might change in the future. It is |
||||
our belief that SmartScale has not demonstrated sufficient usefulness as a |
||||
lossless format nor as a means of quality enhancement, and thus our primary |
||||
interest in providing this feature would be as a means of supporting |
||||
additional DCT scaling factors. |
||||
|
||||
- **libjpeg: Fancy downsampling in compressor**<br> |
||||
`cinfo.do_fancy_downsampling` is silently ignored. |
||||
This requires the DCT scaling feature, which is not supported. |
||||
|
||||
- **jpegtran: Scaling**<br> |
||||
This requires both the DCT scaling and SmartScale features, which are not |
||||
supported. |
||||
|
||||
- **Lossless RGB JPEG files**<br> |
||||
This requires the SmartScale feature, which is not supported. |
||||
|
||||
### What About libjpeg v9? |
||||
|
||||
libjpeg v9 introduced yet another field to the JPEG compression structure |
||||
(`color_transform`), thus making the ABI backward incompatible with that of |
||||
libjpeg v8. This new field was introduced solely for the purpose of supporting |
||||
lossless SmartScale encoding. Furthermore, there was actually no reason to |
||||
extend the API in this manner, as the color transform could have just as easily |
||||
been activated by way of a new JPEG colorspace constant, thus preserving |
||||
backward ABI compatibility. |
||||
|
||||
Our research (see link above) has shown that lossless SmartScale does not |
||||
generally accomplish anything that can't already be accomplished better with |
||||
existing, standard lossless formats. Therefore, at this time it is our belief |
||||
that there is not sufficient technical justification for software projects to |
||||
upgrade from libjpeg v8 to libjpeg v9, and thus there is not sufficient |
||||
technical justification for us to emulate the libjpeg v9 ABI. |
||||
|
||||
In-Memory Source/Destination Managers |
||||
------------------------------------- |
||||
|
||||
By default, libjpeg-turbo 1.3 and later includes the `jpeg_mem_src()` and |
||||
`jpeg_mem_dest()` functions, even when not emulating the libjpeg v8 API/ABI. |
||||
Previously, it was necessary to build libjpeg-turbo from source with libjpeg v8 |
||||
API/ABI emulation in order to use the in-memory source/destination managers, |
||||
but several projects requested that those functions be included when emulating |
||||
the libjpeg v6b API/ABI as well. This allows the use of those functions by |
||||
programs that need them, without breaking ABI compatibility for programs that |
||||
don't, and it allows those functions to be provided in the "official" |
||||
libjpeg-turbo binaries. |
||||
|
||||
Those who are concerned about maintaining strict conformance with the libjpeg |
||||
v6b or v7 API can pass an argument of `--without-mem-srcdst` to `configure` or |
||||
an argument of `-DWITH_MEM_SRCDST=0` to `cmake` prior to building |
||||
libjpeg-turbo. This will restore the pre-1.3 behavior, in which |
||||
`jpeg_mem_src()` and `jpeg_mem_dest()` are only included when emulating the |
||||
libjpeg v8 API/ABI. |
||||
|
||||
On Un*x systems, including the in-memory source/destination managers changes |
||||
the dynamic library version from 62.1.0 to 62.2.0 if using libjpeg v6b API/ABI |
||||
emulation and from 7.1.0 to 7.2.0 if using libjpeg v7 API/ABI emulation. |
||||
|
||||
Note that, on most Un*x systems, the dynamic linker will not look for a |
||||
function in a library until that function is actually used. Thus, if a program |
||||
is built against libjpeg-turbo 1.3+ and uses `jpeg_mem_src()` or |
||||
`jpeg_mem_dest()`, that program will not fail if run against an older version |
||||
of libjpeg-turbo or against libjpeg v7- until the program actually tries to |
||||
call `jpeg_mem_src()` or `jpeg_mem_dest()`. Such is not the case on Windows. |
||||
If a program is built against the libjpeg-turbo 1.3+ DLL and uses |
||||
`jpeg_mem_src()` or `jpeg_mem_dest()`, then it must use the libjpeg-turbo 1.3+ |
||||
DLL at run time. |
||||
|
||||
Both cjpeg and djpeg have been extended to allow testing the in-memory |
||||
source/destination manager functions. See their respective man pages for more |
||||
details. |
||||
|
||||
|
||||
Mathematical Compatibility |
||||
========================== |
||||
|
||||
For the most part, libjpeg-turbo should produce identical output to libjpeg |
||||
v6b. The one exception to this is when using the floating point DCT/IDCT, in |
||||
which case the outputs of libjpeg v6b and libjpeg-turbo can differ for the |
||||
following reasons: |
||||
|
||||
- The SSE/SSE2 floating point DCT implementation in libjpeg-turbo is ever so |
||||
slightly more accurate than the implementation in libjpeg v6b, but not by |
||||
any amount perceptible to human vision (generally in the range of 0.01 to |
||||
0.08 dB gain in PNSR.) |
||||
|
||||
- When not using the SIMD extensions, libjpeg-turbo uses the more accurate |
||||
(and slightly faster) floating point IDCT algorithm introduced in libjpeg |
||||
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted, |
||||
however, that this algorithm basically brings the accuracy of the floating |
||||
point IDCT in line with the accuracy of the slow integer IDCT. The floating |
||||
point DCT/IDCT algorithms are mainly a legacy feature, and they do not |
||||
produce significantly more accuracy than the slow integer algorithms (to put |
||||
numbers on this, the typical difference in PNSR between the two algorithms |
||||
is less than 0.10 dB, whereas changing the quality level by 1 in the upper |
||||
range of the quality scale is typically more like a 1.0 dB difference.) |
||||
|
||||
- If the floating point algorithms in libjpeg-turbo are not implemented using |
||||
SIMD instructions on a particular platform, then the accuracy of the |
||||
floating point DCT/IDCT can depend on the compiler settings. |
||||
|
||||
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood it is |
||||
still using the same algorithms as libjpeg v6b, so there are several specific |
||||
cases in which libjpeg-turbo cannot be expected to produce the same output as |
||||
libjpeg v8: |
||||
|
||||
- When decompressing using scaling factors of 1/2 and 1/4, because libjpeg v8 |
||||
implements those scaling algorithms differently than libjpeg v6b does, and |
||||
libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior. |
||||
|
||||
- When using chrominance subsampling, because libjpeg v8 implements this |
||||
with its DCT/IDCT scaling algorithms rather than with a separate |
||||
downsampling/upsampling algorithm. In our testing, the subsampled/upsampled |
||||
output of libjpeg v8 is less accurate than that of libjpeg v6b for this |
||||
reason. |
||||
|
||||
- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or |
||||
"non-smooth") chrominance upsampling, because libjpeg v8 does not support |
||||
merged upsampling with scaling factors > 1. |
||||
|
||||
|
||||
Performance Pitfalls |
||||
==================== |
||||
|
||||
Restart Markers |
||||
--------------- |
||||
|
||||
The optimized Huffman decoder in libjpeg-turbo does not handle restart markers |
||||
in a way that makes the rest of the libjpeg infrastructure happy, so it is |
||||
necessary to use the slow Huffman decoder when decompressing a JPEG image that |
||||
has restart markers. This can cause the decompression performance to drop by |
||||
as much as 20%, but the performance will still be much greater than that of |
||||
libjpeg. Many consumer packages, such as PhotoShop, use restart markers when |
||||
generating JPEG images, so images generated by those programs will experience |
||||
this issue. |
||||
|
||||
Fast Integer Forward DCT at High Quality Levels |
||||
----------------------------------------------- |
||||
|
||||
The algorithm used by the SIMD-accelerated quantization function cannot produce |
||||
correct results whenever the fast integer forward DCT is used along with a JPEG |
||||
quality of 98-100. Thus, libjpeg-turbo must use the non-SIMD quantization |
||||
function in those cases. This causes performance to drop by as much as 40%. |
||||
It is therefore strongly advised that you use the slow integer forward DCT |
||||
whenever encoding images with a JPEG quality of 98 or higher. |
@ -0,0 +1,53 @@ |
||||
/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */ |
||||
/* see jconfig.txt for explanations */ |
||||
|
||||
#define JPEG_LIB_VERSION @JPEG_LIB_VERSION@ |
||||
#define LIBJPEG_TURBO_VERSION @VERSION@ |
||||
#define LIBJPEG_TURBO_VERSION_NUMBER @LIBJPEG_TURBO_VERSION_NUMBER@ |
||||
#cmakedefine C_ARITH_CODING_SUPPORTED |
||||
#cmakedefine D_ARITH_CODING_SUPPORTED |
||||
#cmakedefine MEM_SRCDST_SUPPORTED |
||||
|
||||
/*
|
||||
* Define BITS_IN_JSAMPLE as either |
||||
* 8 for 8-bit sample values (the usual setting) |
||||
* 12 for 12-bit sample values |
||||
* Only 8 and 12 are legal data precisions for lossy JPEG according to the |
||||
* JPEG standard, and the IJG code does not support anything else! |
||||
* We do not support run-time selection of data precision, sorry. |
||||
*/ |
||||
|
||||
#define BITS_IN_JSAMPLE @BITS_IN_JSAMPLE@ /* use 8 or 12 */ |
||||
|
||||
#define HAVE_UNSIGNED_CHAR |
||||
#define HAVE_UNSIGNED_SHORT |
||||
/* #define void char */ |
||||
/* #define const */ |
||||
#undef __CHAR_UNSIGNED__ |
||||
#define HAVE_STDDEF_H |
||||
#define HAVE_STDLIB_H |
||||
#undef NEED_BSD_STRINGS |
||||
#undef NEED_SYS_TYPES_H |
||||
#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */ |
||||
#undef INCOMPLETE_TYPES_BROKEN |
||||
|
||||
/* Define "boolean" as unsigned char, not int, per Windows custom */ |
||||
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ |
||||
typedef unsigned char boolean; |
||||
#endif |
||||
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ |
||||
|
||||
/* Define "INT32" as int, not long, per Windows custom */ |
||||
#if !(defined(_BASETSD_H_) || defined(_BASETSD_H)) /* don't conflict if basetsd.h already read */ |
||||
typedef short INT16; |
||||
typedef signed int INT32; |
||||
#endif |
||||
#define XMD_H /* prevent jmorecfg.h from redefining it */ |
||||
|
||||
#ifdef JPEG_INTERNALS |
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED |
||||
|
||||
#define SIZEOF_SIZE_T @SIZEOF_SIZE_T@ |
||||
|
||||
#endif /* JPEG_INTERNALS */ |
@ -0,0 +1,13 @@ |
||||
#define VERSION "@VERSION@" |
||||
#define BUILD "@BUILD@" |
||||
#define PACKAGE_NAME "@CMAKE_PROJECT_NAME@" |
||||
|
||||
#ifndef INLINE |
||||
#if defined(__GNUC__) |
||||
#define INLINE inline __attribute__((always_inline)) |
||||
#elif defined(_MSC_VER) |
||||
#define INLINE __forceinline |
||||
#else |
||||
#define INLINE |
||||
#endif |
||||
#endif |
@ -0,0 +1,156 @@ |
||||
/*
|
||||
* jaricom.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Developed 1997-2009 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains probability estimation tables for common use in |
||||
* arithmetic entropy encoding and decoding routines. |
||||
* |
||||
* This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1 |
||||
* and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec |
||||
* (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82). |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
/* The following #define specifies the packing of the four components
|
||||
* into the compact JLONG representation. |
||||
* Note that this formula must match the actual arithmetic encoder |
||||
* and decoder implementation. The implementation has to be changed |
||||
* if this formula is changed. |
||||
* The current organization is leaned on Markus Kuhn's JBIG |
||||
* implementation (jbig_tab.c). |
||||
*/ |
||||
|
||||
#define V(i,a,b,c,d) (((JLONG)a << 16) | ((JLONG)c << 8) | ((JLONG)d << 7) | b) |
||||
|
||||
const JLONG jpeg_aritab[113+1] = { |
||||
/*
|
||||
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS |
||||
*/ |
||||
V( 0, 0x5a1d, 1, 1, 1 ), |
||||
V( 1, 0x2586, 14, 2, 0 ), |
||||
V( 2, 0x1114, 16, 3, 0 ), |
||||
V( 3, 0x080b, 18, 4, 0 ), |
||||
V( 4, 0x03d8, 20, 5, 0 ), |
||||
V( 5, 0x01da, 23, 6, 0 ), |
||||
V( 6, 0x00e5, 25, 7, 0 ), |
||||
V( 7, 0x006f, 28, 8, 0 ), |
||||
V( 8, 0x0036, 30, 9, 0 ), |
||||
V( 9, 0x001a, 33, 10, 0 ), |
||||
V( 10, 0x000d, 35, 11, 0 ), |
||||
V( 11, 0x0006, 9, 12, 0 ), |
||||
V( 12, 0x0003, 10, 13, 0 ), |
||||
V( 13, 0x0001, 12, 13, 0 ), |
||||
V( 14, 0x5a7f, 15, 15, 1 ), |
||||
V( 15, 0x3f25, 36, 16, 0 ), |
||||
V( 16, 0x2cf2, 38, 17, 0 ), |
||||
V( 17, 0x207c, 39, 18, 0 ), |
||||
V( 18, 0x17b9, 40, 19, 0 ), |
||||
V( 19, 0x1182, 42, 20, 0 ), |
||||
V( 20, 0x0cef, 43, 21, 0 ), |
||||
V( 21, 0x09a1, 45, 22, 0 ), |
||||
V( 22, 0x072f, 46, 23, 0 ), |
||||
V( 23, 0x055c, 48, 24, 0 ), |
||||
V( 24, 0x0406, 49, 25, 0 ), |
||||
V( 25, 0x0303, 51, 26, 0 ), |
||||
V( 26, 0x0240, 52, 27, 0 ), |
||||
V( 27, 0x01b1, 54, 28, 0 ), |
||||
V( 28, 0x0144, 56, 29, 0 ), |
||||
V( 29, 0x00f5, 57, 30, 0 ), |
||||
V( 30, 0x00b7, 59, 31, 0 ), |
||||
V( 31, 0x008a, 60, 32, 0 ), |
||||
V( 32, 0x0068, 62, 33, 0 ), |
||||
V( 33, 0x004e, 63, 34, 0 ), |
||||
V( 34, 0x003b, 32, 35, 0 ), |
||||
V( 35, 0x002c, 33, 9, 0 ), |
||||
V( 36, 0x5ae1, 37, 37, 1 ), |
||||
V( 37, 0x484c, 64, 38, 0 ), |
||||
V( 38, 0x3a0d, 65, 39, 0 ), |
||||
V( 39, 0x2ef1, 67, 40, 0 ), |
||||
V( 40, 0x261f, 68, 41, 0 ), |
||||
V( 41, 0x1f33, 69, 42, 0 ), |
||||
V( 42, 0x19a8, 70, 43, 0 ), |
||||
V( 43, 0x1518, 72, 44, 0 ), |
||||
V( 44, 0x1177, 73, 45, 0 ), |
||||
V( 45, 0x0e74, 74, 46, 0 ), |
||||
V( 46, 0x0bfb, 75, 47, 0 ), |
||||
V( 47, 0x09f8, 77, 48, 0 ), |
||||
V( 48, 0x0861, 78, 49, 0 ), |
||||
V( 49, 0x0706, 79, 50, 0 ), |
||||
V( 50, 0x05cd, 48, 51, 0 ), |
||||
V( 51, 0x04de, 50, 52, 0 ), |
||||
V( 52, 0x040f, 50, 53, 0 ), |
||||
V( 53, 0x0363, 51, 54, 0 ), |
||||
V( 54, 0x02d4, 52, 55, 0 ), |
||||
V( 55, 0x025c, 53, 56, 0 ), |
||||
V( 56, 0x01f8, 54, 57, 0 ), |
||||
V( 57, 0x01a4, 55, 58, 0 ), |
||||
V( 58, 0x0160, 56, 59, 0 ), |
||||
V( 59, 0x0125, 57, 60, 0 ), |
||||
V( 60, 0x00f6, 58, 61, 0 ), |
||||
V( 61, 0x00cb, 59, 62, 0 ), |
||||
V( 62, 0x00ab, 61, 63, 0 ), |
||||
V( 63, 0x008f, 61, 32, 0 ), |
||||
V( 64, 0x5b12, 65, 65, 1 ), |
||||
V( 65, 0x4d04, 80, 66, 0 ), |
||||
V( 66, 0x412c, 81, 67, 0 ), |
||||
V( 67, 0x37d8, 82, 68, 0 ), |
||||
V( 68, 0x2fe8, 83, 69, 0 ), |
||||
V( 69, 0x293c, 84, 70, 0 ), |
||||
V( 70, 0x2379, 86, 71, 0 ), |
||||
V( 71, 0x1edf, 87, 72, 0 ), |
||||
V( 72, 0x1aa9, 87, 73, 0 ), |
||||
V( 73, 0x174e, 72, 74, 0 ), |
||||
V( 74, 0x1424, 72, 75, 0 ), |
||||
V( 75, 0x119c, 74, 76, 0 ), |
||||
V( 76, 0x0f6b, 74, 77, 0 ), |
||||
V( 77, 0x0d51, 75, 78, 0 ), |
||||
V( 78, 0x0bb6, 77, 79, 0 ), |
||||
V( 79, 0x0a40, 77, 48, 0 ), |
||||
V( 80, 0x5832, 80, 81, 1 ), |
||||
V( 81, 0x4d1c, 88, 82, 0 ), |
||||
V( 82, 0x438e, 89, 83, 0 ), |
||||
V( 83, 0x3bdd, 90, 84, 0 ), |
||||
V( 84, 0x34ee, 91, 85, 0 ), |
||||
V( 85, 0x2eae, 92, 86, 0 ), |
||||
V( 86, 0x299a, 93, 87, 0 ), |
||||
V( 87, 0x2516, 86, 71, 0 ), |
||||
V( 88, 0x5570, 88, 89, 1 ), |
||||
V( 89, 0x4ca9, 95, 90, 0 ), |
||||
V( 90, 0x44d9, 96, 91, 0 ), |
||||
V( 91, 0x3e22, 97, 92, 0 ), |
||||
V( 92, 0x3824, 99, 93, 0 ), |
||||
V( 93, 0x32b4, 99, 94, 0 ), |
||||
V( 94, 0x2e17, 93, 86, 0 ), |
||||
V( 95, 0x56a8, 95, 96, 1 ), |
||||
V( 96, 0x4f46, 101, 97, 0 ), |
||||
V( 97, 0x47e5, 102, 98, 0 ), |
||||
V( 98, 0x41cf, 103, 99, 0 ), |
||||
V( 99, 0x3c3d, 104, 100, 0 ), |
||||
V( 100, 0x375e, 99, 93, 0 ), |
||||
V( 101, 0x5231, 105, 102, 0 ), |
||||
V( 102, 0x4c0f, 106, 103, 0 ), |
||||
V( 103, 0x4639, 107, 104, 0 ), |
||||
V( 104, 0x415e, 103, 99, 0 ), |
||||
V( 105, 0x5627, 105, 106, 1 ), |
||||
V( 106, 0x50e7, 108, 107, 0 ), |
||||
V( 107, 0x4b85, 109, 103, 0 ), |
||||
V( 108, 0x5597, 110, 109, 0 ), |
||||
V( 109, 0x504f, 111, 107, 0 ), |
||||
V( 110, 0x5a10, 110, 111, 1 ), |
||||
V( 111, 0x5522, 112, 109, 0 ), |
||||
V( 112, 0x59eb, 112, 111, 1 ), |
||||
/*
|
||||
* This last entry is used for fixed probability estimate of 0.5 |
||||
* as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851. |
||||
*/ |
||||
V( 113, 0x5a1d, 113, 113, 0 ) |
||||
}; |
@ -0,0 +1,295 @@ |
||||
/*
|
||||
* jcapimin.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* Modified 2003-2010 by Guido Vollbeding. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains application interface code for the compression half |
||||
* of the JPEG library. These are the "minimum" API routines that may be |
||||
* needed in either the normal full-compression case or the transcoding-only |
||||
* case. |
||||
* |
||||
* Most of the routines intended to be called directly by an application |
||||
* are in this file or in jcapistd.c. But also see jcparam.c for |
||||
* parameter-setup helper routines, jcomapi.c for routines shared by |
||||
* compression and decompression, and jctrans.c for the transcoding case. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG compression object. |
||||
* The error manager must already be set up (in case memory manager fails). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize) |
||||
{ |
||||
int i; |
||||
|
||||
/* Guard against version mismatches between library and caller. */ |
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ |
||||
if (version != JPEG_LIB_VERSION) |
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); |
||||
if (structsize != sizeof(struct jpeg_compress_struct)) |
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, |
||||
(int) sizeof(struct jpeg_compress_struct), (int) structsize); |
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set |
||||
* client_data, so we have to save and restore those fields. |
||||
* Note: if application hasn't set client_data, tools like Purify may |
||||
* complain here. |
||||
*/ |
||||
{ |
||||
struct jpeg_error_mgr *err = cinfo->err; |
||||
void *client_data = cinfo->client_data; /* ignore Purify complaint here */ |
||||
MEMZERO(cinfo, sizeof(struct jpeg_compress_struct)); |
||||
cinfo->err = err; |
||||
cinfo->client_data = client_data; |
||||
} |
||||
cinfo->is_decompressor = FALSE; |
||||
|
||||
/* Initialize a memory manager instance for this object */ |
||||
jinit_memory_mgr((j_common_ptr) cinfo); |
||||
|
||||
/* Zero out pointers to permanent structures. */ |
||||
cinfo->progress = NULL; |
||||
cinfo->dest = NULL; |
||||
|
||||
cinfo->comp_info = NULL; |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
||||
cinfo->quant_tbl_ptrs[i] = NULL; |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
cinfo->q_scale_factor[i] = 100; |
||||
#endif |
||||
} |
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL; |
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL; |
||||
} |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 |
||||
/* Must do it here for emit_dqt in case jpeg_write_tables is used */ |
||||
cinfo->block_size = DCTSIZE; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
#endif |
||||
|
||||
cinfo->script_space = NULL; |
||||
|
||||
cinfo->input_gamma = 1.0; /* in case application forgets */ |
||||
|
||||
/* OK, I'm ready */ |
||||
cinfo->global_state = CSTATE_START; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG compression object |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_destroy_compress (j_compress_ptr cinfo) |
||||
{ |
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression operation, |
||||
* but don't destroy the object itself. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_abort_compress (j_compress_ptr cinfo) |
||||
{ |
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Forcibly suppress or un-suppress all quantization and Huffman tables. |
||||
* Marks all currently defined tables as already written (if suppress) |
||||
* or not written (if !suppress). This will control whether they get emitted |
||||
* by a subsequent jpeg_start_compress call. |
||||
* |
||||
* This routine is exported for use by applications that want to produce |
||||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but |
||||
* since it is called by jpeg_start_compress, we put it here --- otherwise |
||||
* jcparam.o would be linked whether the application used it or not. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) |
||||
{ |
||||
int i; |
||||
JQUANT_TBL *qtbl; |
||||
JHUFF_TBL *htbl; |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
||||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) |
||||
qtbl->sent_table = suppress; |
||||
} |
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) |
||||
htbl->sent_table = suppress; |
||||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) |
||||
htbl->sent_table = suppress; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG compression. |
||||
* |
||||
* If a multipass operating mode was selected, this may do a great deal of |
||||
* work including most of the actual output. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_finish_compress (j_compress_ptr cinfo) |
||||
{ |
||||
JDIMENSION iMCU_row; |
||||
|
||||
if (cinfo->global_state == CSTATE_SCANNING || |
||||
cinfo->global_state == CSTATE_RAW_OK) { |
||||
/* Terminate first pass */ |
||||
if (cinfo->next_scanline < cinfo->image_height) |
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); |
||||
(*cinfo->master->finish_pass) (cinfo); |
||||
} else if (cinfo->global_state != CSTATE_WRCOEFS) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Perform any remaining passes */ |
||||
while (! cinfo->master->is_last_pass) { |
||||
(*cinfo->master->prepare_for_pass) (cinfo); |
||||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) iMCU_row; |
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
/* We bypass the main controller and invoke coef controller directly;
|
||||
* all work is being done from the coefficient buffer. |
||||
*/ |
||||
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
} |
||||
(*cinfo->master->finish_pass) (cinfo); |
||||
} |
||||
/* Write EOI, do final cleanup */ |
||||
(*cinfo->marker->write_file_trailer) (cinfo); |
||||
(*cinfo->dest->term_destination) (cinfo); |
||||
/* We can use jpeg_abort to release memory and reset global_state */ |
||||
jpeg_abort((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write a special marker. |
||||
* This is only recommended for writing COM or APPn markers. |
||||
* Must be called after jpeg_start_compress() and before |
||||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data(). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_marker (j_compress_ptr cinfo, int marker, |
||||
const JOCTET *dataptr, unsigned int datalen) |
||||
{ |
||||
void (*write_marker_byte) (j_compress_ptr info, int val); |
||||
|
||||
if (cinfo->next_scanline != 0 || |
||||
(cinfo->global_state != CSTATE_SCANNING && |
||||
cinfo->global_state != CSTATE_RAW_OK && |
||||
cinfo->global_state != CSTATE_WRCOEFS)) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen); |
||||
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */ |
||||
while (datalen--) { |
||||
(*write_marker_byte) (cinfo, *dataptr); |
||||
dataptr++; |
||||
} |
||||
} |
||||
|
||||
/* Same, but piecemeal. */ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen) |
||||
{ |
||||
if (cinfo->next_scanline != 0 || |
||||
(cinfo->global_state != CSTATE_SCANNING && |
||||
cinfo->global_state != CSTATE_RAW_OK && |
||||
cinfo->global_state != CSTATE_WRCOEFS)) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_m_byte (j_compress_ptr cinfo, int val) |
||||
{ |
||||
(*cinfo->marker->write_marker_byte) (cinfo, val); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Alternate compression function: just write an abbreviated table file. |
||||
* Before calling this, all parameters and a data destination must be set up. |
||||
* |
||||
* To produce a pair of files containing abbreviated tables and abbreviated |
||||
* image data, one would proceed as follows: |
||||
* |
||||
* initialize JPEG object |
||||
* set JPEG parameters |
||||
* set destination to table file |
||||
* jpeg_write_tables(cinfo); |
||||
* set destination to image file |
||||
* jpeg_start_compress(cinfo, FALSE); |
||||
* write data... |
||||
* jpeg_finish_compress(cinfo); |
||||
* |
||||
* jpeg_write_tables has the side effect of marking all tables written |
||||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress |
||||
* will not re-emit the tables unless it is passed write_all_tables=TRUE. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_tables (j_compress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* (Re)initialize error mgr and destination modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->dest->init_destination) (cinfo); |
||||
/* Initialize the marker writer ... bit of a crock to do it here. */ |
||||
jinit_marker_writer(cinfo); |
||||
/* Write them tables! */ |
||||
(*cinfo->marker->write_tables_only) (cinfo); |
||||
/* And clean up. */ |
||||
(*cinfo->dest->term_destination) (cinfo); |
||||
/*
|
||||
* In library releases up through v6a, we called jpeg_abort() here to free |
||||
* any working memory allocated by the destination manager and marker |
||||
* writer. Some applications had a problem with that: they allocated space |
||||
* of their own from the library memory manager, and didn't want it to go |
||||
* away during write_tables. So now we do nothing. This will cause a |
||||
* memory leak if an app calls write_tables repeatedly without doing a full |
||||
* compression cycle or otherwise resetting the JPEG object. However, that |
||||
* seems less bad than unexpectedly freeing memory in the normal case. |
||||
* An app that prefers the old behavior can call jpeg_abort for itself after |
||||
* each call to jpeg_write_tables(). |
||||
*/ |
||||
} |
@ -0,0 +1,162 @@ |
||||
/*
|
||||
* jcapistd.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains application interface code for the compression half |
||||
* of the JPEG library. These are the "standard" API routines that are |
||||
* used in the normal full-compression case. They are not used by a |
||||
* transcoding-only application. Note that if an application links in |
||||
* jpeg_start_compress, it will end up linking in the entire compressor. |
||||
* We thus must separate this file from jcapimin.c to avoid linking the |
||||
* whole compression library into a transcoder. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Compression initialization. |
||||
* Before calling this, all parameters and a data destination must be set up. |
||||
* |
||||
* We require a write_all_tables parameter as a failsafe check when writing |
||||
* multiple datastreams from the same compression object. Since prior runs |
||||
* will have left all the tables marked sent_table=TRUE, a subsequent run |
||||
* would emit an abbreviated stream (no tables) by default. This may be what |
||||
* is wanted, but for safety's sake it should not be the default behavior: |
||||
* programmers should have to make a deliberate choice to emit abbreviated |
||||
* images. Therefore the documentation and examples should encourage people |
||||
* to pass write_all_tables=TRUE; then it will take active thought to do the |
||||
* wrong thing. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) |
||||
{ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
if (write_all_tables) |
||||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ |
||||
|
||||
/* (Re)initialize error mgr and destination modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->dest->init_destination) (cinfo); |
||||
/* Perform master selection of active modules */ |
||||
jinit_compress_master(cinfo); |
||||
/* Set up for the first pass */ |
||||
(*cinfo->master->prepare_for_pass) (cinfo); |
||||
/* Ready for application to drive first pass through jpeg_write_scanlines
|
||||
* or jpeg_write_raw_data. |
||||
*/ |
||||
cinfo->next_scanline = 0; |
||||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write some scanlines of data to the JPEG compressor. |
||||
* |
||||
* The return value will be the number of lines actually written. |
||||
* This should be less than the supplied num_lines only in case that |
||||
* the data destination module has requested suspension of the compressor, |
||||
* or if more than image_height scanlines are passed in. |
||||
* |
||||
* Note: we warn about excess calls to jpeg_write_scanlines() since |
||||
* this likely signals an application programmer error. However, |
||||
* excess scanlines passed in the last valid call are *silently* ignored, |
||||
* so that the application need not adjust num_lines for end-of-image |
||||
* when using a multiple-scanline buffer. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, |
||||
JDIMENSION num_lines) |
||||
{ |
||||
JDIMENSION row_ctr, rows_left; |
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->next_scanline >= cinfo->image_height) |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->image_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_scanlines. This lets output of the frame/scan headers be |
||||
* delayed so that application can write COM, etc, markers between |
||||
* jpeg_start_compress and jpeg_write_scanlines. |
||||
*/ |
||||
if (cinfo->master->call_pass_startup) |
||||
(*cinfo->master->pass_startup) (cinfo); |
||||
|
||||
/* Ignore any extra scanlines at bottom of image. */ |
||||
rows_left = cinfo->image_height - cinfo->next_scanline; |
||||
if (num_lines > rows_left) |
||||
num_lines = rows_left; |
||||
|
||||
row_ctr = 0; |
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); |
||||
cinfo->next_scanline += row_ctr; |
||||
return row_ctr; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to write raw data. |
||||
* Processes exactly one iMCU row per call, unless suspended. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, |
||||
JDIMENSION num_lines) |
||||
{ |
||||
JDIMENSION lines_per_iMCU_row; |
||||
|
||||
if (cinfo->global_state != CSTATE_RAW_OK) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->next_scanline >= cinfo->image_height) { |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
return 0; |
||||
} |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->image_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_raw_data. This lets output of the frame/scan headers be |
||||
* delayed so that application can write COM, etc, markers between |
||||
* jpeg_start_compress and jpeg_write_raw_data. |
||||
*/ |
||||
if (cinfo->master->call_pass_startup) |
||||
(*cinfo->master->pass_startup) (cinfo); |
||||
|
||||
/* Verify that at least one iMCU row has been passed. */ |
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; |
||||
if (num_lines < lines_per_iMCU_row) |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
|
||||
/* Directly compress the row. */ |
||||
if (! (*cinfo->coef->compress_data) (cinfo, data)) { |
||||
/* If compressor did not consume the whole row, suspend processing. */ |
||||
return 0; |
||||
} |
||||
|
||||
/* OK, we processed one iMCU row. */ |
||||
cinfo->next_scanline += lines_per_iMCU_row; |
||||
return lines_per_iMCU_row; |
||||
} |
@ -0,0 +1,928 @@ |
||||
/*
|
||||
* jcarith.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Developed 1997-2009 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains portable arithmetic entropy encoding routines for JPEG |
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
||||
* |
||||
* Both sequential and progressive modes are supported in this single module. |
||||
* |
||||
* Suspension is not currently supported in this module. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Expanded entropy encoder object for arithmetic encoding. */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_entropy_encoder pub; /* public fields */ |
||||
|
||||
JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */ |
||||
JLONG a; /* A register, normalized size of coding interval */ |
||||
JLONG sc; /* counter for stacked 0xFF values which might overflow */ |
||||
JLONG zc; /* counter for pending 0x00 output values which might *
|
||||
* be discarded at the end ("Pacman" termination) */ |
||||
int ct; /* bit shift counter, determines when next byte will be written */ |
||||
int buffer; /* buffer for most recent output byte != 0xFF */ |
||||
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
||||
int next_restart_num; /* next restart number to write (0-7) */ |
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */ |
||||
unsigned char *dc_stats[NUM_ARITH_TBLS]; |
||||
unsigned char *ac_stats[NUM_ARITH_TBLS]; |
||||
|
||||
/* Statistics bin for coding with fixed probability 0.5 */ |
||||
unsigned char fixed_bin[4]; |
||||
} arith_entropy_encoder; |
||||
|
||||
typedef arith_entropy_encoder *arith_entropy_ptr; |
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area. |
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding. |
||||
* |
||||
* We use a compact representation with 1 byte per statistics bin, |
||||
* thus the numbers directly represent byte sizes. |
||||
* This 1 byte per statistics bin contains the meaning of the MPS |
||||
* (more probable symbol) in the highest bit (mask 0x80), and the |
||||
* index into the probability estimation state machine table |
||||
* in the lower bits (mask 0x7F). |
||||
*/ |
||||
|
||||
#define DC_STAT_BINS 64 |
||||
#define AC_STAT_BINS 256 |
||||
|
||||
/* NOTE: Uncomment the following #define if you want to use the
|
||||
* given formula for calculating the AC conditioning parameter Kx |
||||
* for spectral selection progressive coding in section G.1.3.2 |
||||
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). |
||||
* Although the spec and P&M authors claim that this "has proven |
||||
* to give good results for 8 bit precision samples", I'm not |
||||
* convinced yet that this is really beneficial. |
||||
* Early tests gave only very marginal compression enhancements |
||||
* (a few - around 5 or so - bytes even for very large files), |
||||
* which would turn out rather negative if we'd suppress the |
||||
* DAC (Define Arithmetic Conditioning) marker segments for |
||||
* the default parameters in the future. |
||||
* Note that currently the marker writing module emits 12-byte |
||||
* DAC segments for a full-component scan in a color image. |
||||
* This is not worth worrying about IMHO. However, since the |
||||
* spec defines the default values to be used if the tables |
||||
* are omitted (unlike Huffman tables, which are required |
||||
* anyway), one might optimize this behaviour in the future, |
||||
* and then it would be disadvantageous to use custom tables if |
||||
* they don't provide sufficient gain to exceed the DAC size. |
||||
* |
||||
* On the other hand, I'd consider it as a reasonable result |
||||
* that the conditioning has no significant influence on the |
||||
* compression performance. This means that the basic |
||||
* statistical model is already rather stable. |
||||
* |
||||
* Thus, at the moment, we use the default conditioning values |
||||
* anyway, and do not use the custom formula. |
||||
* |
||||
#define CALCULATE_SPECTRAL_CONDITIONING |
||||
*/ |
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
|
||||
* We assume that int right shift is unsigned if JLONG right shift is, |
||||
* which should be safe. |
||||
*/ |
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
||||
#define ISHIFT_TEMPS int ishift_temp; |
||||
#define IRIGHT_SHIFT(x,shft) \ |
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||
(ishift_temp >> (shft))) |
||||
#else |
||||
#define ISHIFT_TEMPS |
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_byte (int val, j_compress_ptr cinfo) |
||||
/* Write next output byte; we do not support suspension in this module. */ |
||||
{ |
||||
struct jpeg_destination_mgr *dest = cinfo->dest; |
||||
|
||||
*dest->next_output_byte++ = (JOCTET) val; |
||||
if (--dest->free_in_buffer == 0) |
||||
if (! (*dest->empty_output_buffer) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of an arithmetic-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass (j_compress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
||||
JLONG temp; |
||||
|
||||
/* Section D.1.8: Termination of encoding */ |
||||
|
||||
/* Find the e->c in the coding interval with the largest
|
||||
* number of trailing zero bits */ |
||||
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) |
||||
e->c = temp + 0x8000L; |
||||
else |
||||
e->c = temp; |
||||
/* Send remaining bytes to output */ |
||||
e->c <<= e->ct; |
||||
if (e->c & 0xF8000000L) { |
||||
/* One final overflow has to be handled */ |
||||
if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer + 1, cinfo); |
||||
if (e->buffer + 1 == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
} |
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
||||
e->sc = 0; |
||||
} else { |
||||
if (e->buffer == 0) |
||||
++e->zc; |
||||
else if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer, cinfo); |
||||
} |
||||
if (e->sc) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
do { |
||||
emit_byte(0xFF, cinfo); |
||||
emit_byte(0x00, cinfo); |
||||
} while (--e->sc); |
||||
} |
||||
} |
||||
/* Output final bytes only if they are not 0x00 */ |
||||
if (e->c & 0x7FFF800L) { |
||||
if (e->zc) /* output final pending zero bytes */ |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte((e->c >> 19) & 0xFF, cinfo); |
||||
if (((e->c >> 19) & 0xFF) == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
if (e->c & 0x7F800L) { |
||||
emit_byte((e->c >> 11) & 0xFF, cinfo); |
||||
if (((e->c >> 11) & 0xFF) == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic encoding routine (common in JPEG and JBIG). |
||||
* This needs to go as fast as possible. |
||||
* Machine-dependent optimization facilities |
||||
* are not utilized in this portable implementation. |
||||
* However, this code should be fairly efficient and |
||||
* may be a good base for further optimizations anyway. |
||||
* |
||||
* Parameter 'val' to be encoded may be 0 or 1 (binary decision). |
||||
* |
||||
* Note: I've added full "Pacman" termination support to the |
||||
* byte output routines, which is equivalent to the optional |
||||
* Discard_final_zeros procedure (Figure D.15) in the spec. |
||||
* Thus, we always produce the shortest possible output |
||||
* stream compliant to the spec (no trailing zero bytes, |
||||
* except for FF stuffing). |
||||
* |
||||
* I've also introduced a new scheme for accessing |
||||
* the probability estimation state machine table, |
||||
* derived from Markus Kuhn's JBIG implementation. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) |
||||
{ |
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
||||
register unsigned char nl, nm; |
||||
register JLONG qe, temp; |
||||
register int sv; |
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine |
||||
*/ |
||||
sv = *st; |
||||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
||||
|
||||
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */ |
||||
e->a -= qe; |
||||
if (val != (sv >> 7)) { |
||||
/* Encode the less probable symbol */ |
||||
if (e->a >= qe) { |
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange |
||||
* the two symbols for coding efficiency, otherwise code the LPS |
||||
* as usual: */ |
||||
e->c += e->a; |
||||
e->a = qe; |
||||
} |
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
||||
} else { |
||||
/* Encode the more probable symbol */ |
||||
if (e->a >= 0x8000L) |
||||
return; /* A >= 0x8000 -> ready, no renormalization required */ |
||||
if (e->a < qe) { |
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange |
||||
* the two symbols for coding efficiency: */ |
||||
e->c += e->a; |
||||
e->a = qe; |
||||
} |
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
||||
} |
||||
|
||||
/* Renormalization & data output per section D.1.6 */ |
||||
do { |
||||
e->a <<= 1; |
||||
e->c <<= 1; |
||||
if (--e->ct == 0) { |
||||
/* Another byte is ready for output */ |
||||
temp = e->c >> 19; |
||||
if (temp > 0xFF) { |
||||
/* Handle overflow over all stacked 0xFF bytes */ |
||||
if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer + 1, cinfo); |
||||
if (e->buffer + 1 == 0xFF) |
||||
emit_byte(0x00, cinfo); |
||||
} |
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
||||
e->sc = 0; |
||||
/* Note: The 3 spacer bits in the C register guarantee
|
||||
* that the new buffer byte can't be 0xFF here |
||||
* (see page 160 in the P&M JPEG book). */ |
||||
e->buffer = temp & 0xFF; /* new output byte, might overflow later */ |
||||
} else if (temp == 0xFF) { |
||||
++e->sc; /* stack 0xFF byte (which might overflow later) */ |
||||
} else { |
||||
/* Output all stacked 0xFF bytes, they will not overflow any more */ |
||||
if (e->buffer == 0) |
||||
++e->zc; |
||||
else if (e->buffer >= 0) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
emit_byte(e->buffer, cinfo); |
||||
} |
||||
if (e->sc) { |
||||
if (e->zc) |
||||
do emit_byte(0x00, cinfo); |
||||
while (--e->zc); |
||||
do { |
||||
emit_byte(0xFF, cinfo); |
||||
emit_byte(0x00, cinfo); |
||||
} while (--e->sc); |
||||
} |
||||
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ |
||||
} |
||||
e->c &= 0x7FFFFL; |
||||
e->ct += 8; |
||||
} |
||||
} while (e->a < 0x8000L); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_restart (j_compress_ptr cinfo, int restart_num) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
finish_pass(cinfo); |
||||
|
||||
emit_byte(0xFF, cinfo); |
||||
emit_byte(JPEG_RST0 + restart_num, cinfo); |
||||
|
||||
/* Re-initialize statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
||||
/* Reset DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->progressive_mode == 0 || cinfo->Se) { |
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
||||
} |
||||
} |
||||
|
||||
/* Reset arithmetic encoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0x10000L; |
||||
entropy->sc = 0; |
||||
entropy->zc = 0; |
||||
entropy->ct = 11; |
||||
entropy->buffer = -1; /* empty */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int blkn, ci, tbl; |
||||
int v, v2, m; |
||||
ISHIFT_TEMPS |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift. |
||||
*/ |
||||
m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); |
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */ |
||||
if ((v = m - entropy->last_dc_val[ci]) == 0) { |
||||
arith_encode(cinfo, st, 0); |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
} else { |
||||
entropy->last_dc_val[ci] = m; |
||||
arith_encode(cinfo, st, 1); |
||||
/* Figure F.6: Encoding nonzero value v */ |
||||
/* Figure F.7: Encoding the sign of v */ |
||||
if (v > 0) { |
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
||||
st += 2; /* Table F.4: SP = S0 + 2 */ |
||||
entropy->dc_context[ci] = 4; /* small positive diff category */ |
||||
} else { |
||||
v = -v; |
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
||||
st += 3; /* Table F.4: SN = S0 + 3 */ |
||||
entropy->dc_context[ci] = 8; /* small negative diff category */ |
||||
} |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] += 8; /* large diff category */ |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int tbl, k, ke; |
||||
int v, v2, m; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
/* Encode the MCU data block */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
||||
|
||||
/* Establish EOB (end-of-block) index */ |
||||
for (ke = cinfo->Se; ke > 0; ke--) |
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably |
||||
* in C, we shift after obtaining the absolute value. |
||||
*/ |
||||
if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
||||
if (v >>= cinfo->Al) break; |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) break; |
||||
} |
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */ |
||||
for (k = cinfo->Ss; k <= ke; k++) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
arith_encode(cinfo, st, 0); /* EOB decision */ |
||||
for (;;) { |
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
||||
if (v >>= cinfo->Al) { |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 0); |
||||
break; |
||||
} |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) { |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 1); |
||||
break; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++; |
||||
} |
||||
st += 2; |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
if (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
/* Encode EOB decision only if k <= cinfo->Se */ |
||||
if (k <= cinfo->Se) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
arith_encode(cinfo, st, 1); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
unsigned char *st; |
||||
int Al, blkn; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
st = entropy->fixed_bin; /* use fixed probability estimation */ |
||||
Al = cinfo->Al; |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
/* We simply emit the Al'th bit of the DC coefficient value. */ |
||||
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int tbl, k, ke, kex; |
||||
int v; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
/* Encode the MCU data block */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
/* Section G.1.3.3: Encoding of AC coefficients */ |
||||
|
||||
/* Establish EOB (end-of-block) index */ |
||||
for (ke = cinfo->Se; ke > 0; ke--) |
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably |
||||
* in C, we shift after obtaining the absolute value. |
||||
*/ |
||||
if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
||||
if (v >>= cinfo->Al) break; |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) break; |
||||
} |
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */ |
||||
for (kex = ke; kex > 0; kex--) |
||||
if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { |
||||
if (v >>= cinfo->Ah) break; |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Ah) break; |
||||
} |
||||
|
||||
/* Figure G.10: Encode_AC_Coefficients_SA */ |
||||
for (k = cinfo->Ss; k <= ke; k++) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
if (k > kex) |
||||
arith_encode(cinfo, st, 0); /* EOB decision */ |
||||
for (;;) { |
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
||||
if (v >>= cinfo->Al) { |
||||
if (v >> 1) /* previously nonzero coef */ |
||||
arith_encode(cinfo, st + 2, (v & 1)); |
||||
else { /* newly nonzero coef */ |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 0); |
||||
} |
||||
break; |
||||
} |
||||
} else { |
||||
v = -v; |
||||
if (v >>= cinfo->Al) { |
||||
if (v >> 1) /* previously nonzero coef */ |
||||
arith_encode(cinfo, st + 2, (v & 1)); |
||||
else { /* newly nonzero coef */ |
||||
arith_encode(cinfo, st + 1, 1); |
||||
arith_encode(cinfo, entropy->fixed_bin, 1); |
||||
} |
||||
break; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++; |
||||
} |
||||
} |
||||
/* Encode EOB decision only if k <= cinfo->Se */ |
||||
if (k <= cinfo->Se) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
arith_encode(cinfo, st, 1); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Encode and output one MCU's worth of arithmetic-compressed coefficients. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
jpeg_component_info *compptr; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int blkn, ci, tbl, k, ke; |
||||
int v, v2, m; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
emit_restart(cinfo, entropy->next_restart_num); |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
||||
|
||||
tbl = compptr->dc_tbl_no; |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */ |
||||
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { |
||||
arith_encode(cinfo, st, 0); |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
} else { |
||||
entropy->last_dc_val[ci] = (*block)[0]; |
||||
arith_encode(cinfo, st, 1); |
||||
/* Figure F.6: Encoding nonzero value v */ |
||||
/* Figure F.7: Encoding the sign of v */ |
||||
if (v > 0) { |
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
||||
st += 2; /* Table F.4: SP = S0 + 2 */ |
||||
entropy->dc_context[ci] = 4; /* small positive diff category */ |
||||
} else { |
||||
v = -v; |
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
||||
st += 3; /* Table F.4: SN = S0 + 3 */ |
||||
entropy->dc_context[ci] = 8; /* small negative diff category */ |
||||
} |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] += 8; /* large diff category */ |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
||||
|
||||
tbl = compptr->ac_tbl_no; |
||||
|
||||
/* Establish EOB (end-of-block) index */ |
||||
for (ke = DCTSIZE2 - 1; ke > 0; ke--) |
||||
if ((*block)[jpeg_natural_order[ke]]) break; |
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */ |
||||
for (k = 1; k <= ke; k++) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
arith_encode(cinfo, st, 0); /* EOB decision */ |
||||
while ((v = (*block)[jpeg_natural_order[k]]) == 0) { |
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++; |
||||
} |
||||
arith_encode(cinfo, st + 1, 1); |
||||
/* Figure F.6: Encoding nonzero value v */ |
||||
/* Figure F.7: Encoding the sign of v */ |
||||
if (v > 0) { |
||||
arith_encode(cinfo, entropy->fixed_bin, 0); |
||||
} else { |
||||
v = -v; |
||||
arith_encode(cinfo, entropy->fixed_bin, 1); |
||||
} |
||||
st += 2; |
||||
/* Figure F.8: Encoding the magnitude category of v */ |
||||
m = 0; |
||||
if (v -= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m = 1; |
||||
v2 = v; |
||||
if (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (v2 >>= 1) { |
||||
arith_encode(cinfo, st, 1); |
||||
m <<= 1; |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
arith_encode(cinfo, st, 0); |
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0); |
||||
} |
||||
/* Encode EOB decision only if k <= DCTSIZE2 - 1 */ |
||||
if (k <= DCTSIZE2 - 1) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
arith_encode(cinfo, st, 1); |
||||
} |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass (j_compress_ptr cinfo, boolean gather_statistics) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci, tbl; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (gather_statistics) |
||||
/* Make sure to avoid that in the master control logic!
|
||||
* We are fully adaptive here and need no extra |
||||
* statistics gathering pass! |
||||
*/ |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
|
||||
/* We assume jcmaster.c already validated the progressive scan parameters. */ |
||||
|
||||
/* Select execution routines */ |
||||
if (cinfo->progressive_mode) { |
||||
if (cinfo->Ah == 0) { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.encode_mcu = encode_mcu_DC_first; |
||||
else |
||||
entropy->pub.encode_mcu = encode_mcu_AC_first; |
||||
} else { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine; |
||||
else |
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine; |
||||
} |
||||
} else |
||||
entropy->pub.encode_mcu = encode_mcu; |
||||
|
||||
/* Allocate & initialize requested statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
||||
tbl = compptr->dc_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->dc_stats[tbl] == NULL) |
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
||||
/* Initialize DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->progressive_mode == 0 || cinfo->Se) { |
||||
tbl = compptr->ac_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->ac_stats[tbl] == NULL) |
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
||||
#ifdef CALCULATE_SPECTRAL_CONDITIONING |
||||
if (cinfo->progressive_mode) |
||||
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ |
||||
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
/* Initialize arithmetic encoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0x10000L; |
||||
entropy->sc = 0; |
||||
entropy->zc = 0; |
||||
entropy->ct = 11; |
||||
entropy->buffer = -1; /* empty */ |
||||
|
||||
/* Initialize restart stuff */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy encoding. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_arith_encoder (j_compress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy; |
||||
int i; |
||||
|
||||
entropy = (arith_entropy_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(arith_entropy_encoder)); |
||||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
||||
entropy->pub.start_pass = start_pass; |
||||
entropy->pub.finish_pass = finish_pass; |
||||
|
||||
/* Mark tables unallocated */ |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
entropy->dc_stats[i] = NULL; |
||||
entropy->ac_stats[i] = NULL; |
||||
} |
||||
|
||||
/* Initialize index for fixed probability estimation */ |
||||
entropy->fixed_bin[0] = 113; |
||||
} |
@ -0,0 +1,449 @@ |
||||
/*
|
||||
* jccoefct.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code and |
||||
* information relevant to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the coefficient buffer controller for compression. |
||||
* This controller is the top level of the JPEG compressor proper. |
||||
* The coefficient buffer lies between forward-DCT and entropy encoding steps. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||
* and also for writing multiple-scan JPEG files. In all cases, the DCT |
||||
* step is run during the first pass, and subsequent passes need only read |
||||
* the buffered coefficients. |
||||
*/ |
||||
#ifdef ENTROPY_OPT_SUPPORTED |
||||
#define FULL_COEF_BUFFER_SUPPORTED |
||||
#else |
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
#define FULL_COEF_BUFFER_SUPPORTED |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_coef_controller pub; /* public fields */ |
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
||||
|
||||
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||
* (although this may prove a bit slow in practice). We allocate a |
||||
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each |
||||
* MCU constructed and sent. In multi-pass modes, this array points to the |
||||
* current MCU's blocks within the virtual arrays. |
||||
*/ |
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */ |
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
||||
} my_coef_controller; |
||||
|
||||
typedef my_coef_controller *my_coef_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(boolean) compress_data |
||||
(j_compress_ptr cinfo, JSAMPIMAGE input_buf); |
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
METHODDEF(boolean) compress_first_pass |
||||
(j_compress_ptr cinfo, JSAMPIMAGE input_buf); |
||||
METHODDEF(boolean) compress_output |
||||
(j_compress_ptr cinfo, JSAMPIMAGE input_buf); |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
start_iMCU_row (j_compress_ptr cinfo) |
||||
/* Reset within-iMCU-row counters for a new row */ |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
||||
* But at the bottom of the image, process only what's left. |
||||
*/ |
||||
if (cinfo->comps_in_scan > 1) { |
||||
coef->MCU_rows_per_iMCU_row = 1; |
||||
} else { |
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
||||
else |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
||||
} |
||||
|
||||
coef->mcu_ctr = 0; |
||||
coef->MCU_vert_offset = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
coef->iMCU_row_num = 0; |
||||
start_iMCU_row(cinfo); |
||||
|
||||
switch (pass_mode) { |
||||
case JBUF_PASS_THRU: |
||||
if (coef->whole_image[0] != NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
coef->pub.compress_data = compress_data; |
||||
break; |
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
case JBUF_SAVE_AND_PASS: |
||||
if (coef->whole_image[0] == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
coef->pub.compress_data = compress_first_pass; |
||||
break; |
||||
case JBUF_CRANK_DEST: |
||||
if (coef->whole_image[0] == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
coef->pub.compress_data = compress_output; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the image. |
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||||
* |
||||
* NB: input_buf contains a plane for each component in image, |
||||
* which we index according to the component's SOF position. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
int blkn, bi, ci, yindex, yoffset, blockcnt; |
||||
JDIMENSION ypos, xpos; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Loop to write as much as one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; |
||||
MCU_col_num++) { |
||||
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||
* Each call on forward_DCT processes a horizontal row of DCT blocks |
||||
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks |
||||
* sequentially. Dummy blocks at the right or bottom edge are filled in |
||||
* specially. The data in them does not matter for image reconstruction, |
||||
* so we fill them with values that will encode to the smallest amount of |
||||
* data, viz: all zeroes in the AC entries, DC entries equal to previous |
||||
* block's DC value. (Thanks to Thomas Kinsman for this idea.) |
||||
*/ |
||||
blkn = 0; |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
||||
: compptr->last_col_width; |
||||
xpos = MCU_col_num * compptr->MCU_sample_width; |
||||
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
if (coef->iMCU_row_num < last_iMCU_row || |
||||
yoffset+yindex < compptr->last_row_height) { |
||||
(*cinfo->fdct->forward_DCT) (cinfo, compptr, |
||||
input_buf[compptr->component_index], |
||||
coef->MCU_buffer[blkn], |
||||
ypos, xpos, (JDIMENSION) blockcnt); |
||||
if (blockcnt < compptr->MCU_width) { |
||||
/* Create some dummy blocks at the right edge of the image. */ |
||||
jzero_far((void *) coef->MCU_buffer[blkn + blockcnt], |
||||
(compptr->MCU_width - blockcnt) * sizeof(JBLOCK)); |
||||
for (bi = blockcnt; bi < compptr->MCU_width; bi++) { |
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; |
||||
} |
||||
} |
||||
} else { |
||||
/* Create a row of dummy blocks at the bottom of the image. */ |
||||
jzero_far((void *) coef->MCU_buffer[blkn], |
||||
compptr->MCU_width * sizeof(JBLOCK)); |
||||
for (bi = 0; bi < compptr->MCU_width; bi++) { |
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; |
||||
} |
||||
} |
||||
blkn += compptr->MCU_width; |
||||
ypos += DCTSIZE; |
||||
} |
||||
} |
||||
/* Try to write the MCU. In event of a suspension failure, we will
|
||||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
||||
*/ |
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->mcu_ctr = MCU_col_num; |
||||
return FALSE; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->mcu_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
coef->iMCU_row_num++; |
||||
start_iMCU_row(cinfo); |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
|
||||
/*
|
||||
* Process some data in the first pass of a multi-pass case. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the image. |
||||
* This amount of data is read from the source buffer, DCT'd and quantized, |
||||
* and saved into the virtual arrays. We also generate suitable dummy blocks |
||||
* as needed at the right and lower edges. (The dummy blocks are constructed |
||||
* in the virtual arrays, which have been padded appropriately.) This makes |
||||
* it possible for subsequent passes not to worry about real vs. dummy blocks. |
||||
* |
||||
* We must also emit the data to the entropy encoder. This is conveniently |
||||
* done by calling compress_output() after we've loaded the current strip |
||||
* of the virtual arrays. |
||||
* |
||||
* NB: input_buf contains a plane for each component in image. All |
||||
* components are DCT'd and loaded into the virtual arrays in this pass. |
||||
* However, it may be that only a subset of the components are emitted to |
||||
* the entropy encoder during this first pass; be careful about looking |
||||
* at the scan-dependent variables (MCU dimensions, etc). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
JDIMENSION blocks_across, MCUs_across, MCUindex; |
||||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
||||
JCOEF lastDC; |
||||
jpeg_component_info *compptr; |
||||
JBLOCKARRAY buffer; |
||||
JBLOCKROW thisblockrow, lastblockrow; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Align the virtual buffer for this component. */ |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
coef->iMCU_row_num * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, TRUE); |
||||
/* Count non-dummy DCT block rows in this iMCU row. */ |
||||
if (coef->iMCU_row_num < last_iMCU_row) |
||||
block_rows = compptr->v_samp_factor; |
||||
else { |
||||
/* NB: can't use last_row_height here, since may not be set! */ |
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
||||
} |
||||
blocks_across = compptr->width_in_blocks; |
||||
h_samp_factor = compptr->h_samp_factor; |
||||
/* Count number of dummy blocks to be added at the right margin. */ |
||||
ndummy = (int) (blocks_across % h_samp_factor); |
||||
if (ndummy > 0) |
||||
ndummy = h_samp_factor - ndummy; |
||||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||
* on forward_DCT processes a complete horizontal row of DCT blocks. |
||||
*/ |
||||
for (block_row = 0; block_row < block_rows; block_row++) { |
||||
thisblockrow = buffer[block_row]; |
||||
(*cinfo->fdct->forward_DCT) (cinfo, compptr, |
||||
input_buf[ci], thisblockrow, |
||||
(JDIMENSION) (block_row * DCTSIZE), |
||||
(JDIMENSION) 0, blocks_across); |
||||
if (ndummy > 0) { |
||||
/* Create dummy blocks at the right edge of the image. */ |
||||
thisblockrow += blocks_across; /* => first dummy block */ |
||||
jzero_far((void *) thisblockrow, ndummy * sizeof(JBLOCK)); |
||||
lastDC = thisblockrow[-1][0]; |
||||
for (bi = 0; bi < ndummy; bi++) { |
||||
thisblockrow[bi][0] = lastDC; |
||||
} |
||||
} |
||||
} |
||||
/* If at end of image, create dummy block rows as needed.
|
||||
* The tricky part here is that within each MCU, we want the DC values |
||||
* of the dummy blocks to match the last real block's DC value. |
||||
* This squeezes a few more bytes out of the resulting file... |
||||
*/ |
||||
if (coef->iMCU_row_num == last_iMCU_row) { |
||||
blocks_across += ndummy; /* include lower right corner */ |
||||
MCUs_across = blocks_across / h_samp_factor; |
||||
for (block_row = block_rows; block_row < compptr->v_samp_factor; |
||||
block_row++) { |
||||
thisblockrow = buffer[block_row]; |
||||
lastblockrow = buffer[block_row-1]; |
||||
jzero_far((void *) thisblockrow, |
||||
(size_t) (blocks_across * sizeof(JBLOCK))); |
||||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
||||
lastDC = lastblockrow[h_samp_factor-1][0]; |
||||
for (bi = 0; bi < h_samp_factor; bi++) { |
||||
thisblockrow[bi][0] = lastDC; |
||||
} |
||||
thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
||||
lastblockrow += h_samp_factor; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
/* NB: compress_output will increment iMCU_row_num if successful.
|
||||
* A suspension return will result in redoing all the work above next time. |
||||
*/ |
||||
|
||||
/* Emit data to the entropy encoder, sharing code with subsequent passes */ |
||||
return compress_output(cinfo, input_buf); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in subsequent passes of a multi-pass case. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the scan. |
||||
* The data is obtained from the virtual arrays and fed to the entropy coder. |
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||||
* |
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
int blkn, ci, xindex, yindex, yoffset; |
||||
JDIMENSION start_col; |
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
||||
JBLOCKROW buffer_ptr; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Align the virtual buffers for the components used in this scan.
|
||||
* NB: during first pass, this is safe only because the buffers will |
||||
* already be aligned properly, so jmemmgr.c won't need to do any I/O. |
||||
*/ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
buffer[ci] = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
||||
coef->iMCU_row_num * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, FALSE); |
||||
} |
||||
|
||||
/* Loop to process one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
||||
MCU_col_num++) { |
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
||||
blkn = 0; /* index of current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
start_col = MCU_col_num * compptr->MCU_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
||||
coef->MCU_buffer[blkn++] = buffer_ptr++; |
||||
} |
||||
} |
||||
} |
||||
/* Try to write the MCU. */ |
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->mcu_ctr = MCU_col_num; |
||||
return FALSE; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->mcu_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
coef->iMCU_row_num++; |
||||
start_iMCU_row(cinfo); |
||||
return TRUE; |
||||
} |
||||
|
||||
#endif /* FULL_COEF_BUFFER_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_coef_ptr coef; |
||||
|
||||
coef = (my_coef_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_coef_controller)); |
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef; |
||||
coef->pub.start_pass = start_pass_coef; |
||||
|
||||
/* Create the coefficient buffer. */ |
||||
if (need_full_buffer) { |
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED |
||||
/* Allocate a full-image virtual array for each component, */ |
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
||||
(long) compptr->h_samp_factor), |
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
||||
(long) compptr->v_samp_factor), |
||||
(JDIMENSION) compptr->v_samp_factor); |
||||
} |
||||
#else |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
#endif |
||||
} else { |
||||
/* We only need a single-MCU buffer. */ |
||||
JBLOCKROW buffer; |
||||
int i; |
||||
|
||||
buffer = (JBLOCKROW) |
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
||||
coef->MCU_buffer[i] = buffer + i; |
||||
} |
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
||||
} |
||||
} |
@ -0,0 +1,148 @@ |
||||
/*
|
||||
* jccolext.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2009-2012, 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains input colorspace conversion routines. |
||||
*/ |
||||
|
||||
|
||||
/* This file is included by jccolor.c */ |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* |
||||
* Note that we change from the application's interleaved-pixel format |
||||
* to our internal noninterleaved, one-plane-per-component format. |
||||
* The input buffer is therefore three times as wide as the output buffer. |
||||
* |
||||
* A starting row offset is provided only for the output buffer. The caller |
||||
* can easily adjust the passed input_buf value to accommodate any row |
||||
* offset required on that side. |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
rgb_ycc_convert_internal (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int r, g, b; |
||||
register JLONG * ctab = cconvert->rgb_ycc_tab; |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr0, outptr1, outptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = GETJSAMPLE(inptr[RGB_RED]); |
||||
g = GETJSAMPLE(inptr[RGB_GREEN]); |
||||
b = GETJSAMPLE(inptr[RGB_BLUE]); |
||||
inptr += RGB_PIXELSIZE; |
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation. |
||||
* Hence the value being shifted is never negative, and we don't |
||||
* need the general RIGHT_SHIFT macro. |
||||
*/ |
||||
/* Y */ |
||||
outptr0[col] = (JSAMPLE) |
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cb */ |
||||
outptr1[col] = (JSAMPLE) |
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cr */ |
||||
outptr2[col] = (JSAMPLE) |
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) |
||||
>> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/ |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles RGB->grayscale conversion, which is the same |
||||
* as the RGB->Y portion of RGB->YCbCr. |
||||
* We assume rgb_ycc_start has been called (we only use the Y tables). |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
rgb_gray_convert_internal (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int r, g, b; |
||||
register JLONG * ctab = cconvert->rgb_ycc_tab; |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr = output_buf[0][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = GETJSAMPLE(inptr[RGB_RED]); |
||||
g = GETJSAMPLE(inptr[RGB_GREEN]); |
||||
b = GETJSAMPLE(inptr[RGB_BLUE]); |
||||
inptr += RGB_PIXELSIZE; |
||||
/* Y */ |
||||
outptr[col] = (JSAMPLE) |
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
||||
>> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles extended RGB->plain RGB conversion |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
rgb_rgb_convert_internal (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr0, outptr1, outptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
outptr0[col] = GETJSAMPLE(inptr[RGB_RED]); |
||||
outptr1[col] = GETJSAMPLE(inptr[RGB_GREEN]); |
||||
outptr2[col] = GETJSAMPLE(inptr[RGB_BLUE]); |
||||
inptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,719 @@ |
||||
/*
|
||||
* jccolor.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2009-2012, 2015, D. R. Commander. |
||||
* Copyright (C) 2014, MIPS Technologies, Inc., California. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains input colorspace conversion routines. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jsimd.h" |
||||
#include "jconfigint.h" |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_color_converter pub; /* public fields */ |
||||
|
||||
/* Private state for RGB->YCC conversion */ |
||||
JLONG *rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ |
||||
} my_color_converter; |
||||
|
||||
typedef my_color_converter *my_cconvert_ptr; |
||||
|
||||
|
||||
/**************** RGB -> YCbCr conversion: most common case **************/ |
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are |
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. |
||||
* The conversion equations to be implemented are therefore |
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B |
||||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE |
||||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE |
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) |
||||
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, |
||||
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and |
||||
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) |
||||
* were not represented exactly. Now we sacrifice exact representation of |
||||
* maximum red and maximum blue in order to get exact grayscales. |
||||
* |
||||
* To avoid floating-point arithmetic, we represent the fractional constants |
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide |
||||
* the products by 2^16, with appropriate rounding, to get the correct answer. |
||||
* |
||||
* For even more speed, we avoid doing any multiplications in the inner loop |
||||
* by precalculating the constants times R,G,B for all possible values. |
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); |
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for |
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing |
||||
* colorspace anyway. |
||||
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included |
||||
* in the tables to save adding them separately in the inner loop. |
||||
*/ |
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
||||
#define CBCR_OFFSET ((JLONG) CENTERJSAMPLE << SCALEBITS) |
||||
#define ONE_HALF ((JLONG) 1 << (SCALEBITS-1)) |
||||
#define FIX(x) ((JLONG) ((x) * (1L<<SCALEBITS) + 0.5)) |
||||
|
||||
/* We allocate one big table and divide it up into eight parts, instead of
|
||||
* doing eight alloc_small requests. This lets us use a single table base |
||||
* address, which can be held in a register in the inner loops on many |
||||
* machines (more than can hold all eight addresses, anyway). |
||||
*/ |
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */ |
||||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ |
||||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ |
||||
#define R_CB_OFF (3*(MAXJSAMPLE+1)) |
||||
#define G_CB_OFF (4*(MAXJSAMPLE+1)) |
||||
#define B_CB_OFF (5*(MAXJSAMPLE+1)) |
||||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ |
||||
#define G_CR_OFF (6*(MAXJSAMPLE+1)) |
||||
#define B_CR_OFF (7*(MAXJSAMPLE+1)) |
||||
#define TABLE_SIZE (8*(MAXJSAMPLE+1)) |
||||
|
||||
|
||||
/* Include inline routines for colorspace extensions */ |
||||
|
||||
#include "jccolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
|
||||
#define RGB_RED EXT_RGB_RED |
||||
#define RGB_GREEN EXT_RGB_GREEN |
||||
#define RGB_BLUE EXT_RGB_BLUE |
||||
#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE |
||||
#define rgb_ycc_convert_internal extrgb_ycc_convert_internal |
||||
#define rgb_gray_convert_internal extrgb_gray_convert_internal |
||||
#define rgb_rgb_convert_internal extrgb_rgb_convert_internal |
||||
#include "jccolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef rgb_ycc_convert_internal |
||||
#undef rgb_gray_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_RGBX_RED |
||||
#define RGB_GREEN EXT_RGBX_GREEN |
||||
#define RGB_BLUE EXT_RGBX_BLUE |
||||
#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE |
||||
#define rgb_ycc_convert_internal extrgbx_ycc_convert_internal |
||||
#define rgb_gray_convert_internal extrgbx_gray_convert_internal |
||||
#define rgb_rgb_convert_internal extrgbx_rgb_convert_internal |
||||
#include "jccolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef rgb_ycc_convert_internal |
||||
#undef rgb_gray_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_BGR_RED |
||||
#define RGB_GREEN EXT_BGR_GREEN |
||||
#define RGB_BLUE EXT_BGR_BLUE |
||||
#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE |
||||
#define rgb_ycc_convert_internal extbgr_ycc_convert_internal |
||||
#define rgb_gray_convert_internal extbgr_gray_convert_internal |
||||
#define rgb_rgb_convert_internal extbgr_rgb_convert_internal |
||||
#include "jccolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef rgb_ycc_convert_internal |
||||
#undef rgb_gray_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_BGRX_RED |
||||
#define RGB_GREEN EXT_BGRX_GREEN |
||||
#define RGB_BLUE EXT_BGRX_BLUE |
||||
#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE |
||||
#define rgb_ycc_convert_internal extbgrx_ycc_convert_internal |
||||
#define rgb_gray_convert_internal extbgrx_gray_convert_internal |
||||
#define rgb_rgb_convert_internal extbgrx_rgb_convert_internal |
||||
#include "jccolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef rgb_ycc_convert_internal |
||||
#undef rgb_gray_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_XBGR_RED |
||||
#define RGB_GREEN EXT_XBGR_GREEN |
||||
#define RGB_BLUE EXT_XBGR_BLUE |
||||
#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE |
||||
#define rgb_ycc_convert_internal extxbgr_ycc_convert_internal |
||||
#define rgb_gray_convert_internal extxbgr_gray_convert_internal |
||||
#define rgb_rgb_convert_internal extxbgr_rgb_convert_internal |
||||
#include "jccolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef rgb_ycc_convert_internal |
||||
#undef rgb_gray_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_XRGB_RED |
||||
#define RGB_GREEN EXT_XRGB_GREEN |
||||
#define RGB_BLUE EXT_XRGB_BLUE |
||||
#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE |
||||
#define rgb_ycc_convert_internal extxrgb_ycc_convert_internal |
||||
#define rgb_gray_convert_internal extxrgb_gray_convert_internal |
||||
#define rgb_rgb_convert_internal extxrgb_rgb_convert_internal |
||||
#include "jccolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef rgb_ycc_convert_internal |
||||
#undef rgb_gray_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->YCC colorspace conversion. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_ycc_start (j_compress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
JLONG *rgb_ycc_tab; |
||||
JLONG i; |
||||
|
||||
/* Allocate and fill in the conversion tables. */ |
||||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (JLONG *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(TABLE_SIZE * sizeof(JLONG))); |
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) { |
||||
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; |
||||
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; |
||||
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; |
||||
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; |
||||
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; |
||||
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
|
||||
* This ensures that the maximum output will round to MAXJSAMPLE |
||||
* not MAXJSAMPLE+1, and thus that we don't have to range-limit. |
||||
*/ |
||||
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; |
||||
/* B=>Cb and R=>Cr tables are the same
|
||||
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; |
||||
*/ |
||||
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; |
||||
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_ycc_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_EXT_RGB: |
||||
extrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
extrgbx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
extbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
extbgrx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
extxbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
extxrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
default: |
||||
rgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/ |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_gray_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_EXT_RGB: |
||||
extrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
extrgbx_gray_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
extbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
extbgrx_gray_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
extxbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
extxrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
default: |
||||
rgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Extended RGB to plain RGB conversion |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_rgb_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_EXT_RGB: |
||||
extrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
extrgbx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
extbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
extbgrx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
extxbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
extxrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
default: |
||||
rgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, |
||||
num_rows); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles Adobe-style CMYK->YCCK conversion, |
||||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same |
||||
* conversion as above, while passing K (black) unchanged. |
||||
* We assume rgb_ycc_start has been called. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
cmyk_ycck_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int r, g, b; |
||||
register JLONG *ctab = cconvert->rgb_ycc_tab; |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr0, outptr1, outptr2, outptr3; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
outptr3 = output_buf[3][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); |
||||
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); |
||||
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); |
||||
/* K passes through as-is */ |
||||
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ |
||||
inptr += 4; |
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation. |
||||
* Hence the value being shifted is never negative, and we don't |
||||
* need the general RIGHT_SHIFT macro. |
||||
*/ |
||||
/* Y */ |
||||
outptr0[col] = (JSAMPLE) |
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cb */ |
||||
outptr1[col] = (JSAMPLE) |
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) |
||||
>> SCALEBITS); |
||||
/* Cr */ |
||||
outptr2[col] = (JSAMPLE) |
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) |
||||
>> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles grayscale output with no conversion. |
||||
* The source can be either plain grayscale or YCbCr (since Y == gray). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
grayscale_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
int instride = cinfo->input_components; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr = output_buf[0][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */ |
||||
inptr += instride; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace. |
||||
* This version handles multi-component colorspaces without conversion. |
||||
* We assume input_components == num_components. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
null_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr; |
||||
register JSAMPROW outptr, outptr0, outptr1, outptr2, outptr3; |
||||
register JDIMENSION col; |
||||
register int ci; |
||||
int nc = cinfo->num_components; |
||||
JDIMENSION num_cols = cinfo->image_width; |
||||
|
||||
if (nc == 3) { |
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
outptr0[col] = *inptr++; |
||||
outptr1[col] = *inptr++; |
||||
outptr2[col] = *inptr++; |
||||
} |
||||
} |
||||
} else if (nc == 4) { |
||||
while (--num_rows >= 0) { |
||||
inptr = *input_buf++; |
||||
outptr0 = output_buf[0][output_row]; |
||||
outptr1 = output_buf[1][output_row]; |
||||
outptr2 = output_buf[2][output_row]; |
||||
outptr3 = output_buf[3][output_row]; |
||||
output_row++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
outptr0[col] = *inptr++; |
||||
outptr1[col] = *inptr++; |
||||
outptr2[col] = *inptr++; |
||||
outptr3[col] = *inptr++; |
||||
} |
||||
} |
||||
} else { |
||||
while (--num_rows >= 0) { |
||||
/* It seems fastest to make a separate pass for each component. */ |
||||
for (ci = 0; ci < nc; ci++) { |
||||
inptr = *input_buf; |
||||
outptr = output_buf[ci][output_row]; |
||||
for (col = 0; col < num_cols; col++) { |
||||
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */ |
||||
inptr += nc; |
||||
} |
||||
} |
||||
input_buf++; |
||||
output_row++; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
null_method (j_compress_ptr cinfo) |
||||
{ |
||||
/* no work needed */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for input colorspace conversion. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_color_converter (j_compress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert; |
||||
|
||||
cconvert = (my_cconvert_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_color_converter)); |
||||
cinfo->cconvert = (struct jpeg_color_converter *) cconvert; |
||||
/* set start_pass to null method until we find out differently */ |
||||
cconvert->pub.start_pass = null_method; |
||||
|
||||
/* Make sure input_components agrees with in_color_space */ |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
if (cinfo->input_components != 1) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
case JCS_EXT_RGB: |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_BGR: |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_RGBA: |
||||
case JCS_EXT_BGRA: |
||||
case JCS_EXT_ABGR: |
||||
case JCS_EXT_ARGB: |
||||
if (cinfo->input_components != rgb_pixelsize[cinfo->in_color_space]) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_YCbCr: |
||||
if (cinfo->input_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
case JCS_YCCK: |
||||
if (cinfo->input_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
|
||||
default: /* JCS_UNKNOWN can be anything */ |
||||
if (cinfo->input_components < 1) |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
break; |
||||
} |
||||
|
||||
/* Check num_components, set conversion method based on requested space */ |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
if (cinfo->num_components != 1) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
if (cinfo->in_color_space == JCS_GRAYSCALE) |
||||
cconvert->pub.color_convert = grayscale_convert; |
||||
else if (cinfo->in_color_space == JCS_RGB || |
||||
cinfo->in_color_space == JCS_EXT_RGB || |
||||
cinfo->in_color_space == JCS_EXT_RGBX || |
||||
cinfo->in_color_space == JCS_EXT_BGR || |
||||
cinfo->in_color_space == JCS_EXT_BGRX || |
||||
cinfo->in_color_space == JCS_EXT_XBGR || |
||||
cinfo->in_color_space == JCS_EXT_XRGB || |
||||
cinfo->in_color_space == JCS_EXT_RGBA || |
||||
cinfo->in_color_space == JCS_EXT_BGRA || |
||||
cinfo->in_color_space == JCS_EXT_ABGR || |
||||
cinfo->in_color_space == JCS_EXT_ARGB) { |
||||
if (jsimd_can_rgb_gray()) |
||||
cconvert->pub.color_convert = jsimd_rgb_gray_convert; |
||||
else { |
||||
cconvert->pub.start_pass = rgb_ycc_start; |
||||
cconvert->pub.color_convert = rgb_gray_convert; |
||||
} |
||||
} else if (cinfo->in_color_space == JCS_YCbCr) |
||||
cconvert->pub.color_convert = grayscale_convert; |
||||
else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
if (cinfo->num_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
if (rgb_red[cinfo->in_color_space] == 0 && |
||||
rgb_green[cinfo->in_color_space] == 1 && |
||||
rgb_blue[cinfo->in_color_space] == 2 && |
||||
rgb_pixelsize[cinfo->in_color_space] == 3) { |
||||
#if defined(__mips__) |
||||
if (jsimd_c_can_null_convert()) |
||||
cconvert->pub.color_convert = jsimd_c_null_convert; |
||||
else |
||||
#endif |
||||
cconvert->pub.color_convert = null_convert; |
||||
} else if (cinfo->in_color_space == JCS_RGB || |
||||
cinfo->in_color_space == JCS_EXT_RGB || |
||||
cinfo->in_color_space == JCS_EXT_RGBX || |
||||
cinfo->in_color_space == JCS_EXT_BGR || |
||||
cinfo->in_color_space == JCS_EXT_BGRX || |
||||
cinfo->in_color_space == JCS_EXT_XBGR || |
||||
cinfo->in_color_space == JCS_EXT_XRGB || |
||||
cinfo->in_color_space == JCS_EXT_RGBA || |
||||
cinfo->in_color_space == JCS_EXT_BGRA || |
||||
cinfo->in_color_space == JCS_EXT_ABGR || |
||||
cinfo->in_color_space == JCS_EXT_ARGB) |
||||
cconvert->pub.color_convert = rgb_rgb_convert; |
||||
else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
case JCS_YCbCr: |
||||
if (cinfo->num_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
if (cinfo->in_color_space == JCS_RGB || |
||||
cinfo->in_color_space == JCS_EXT_RGB || |
||||
cinfo->in_color_space == JCS_EXT_RGBX || |
||||
cinfo->in_color_space == JCS_EXT_BGR || |
||||
cinfo->in_color_space == JCS_EXT_BGRX || |
||||
cinfo->in_color_space == JCS_EXT_XBGR || |
||||
cinfo->in_color_space == JCS_EXT_XRGB || |
||||
cinfo->in_color_space == JCS_EXT_RGBA || |
||||
cinfo->in_color_space == JCS_EXT_BGRA || |
||||
cinfo->in_color_space == JCS_EXT_ABGR || |
||||
cinfo->in_color_space == JCS_EXT_ARGB) { |
||||
if (jsimd_can_rgb_ycc()) |
||||
cconvert->pub.color_convert = jsimd_rgb_ycc_convert; |
||||
else { |
||||
cconvert->pub.start_pass = rgb_ycc_start; |
||||
cconvert->pub.color_convert = rgb_ycc_convert; |
||||
} |
||||
} else if (cinfo->in_color_space == JCS_YCbCr) { |
||||
#if defined(__mips__) |
||||
if (jsimd_c_can_null_convert()) |
||||
cconvert->pub.color_convert = jsimd_c_null_convert; |
||||
else |
||||
#endif |
||||
cconvert->pub.color_convert = null_convert; |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
if (cinfo->num_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
if (cinfo->in_color_space == JCS_CMYK) { |
||||
#if defined(__mips__) |
||||
if (jsimd_c_can_null_convert()) |
||||
cconvert->pub.color_convert = jsimd_c_null_convert; |
||||
else |
||||
#endif |
||||
cconvert->pub.color_convert = null_convert; |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
case JCS_YCCK: |
||||
if (cinfo->num_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
if (cinfo->in_color_space == JCS_CMYK) { |
||||
cconvert->pub.start_pass = rgb_ycc_start; |
||||
cconvert->pub.color_convert = cmyk_ycck_convert; |
||||
} else if (cinfo->in_color_space == JCS_YCCK) { |
||||
#if defined(__mips__) |
||||
if (jsimd_c_can_null_convert()) |
||||
cconvert->pub.color_convert = jsimd_c_null_convert; |
||||
else |
||||
#endif |
||||
cconvert->pub.color_convert = null_convert; |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
default: /* allow null conversion of JCS_UNKNOWN */ |
||||
if (cinfo->jpeg_color_space != cinfo->in_color_space || |
||||
cinfo->num_components != cinfo->input_components) |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
#if defined(__mips__) |
||||
if (jsimd_c_can_null_convert()) |
||||
cconvert->pub.color_convert = jsimd_c_null_convert; |
||||
else |
||||
#endif |
||||
cconvert->pub.color_convert = null_convert; |
||||
break; |
||||
} |
||||
} |
@ -0,0 +1,721 @@ |
||||
/*
|
||||
* jcdctmgr.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 1999-2006, MIYASAKA Masaru. |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2011, 2014-2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the forward-DCT management logic. |
||||
* This code selects a particular DCT implementation to be used, |
||||
* and it performs related housekeeping chores including coefficient |
||||
* quantization. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
#include "jsimddct.h" |
||||
|
||||
|
||||
/* Private subobject for this module */ |
||||
|
||||
typedef void (*forward_DCT_method_ptr) (DCTELEM *data); |
||||
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); |
||||
|
||||
typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, |
||||
JDIMENSION start_col, |
||||
DCTELEM *workspace); |
||||
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, |
||||
JDIMENSION start_col, |
||||
FAST_FLOAT *workspace); |
||||
|
||||
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, |
||||
DCTELEM *workspace); |
||||
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, |
||||
FAST_FLOAT *divisors, |
||||
FAST_FLOAT *workspace); |
||||
|
||||
METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *); |
||||
|
||||
typedef struct { |
||||
struct jpeg_forward_dct pub; /* public fields */ |
||||
|
||||
/* Pointer to the DCT routine actually in use */ |
||||
forward_DCT_method_ptr dct; |
||||
convsamp_method_ptr convsamp; |
||||
quantize_method_ptr quantize; |
||||
|
||||
/* The actual post-DCT divisors --- not identical to the quant table
|
||||
* entries, because of scaling (especially for an unnormalized DCT). |
||||
* Each table is given in normal array order. |
||||
*/ |
||||
DCTELEM *divisors[NUM_QUANT_TBLS]; |
||||
|
||||
/* work area for FDCT subroutine */ |
||||
DCTELEM *workspace; |
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
/* Same as above for the floating-point case. */ |
||||
float_DCT_method_ptr float_dct; |
||||
float_convsamp_method_ptr float_convsamp; |
||||
float_quantize_method_ptr float_quantize; |
||||
FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; |
||||
FAST_FLOAT *float_workspace; |
||||
#endif |
||||
} my_fdct_controller; |
||||
|
||||
typedef my_fdct_controller *my_fdct_ptr; |
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
|
||||
/*
|
||||
* Find the highest bit in an integer through binary search. |
||||
*/ |
||||
|
||||
LOCAL(int) |
||||
flss (UINT16 val) |
||||
{ |
||||
int bit; |
||||
|
||||
bit = 16; |
||||
|
||||
if (!val) |
||||
return 0; |
||||
|
||||
if (!(val & 0xff00)) { |
||||
bit -= 8; |
||||
val <<= 8; |
||||
} |
||||
if (!(val & 0xf000)) { |
||||
bit -= 4; |
||||
val <<= 4; |
||||
} |
||||
if (!(val & 0xc000)) { |
||||
bit -= 2; |
||||
val <<= 2; |
||||
} |
||||
if (!(val & 0x8000)) { |
||||
bit -= 1; |
||||
val <<= 1; |
||||
} |
||||
|
||||
return bit; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Compute values to do a division using reciprocal. |
||||
* |
||||
* This implementation is based on an algorithm described in |
||||
* "How to optimize for the Pentium family of microprocessors" |
||||
* (http://www.agner.org/assem/).
|
||||
* More information about the basic algorithm can be found in |
||||
* the paper "Integer Division Using Reciprocals" by Robert Alverson. |
||||
* |
||||
* The basic idea is to replace x/d by x * d^-1. In order to store |
||||
* d^-1 with enough precision we shift it left a few places. It turns |
||||
* out that this algoright gives just enough precision, and also fits |
||||
* into DCTELEM: |
||||
* |
||||
* b = (the number of significant bits in divisor) - 1 |
||||
* r = (word size) + b |
||||
* f = 2^r / divisor |
||||
* |
||||
* f will not be an integer for most cases, so we need to compensate |
||||
* for the rounding error introduced: |
||||
* |
||||
* no fractional part: |
||||
* |
||||
* result = input >> r |
||||
* |
||||
* fractional part of f < 0.5: |
||||
* |
||||
* round f down to nearest integer |
||||
* result = ((input + 1) * f) >> r |
||||
* |
||||
* fractional part of f > 0.5: |
||||
* |
||||
* round f up to nearest integer |
||||
* result = (input * f) >> r |
||||
* |
||||
* This is the original algorithm that gives truncated results. But we |
||||
* want properly rounded results, so we replace "input" with |
||||
* "input + divisor/2". |
||||
* |
||||
* In order to allow SIMD implementations we also tweak the values to |
||||
* allow the same calculation to be made at all times: |
||||
* |
||||
* dctbl[0] = f rounded to nearest integer |
||||
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
||||
* dctbl[2] = 1 << ((word size) * 2 - r) |
||||
* dctbl[3] = r - (word size) |
||||
* |
||||
* dctbl[2] is for stupid instruction sets where the shift operation |
||||
* isn't member wise (e.g. MMX). |
||||
* |
||||
* The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
||||
* is that most SIMD implementations have a "multiply and store top |
||||
* half" operation. |
||||
* |
||||
* Lastly, we store each of the values in their own table instead |
||||
* of in a consecutive manner, yet again in order to allow SIMD |
||||
* routines. |
||||
*/ |
||||
|
||||
LOCAL(int) |
||||
compute_reciprocal (UINT16 divisor, DCTELEM *dtbl) |
||||
{ |
||||
UDCTELEM2 fq, fr; |
||||
UDCTELEM c; |
||||
int b, r; |
||||
|
||||
if (divisor == 1) { |
||||
/* divisor == 1 means unquantized, so these reciprocal/correction/shift
|
||||
* values will cause the C quantization algorithm to act like the |
||||
* identity function. Since only the C quantization algorithm is used in |
||||
* these cases, the scale value is irrelevant. |
||||
*/ |
||||
dtbl[DCTSIZE2 * 0] = (DCTELEM) 1; /* reciprocal */ |
||||
dtbl[DCTSIZE2 * 1] = (DCTELEM) 0; /* correction */ |
||||
dtbl[DCTSIZE2 * 2] = (DCTELEM) 1; /* scale */ |
||||
dtbl[DCTSIZE2 * 3] = -(DCTELEM) (sizeof(DCTELEM) * 8); /* shift */ |
||||
return 0; |
||||
} |
||||
|
||||
b = flss(divisor) - 1; |
||||
r = sizeof(DCTELEM) * 8 + b; |
||||
|
||||
fq = ((UDCTELEM2)1 << r) / divisor; |
||||
fr = ((UDCTELEM2)1 << r) % divisor; |
||||
|
||||
c = divisor / 2; /* for rounding */ |
||||
|
||||
if (fr == 0) { /* divisor is power of two */ |
||||
/* fq will be one bit too large to fit in DCTELEM, so adjust */ |
||||
fq >>= 1; |
||||
r--; |
||||
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ |
||||
c++; |
||||
} else { /* fractional part is > 0.5 */ |
||||
fq++; |
||||
} |
||||
|
||||
dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ |
||||
dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ |
||||
#ifdef WITH_SIMD |
||||
dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ |
||||
#else |
||||
dtbl[DCTSIZE2 * 2] = 1; |
||||
#endif |
||||
dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ |
||||
|
||||
if (r <= 16) return 0; |
||||
else return 1; |
||||
} |
||||
|
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
* Verify that all referenced Q-tables are present, and set up |
||||
* the divisor table for each one. |
||||
* In the current implementation, DCT of all components is done during |
||||
* the first pass, even if only some components will be output in the |
||||
* first scan. Hence all components should be examined here. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_fdctmgr (j_compress_ptr cinfo) |
||||
{ |
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
||||
int ci, qtblno, i; |
||||
jpeg_component_info *compptr; |
||||
JQUANT_TBL *qtbl; |
||||
DCTELEM *dtbl; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
qtblno = compptr->quant_tbl_no; |
||||
/* Make sure specified quantization table is present */ |
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
||||
/* Compute divisors for this quant table */ |
||||
/* We may do this more than once for same table, but it's not a big deal */ |
||||
switch (cinfo->dct_method) { |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
case JDCT_ISLOW: |
||||
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||
* coefficients multiplied by 8 (to counteract scaling). |
||||
*/ |
||||
if (fdct->divisors[qtblno] == NULL) { |
||||
fdct->divisors[qtblno] = (DCTELEM *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(DCTSIZE2 * 4) * sizeof(DCTELEM)); |
||||
} |
||||
dtbl = fdct->divisors[qtblno]; |
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && |
||||
fdct->quantize == jsimd_quantize) |
||||
fdct->quantize = quantize; |
||||
#else |
||||
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; |
||||
#endif |
||||
} |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
{ |
||||
/* For AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
* We apply a further scale factor of 8. |
||||
*/ |
||||
#define CONST_BITS 14 |
||||
static const INT16 aanscales[DCTSIZE2] = { |
||||
/* precomputed values scaled up by 14 bits */ |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
||||
}; |
||||
SHIFT_TEMPS |
||||
|
||||
if (fdct->divisors[qtblno] == NULL) { |
||||
fdct->divisors[qtblno] = (DCTELEM *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(DCTSIZE2 * 4) * sizeof(DCTELEM)); |
||||
} |
||||
dtbl = fdct->divisors[qtblno]; |
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
if (!compute_reciprocal( |
||||
DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], |
||||
(JLONG) aanscales[i]), |
||||
CONST_BITS-3), &dtbl[i]) && |
||||
fdct->quantize == jsimd_quantize) |
||||
fdct->quantize = quantize; |
||||
#else |
||||
dtbl[i] = (DCTELEM) |
||||
DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], |
||||
(JLONG) aanscales[i]), |
||||
CONST_BITS-3); |
||||
#endif |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
{ |
||||
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
* We apply a further scale factor of 8. |
||||
* What's actually stored is 1/divisor so that the inner loop can |
||||
* use a multiplication rather than a division. |
||||
*/ |
||||
FAST_FLOAT *fdtbl; |
||||
int row, col; |
||||
static const double aanscalefactor[DCTSIZE] = { |
||||
1.0, 1.387039845, 1.306562965, 1.175875602, |
||||
1.0, 0.785694958, 0.541196100, 0.275899379 |
||||
}; |
||||
|
||||
if (fdct->float_divisors[qtblno] == NULL) { |
||||
fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
DCTSIZE2 * sizeof(FAST_FLOAT)); |
||||
} |
||||
fdtbl = fdct->float_divisors[qtblno]; |
||||
i = 0; |
||||
for (row = 0; row < DCTSIZE; row++) { |
||||
for (col = 0; col < DCTSIZE; col++) { |
||||
fdtbl[i] = (FAST_FLOAT) |
||||
(1.0 / (((double) qtbl->quantval[i] * |
||||
aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
||||
i++; |
||||
} |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Load data into workspace, applying unsigned->signed conversion. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) |
||||
{ |
||||
register DCTELEM *workspaceptr; |
||||
register JSAMPROW elemptr; |
||||
register int elemr; |
||||
|
||||
workspaceptr = workspace; |
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) { |
||||
elemptr = sample_data[elemr] + start_col; |
||||
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */ |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
#else |
||||
{ |
||||
register int elemc; |
||||
for (elemc = DCTSIZE; elemc > 0; elemc--) |
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
||||
} |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Quantize/descale the coefficients, and store into coef_blocks[]. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
quantize (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) |
||||
{ |
||||
int i; |
||||
DCTELEM temp; |
||||
JCOEFPTR output_ptr = coef_block; |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
|
||||
UDCTELEM recip, corr; |
||||
int shift; |
||||
UDCTELEM2 product; |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
temp = workspace[i]; |
||||
recip = divisors[i + DCTSIZE2 * 0]; |
||||
corr = divisors[i + DCTSIZE2 * 1]; |
||||
shift = divisors[i + DCTSIZE2 * 3]; |
||||
|
||||
if (temp < 0) { |
||||
temp = -temp; |
||||
product = (UDCTELEM2)(temp + corr) * recip; |
||||
product >>= shift + sizeof(DCTELEM)*8; |
||||
temp = (DCTELEM)product; |
||||
temp = -temp; |
||||
} else { |
||||
product = (UDCTELEM2)(temp + corr) * recip; |
||||
product >>= shift + sizeof(DCTELEM)*8; |
||||
temp = (DCTELEM)product; |
||||
} |
||||
output_ptr[i] = (JCOEF) temp; |
||||
} |
||||
|
||||
#else |
||||
|
||||
register DCTELEM qval; |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
qval = divisors[i]; |
||||
temp = workspace[i]; |
||||
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||
* Since C does not specify the direction of rounding for negative |
||||
* quotients, we have to force the dividend positive for portability. |
||||
* |
||||
* In most files, at least half of the output values will be zero |
||||
* (at default quantization settings, more like three-quarters...) |
||||
* so we should ensure that this case is fast. On many machines, |
||||
* a comparison is enough cheaper than a divide to make a special test |
||||
* a win. Since both inputs will be nonnegative, we need only test |
||||
* for a < b to discover whether a/b is 0. |
||||
* If your machine's division is fast enough, define FAST_DIVIDE. |
||||
*/ |
||||
#ifdef FAST_DIVIDE |
||||
#define DIVIDE_BY(a,b) a /= b |
||||
#else |
||||
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
||||
#endif |
||||
if (temp < 0) { |
||||
temp = -temp; |
||||
temp += qval>>1; /* for rounding */ |
||||
DIVIDE_BY(temp, qval); |
||||
temp = -temp; |
||||
} else { |
||||
temp += qval>>1; /* for rounding */ |
||||
DIVIDE_BY(temp, qval); |
||||
} |
||||
output_ptr[i] = (JCOEF) temp; |
||||
} |
||||
|
||||
#endif |
||||
|
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Perform forward DCT on one or more blocks of a component. |
||||
* |
||||
* The input samples are taken from the sample_data[] array starting at |
||||
* position start_row/start_col, and moving to the right for any additional |
||||
* blocks. The quantized coefficients are returned in coef_blocks[]. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
forward_DCT (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
||||
JDIMENSION start_row, JDIMENSION start_col, |
||||
JDIMENSION num_blocks) |
||||
/* This version is used for integer DCT implementations. */ |
||||
{ |
||||
/* This routine is heavily used, so it's worth coding it tightly. */ |
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
||||
DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; |
||||
DCTELEM *workspace; |
||||
JDIMENSION bi; |
||||
|
||||
/* Make sure the compiler doesn't look up these every pass */ |
||||
forward_DCT_method_ptr do_dct = fdct->dct; |
||||
convsamp_method_ptr do_convsamp = fdct->convsamp; |
||||
quantize_method_ptr do_quantize = fdct->quantize; |
||||
workspace = fdct->workspace; |
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */ |
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
||||
/* Load data into workspace, applying unsigned->signed conversion */ |
||||
(*do_convsamp) (sample_data, start_col, workspace); |
||||
|
||||
/* Perform the DCT */ |
||||
(*do_dct) (workspace); |
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
||||
(*do_quantize) (coef_blocks[bi], divisors, workspace); |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
|
||||
|
||||
METHODDEF(void) |
||||
convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) |
||||
{ |
||||
register FAST_FLOAT *workspaceptr; |
||||
register JSAMPROW elemptr; |
||||
register int elemr; |
||||
|
||||
workspaceptr = workspace; |
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) { |
||||
elemptr = sample_data[elemr] + start_col; |
||||
#if DCTSIZE == 8 /* unroll the inner loop */ |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
#else |
||||
{ |
||||
register int elemc; |
||||
for (elemc = DCTSIZE; elemc > 0; elemc--) |
||||
*workspaceptr++ = (FAST_FLOAT) |
||||
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
||||
} |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) |
||||
{ |
||||
register FAST_FLOAT temp; |
||||
register int i; |
||||
register JCOEFPTR output_ptr = coef_block; |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
/* Apply the quantization and scaling factor */ |
||||
temp = workspace[i] * divisors[i]; |
||||
|
||||
/* Round to nearest integer.
|
||||
* Since C does not specify the direction of rounding for negative |
||||
* quotients, we have to force the dividend positive for portability. |
||||
* The maximum coefficient size is +-16K (for 12-bit data), so this |
||||
* code should work for either 16-bit or 32-bit ints. |
||||
*/ |
||||
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
||||
JDIMENSION start_row, JDIMENSION start_col, |
||||
JDIMENSION num_blocks) |
||||
/* This version is used for floating-point DCT implementations. */ |
||||
{ |
||||
/* This routine is heavily used, so it's worth coding it tightly. */ |
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
||||
FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
||||
FAST_FLOAT *workspace; |
||||
JDIMENSION bi; |
||||
|
||||
|
||||
/* Make sure the compiler doesn't look up these every pass */ |
||||
float_DCT_method_ptr do_dct = fdct->float_dct; |
||||
float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
||||
float_quantize_method_ptr do_quantize = fdct->float_quantize; |
||||
workspace = fdct->float_workspace; |
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */ |
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
||||
/* Load data into workspace, applying unsigned->signed conversion */ |
||||
(*do_convsamp) (sample_data, start_col, workspace); |
||||
|
||||
/* Perform the DCT */ |
||||
(*do_dct) (workspace); |
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
||||
(*do_quantize) (coef_blocks[bi], divisors, workspace); |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize FDCT manager. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_forward_dct (j_compress_ptr cinfo) |
||||
{ |
||||
my_fdct_ptr fdct; |
||||
int i; |
||||
|
||||
fdct = (my_fdct_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_fdct_controller)); |
||||
cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
||||
fdct->pub.start_pass = start_pass_fdctmgr; |
||||
|
||||
/* First determine the DCT... */ |
||||
switch (cinfo->dct_method) { |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
case JDCT_ISLOW: |
||||
fdct->pub.forward_DCT = forward_DCT; |
||||
if (jsimd_can_fdct_islow()) |
||||
fdct->dct = jsimd_fdct_islow; |
||||
else |
||||
fdct->dct = jpeg_fdct_islow; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
fdct->pub.forward_DCT = forward_DCT; |
||||
if (jsimd_can_fdct_ifast()) |
||||
fdct->dct = jsimd_fdct_ifast; |
||||
else |
||||
fdct->dct = jpeg_fdct_ifast; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
fdct->pub.forward_DCT = forward_DCT_float; |
||||
if (jsimd_can_fdct_float()) |
||||
fdct->float_dct = jsimd_fdct_float; |
||||
else |
||||
fdct->float_dct = jpeg_fdct_float; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
|
||||
/* ...then the supporting stages. */ |
||||
switch (cinfo->dct_method) { |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
case JDCT_ISLOW: |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
#endif |
||||
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
||||
if (jsimd_can_convsamp()) |
||||
fdct->convsamp = jsimd_convsamp; |
||||
else |
||||
fdct->convsamp = convsamp; |
||||
if (jsimd_can_quantize()) |
||||
fdct->quantize = jsimd_quantize; |
||||
else |
||||
fdct->quantize = quantize; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
if (jsimd_can_convsamp_float()) |
||||
fdct->float_convsamp = jsimd_convsamp_float; |
||||
else |
||||
fdct->float_convsamp = convsamp_float; |
||||
if (jsimd_can_quantize_float()) |
||||
fdct->float_quantize = jsimd_quantize_float; |
||||
else |
||||
fdct->float_quantize = quantize_float; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
|
||||
/* Allocate workspace memory */ |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
if (cinfo->dct_method == JDCT_FLOAT) |
||||
fdct->float_workspace = (FAST_FLOAT *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(FAST_FLOAT) * DCTSIZE2); |
||||
else |
||||
#endif |
||||
fdct->workspace = (DCTELEM *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(DCTELEM) * DCTSIZE2); |
||||
|
||||
/* Mark divisor tables unallocated */ |
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
||||
fdct->divisors[i] = NULL; |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
fdct->float_divisors[i] = NULL; |
||||
#endif |
||||
} |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,43 @@ |
||||
/*
|
||||
* jchuff.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains declarations for Huffman entropy encoding routines |
||||
* that are shared between the sequential encoder (jchuff.c) and the |
||||
* progressive encoder (jcphuff.c). No other modules need to see these. |
||||
*/ |
||||
|
||||
/* The legal range of a DCT coefficient is
|
||||
* -1024 .. +1023 for 8-bit data; |
||||
* -16384 .. +16383 for 12-bit data. |
||||
* Hence the magnitude should always fit in 10 or 14 bits respectively. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define MAX_COEF_BITS 10 |
||||
#else |
||||
#define MAX_COEF_BITS 14 |
||||
#endif |
||||
|
||||
/* Derived data constructed for each Huffman table */ |
||||
|
||||
typedef struct { |
||||
unsigned int ehufco[256]; /* code for each symbol */ |
||||
char ehufsi[256]; /* length of code for each symbol */ |
||||
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ |
||||
} c_derived_tbl; |
||||
|
||||
/* Expand a Huffman table definition into the derived format */ |
||||
EXTERN(void) jpeg_make_c_derived_tbl |
||||
(j_compress_ptr cinfo, boolean isDC, int tblno, |
||||
c_derived_tbl ** pdtbl); |
||||
|
||||
/* Generate an optimal table definition given the specified counts */ |
||||
EXTERN(void) jpeg_gen_optimal_table |
||||
(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[]); |
@ -0,0 +1,77 @@ |
||||
/*
|
||||
* jcinit.c |
||||
* |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains initialization logic for the JPEG compressor. |
||||
* This routine is in charge of selecting the modules to be executed and |
||||
* making an initialization call to each one. |
||||
* |
||||
* Logically, this code belongs in jcmaster.c. It's split out because |
||||
* linking this routine implies linking the entire compression library. |
||||
* For a transcoding-only application, we want to be able to use jcmaster.c |
||||
* without linking in the whole library. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules. |
||||
* This is done once at the start of processing an image. We determine |
||||
* which modules will be used and give them appropriate initialization calls. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_compress_master (j_compress_ptr cinfo) |
||||
{ |
||||
/* Initialize master control (includes parameter checking/processing) */ |
||||
jinit_c_master_control(cinfo, FALSE /* full compression */); |
||||
|
||||
/* Preprocessing */ |
||||
if (! cinfo->raw_data_in) { |
||||
jinit_color_converter(cinfo); |
||||
jinit_downsampler(cinfo); |
||||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); |
||||
} |
||||
/* Forward DCT */ |
||||
jinit_forward_dct(cinfo); |
||||
/* Entropy encoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) { |
||||
#ifdef C_ARITH_CODING_SUPPORTED |
||||
jinit_arith_encoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL); |
||||
#endif |
||||
} else { |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
jinit_phuff_encoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else |
||||
jinit_huff_encoder(cinfo); |
||||
} |
||||
|
||||
/* Need a full-image coefficient buffer in any multi-pass mode. */ |
||||
jinit_c_coef_controller(cinfo, |
||||
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding)); |
||||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); |
||||
|
||||
jinit_marker_writer(cinfo); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Write the datastream header (SOI) immediately.
|
||||
* Frame and scan headers are postponed till later. |
||||
* This lets application insert special markers after the SOI. |
||||
*/ |
||||
(*cinfo->marker->write_file_header) (cinfo); |
||||
} |
@ -0,0 +1,162 @@ |
||||
/*
|
||||
* jcmainct.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the main buffer controller for compression. |
||||
* The main buffer lies between the pre-processor and the JPEG |
||||
* compressor proper; it holds downsampled data in the JPEG colorspace. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_main_controller pub; /* public fields */ |
||||
|
||||
JDIMENSION cur_iMCU_row; /* number of current iMCU row */ |
||||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */ |
||||
boolean suspended; /* remember if we suspended output */ |
||||
J_BUF_MODE pass_mode; /* current operating mode */ |
||||
|
||||
/* If using just a strip buffer, this points to the entire set of buffers
|
||||
* (we allocate one for each component). In the full-image case, this |
||||
* points to the currently accessible strips of the virtual arrays. |
||||
*/ |
||||
JSAMPARRAY buffer[MAX_COMPONENTS]; |
||||
} my_main_controller; |
||||
|
||||
typedef my_main_controller *my_main_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(void) process_data_simple_main |
||||
(j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail); |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
|
||||
/* Do nothing in raw-data mode. */ |
||||
if (cinfo->raw_data_in) |
||||
return; |
||||
|
||||
if (pass_mode != JBUF_PASS_THRU) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
main_ptr->cur_iMCU_row = 0; /* initialize counters */ |
||||
main_ptr->rowgroup_ctr = 0; |
||||
main_ptr->suspended = FALSE; |
||||
main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */ |
||||
main_ptr->pub.process_data = process_data_simple_main; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* This routine handles the simple pass-through mode, |
||||
* where we have only a strip buffer. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
process_data_simple_main (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail) |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
|
||||
while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) { |
||||
/* Read input data if we haven't filled the main buffer yet */ |
||||
if (main_ptr->rowgroup_ctr < DCTSIZE) |
||||
(*cinfo->prep->pre_process_data) (cinfo, |
||||
input_buf, in_row_ctr, in_rows_avail, |
||||
main_ptr->buffer, &main_ptr->rowgroup_ctr, |
||||
(JDIMENSION) DCTSIZE); |
||||
|
||||
/* If we don't have a full iMCU row buffered, return to application for
|
||||
* more data. Note that preprocessor will always pad to fill the iMCU row |
||||
* at the bottom of the image. |
||||
*/ |
||||
if (main_ptr->rowgroup_ctr != DCTSIZE) |
||||
return; |
||||
|
||||
/* Send the completed row to the compressor */ |
||||
if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) { |
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation |
||||
* we pretend we didn't yet consume the last input row; otherwise, if |
||||
* it happened to be the last row of the image, the application would |
||||
* think we were done. |
||||
*/ |
||||
if (! main_ptr->suspended) { |
||||
(*in_row_ctr)--; |
||||
main_ptr->suspended = TRUE; |
||||
} |
||||
return; |
||||
} |
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty. |
||||
*/ |
||||
if (main_ptr->suspended) { |
||||
(*in_row_ctr)++; |
||||
main_ptr->suspended = FALSE; |
||||
} |
||||
main_ptr->rowgroup_ctr = 0; |
||||
main_ptr->cur_iMCU_row++; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_main_ptr main_ptr; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
main_ptr = (my_main_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_main_controller)); |
||||
cinfo->main = (struct jpeg_c_main_controller *) main_ptr; |
||||
main_ptr->pub.start_pass = start_pass_main; |
||||
|
||||
/* We don't need to create a buffer in raw-data mode. */ |
||||
if (cinfo->raw_data_in) |
||||
return; |
||||
|
||||
/* Create the buffer. It holds downsampled data, so each component
|
||||
* may be of a different size. |
||||
*/ |
||||
if (need_full_buffer) { |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
} else { |
||||
/* Allocate a strip buffer for each component */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
compptr->width_in_blocks * DCTSIZE, |
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE)); |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,665 @@ |
||||
/*
|
||||
* jcmarker.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1998, Thomas G. Lane. |
||||
* Modified 2003-2010 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2010, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains routines to write JPEG datastream markers. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jpegcomp.h" |
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */ |
||||
M_SOF0 = 0xc0, |
||||
M_SOF1 = 0xc1, |
||||
M_SOF2 = 0xc2, |
||||
M_SOF3 = 0xc3, |
||||
|
||||
M_SOF5 = 0xc5, |
||||
M_SOF6 = 0xc6, |
||||
M_SOF7 = 0xc7, |
||||
|
||||
M_JPG = 0xc8, |
||||
M_SOF9 = 0xc9, |
||||
M_SOF10 = 0xca, |
||||
M_SOF11 = 0xcb, |
||||
|
||||
M_SOF13 = 0xcd, |
||||
M_SOF14 = 0xce, |
||||
M_SOF15 = 0xcf, |
||||
|
||||
M_DHT = 0xc4, |
||||
|
||||
M_DAC = 0xcc, |
||||
|
||||
M_RST0 = 0xd0, |
||||
M_RST1 = 0xd1, |
||||
M_RST2 = 0xd2, |
||||
M_RST3 = 0xd3, |
||||
M_RST4 = 0xd4, |
||||
M_RST5 = 0xd5, |
||||
M_RST6 = 0xd6, |
||||
M_RST7 = 0xd7, |
||||
|
||||
M_SOI = 0xd8, |
||||
M_EOI = 0xd9, |
||||
M_SOS = 0xda, |
||||
M_DQT = 0xdb, |
||||
M_DNL = 0xdc, |
||||
M_DRI = 0xdd, |
||||
M_DHP = 0xde, |
||||
M_EXP = 0xdf, |
||||
|
||||
M_APP0 = 0xe0, |
||||
M_APP1 = 0xe1, |
||||
M_APP2 = 0xe2, |
||||
M_APP3 = 0xe3, |
||||
M_APP4 = 0xe4, |
||||
M_APP5 = 0xe5, |
||||
M_APP6 = 0xe6, |
||||
M_APP7 = 0xe7, |
||||
M_APP8 = 0xe8, |
||||
M_APP9 = 0xe9, |
||||
M_APP10 = 0xea, |
||||
M_APP11 = 0xeb, |
||||
M_APP12 = 0xec, |
||||
M_APP13 = 0xed, |
||||
M_APP14 = 0xee, |
||||
M_APP15 = 0xef, |
||||
|
||||
M_JPG0 = 0xf0, |
||||
M_JPG13 = 0xfd, |
||||
M_COM = 0xfe, |
||||
|
||||
M_TEM = 0x01, |
||||
|
||||
M_ERROR = 0x100 |
||||
} JPEG_MARKER; |
||||
|
||||
|
||||
/* Private state */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_marker_writer pub; /* public fields */ |
||||
|
||||
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ |
||||
} my_marker_writer; |
||||
|
||||
typedef my_marker_writer *my_marker_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Basic output routines. |
||||
* |
||||
* Note that we do not support suspension while writing a marker. |
||||
* Therefore, an application using suspension must ensure that there is |
||||
* enough buffer space for the initial markers (typ. 600-700 bytes) before |
||||
* calling jpeg_start_compress, and enough space to write the trailing EOI |
||||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression |
||||
* modes are not supported at all with suspension, so those two are the only |
||||
* points where markers will be written. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_byte (j_compress_ptr cinfo, int val) |
||||
/* Emit a byte */ |
||||
{ |
||||
struct jpeg_destination_mgr *dest = cinfo->dest; |
||||
|
||||
*(dest->next_output_byte)++ = (JOCTET) val; |
||||
if (--dest->free_in_buffer == 0) { |
||||
if (! (*dest->empty_output_buffer) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) |
||||
/* Emit a marker code */ |
||||
{ |
||||
emit_byte(cinfo, 0xFF); |
||||
emit_byte(cinfo, (int) mark); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_2bytes (j_compress_ptr cinfo, int value) |
||||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */ |
||||
{ |
||||
emit_byte(cinfo, (value >> 8) & 0xFF); |
||||
emit_byte(cinfo, value & 0xFF); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Routines to write specific marker types. |
||||
*/ |
||||
|
||||
LOCAL(int) |
||||
emit_dqt (j_compress_ptr cinfo, int index) |
||||
/* Emit a DQT marker */ |
||||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ |
||||
{ |
||||
JQUANT_TBL *qtbl = cinfo->quant_tbl_ptrs[index]; |
||||
int prec; |
||||
int i; |
||||
|
||||
if (qtbl == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); |
||||
|
||||
prec = 0; |
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
if (qtbl->quantval[i] > 255) |
||||
prec = 1; |
||||
} |
||||
|
||||
if (! qtbl->sent_table) { |
||||
emit_marker(cinfo, M_DQT); |
||||
|
||||
emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2); |
||||
|
||||
emit_byte(cinfo, index + (prec<<4)); |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
/* The table entries must be emitted in zigzag order. */ |
||||
unsigned int qval = qtbl->quantval[jpeg_natural_order[i]]; |
||||
if (prec) |
||||
emit_byte(cinfo, (int) (qval >> 8)); |
||||
emit_byte(cinfo, (int) (qval & 0xFF)); |
||||
} |
||||
|
||||
qtbl->sent_table = TRUE; |
||||
} |
||||
|
||||
return prec; |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) |
||||
/* Emit a DHT marker */ |
||||
{ |
||||
JHUFF_TBL *htbl; |
||||
int length, i; |
||||
|
||||
if (is_ac) { |
||||
htbl = cinfo->ac_huff_tbl_ptrs[index]; |
||||
index += 0x10; /* output index has AC bit set */ |
||||
} else { |
||||
htbl = cinfo->dc_huff_tbl_ptrs[index]; |
||||
} |
||||
|
||||
if (htbl == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); |
||||
|
||||
if (! htbl->sent_table) { |
||||
emit_marker(cinfo, M_DHT); |
||||
|
||||
length = 0; |
||||
for (i = 1; i <= 16; i++) |
||||
length += htbl->bits[i]; |
||||
|
||||
emit_2bytes(cinfo, length + 2 + 1 + 16); |
||||
emit_byte(cinfo, index); |
||||
|
||||
for (i = 1; i <= 16; i++) |
||||
emit_byte(cinfo, htbl->bits[i]); |
||||
|
||||
for (i = 0; i < length; i++) |
||||
emit_byte(cinfo, htbl->huffval[i]); |
||||
|
||||
htbl->sent_table = TRUE; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_dac (j_compress_ptr cinfo) |
||||
/* Emit a DAC marker */ |
||||
/* Since the useful info is so small, we want to emit all the tables in */ |
||||
/* one DAC marker. Therefore this routine does its own scan of the table. */ |
||||
{ |
||||
#ifdef C_ARITH_CODING_SUPPORTED |
||||
char dc_in_use[NUM_ARITH_TBLS]; |
||||
char ac_in_use[NUM_ARITH_TBLS]; |
||||
int length, i; |
||||
jpeg_component_info *compptr; |
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) |
||||
dc_in_use[i] = ac_in_use[i] = 0; |
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) { |
||||
compptr = cinfo->cur_comp_info[i]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->Ss == 0 && cinfo->Ah == 0) |
||||
dc_in_use[compptr->dc_tbl_no] = 1; |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->Se) |
||||
ac_in_use[compptr->ac_tbl_no] = 1; |
||||
} |
||||
|
||||
length = 0; |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) |
||||
length += dc_in_use[i] + ac_in_use[i]; |
||||
|
||||
if (length) { |
||||
emit_marker(cinfo, M_DAC); |
||||
|
||||
emit_2bytes(cinfo, length*2 + 2); |
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
if (dc_in_use[i]) { |
||||
emit_byte(cinfo, i); |
||||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); |
||||
} |
||||
if (ac_in_use[i]) { |
||||
emit_byte(cinfo, i + 0x10); |
||||
emit_byte(cinfo, cinfo->arith_ac_K[i]); |
||||
} |
||||
} |
||||
} |
||||
#endif /* C_ARITH_CODING_SUPPORTED */ |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_dri (j_compress_ptr cinfo) |
||||
/* Emit a DRI marker */ |
||||
{ |
||||
emit_marker(cinfo, M_DRI); |
||||
|
||||
emit_2bytes(cinfo, 4); /* fixed length */ |
||||
|
||||
emit_2bytes(cinfo, (int) cinfo->restart_interval); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) |
||||
/* Emit a SOF marker */ |
||||
{ |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
emit_marker(cinfo, code); |
||||
|
||||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ |
||||
|
||||
/* Make sure image isn't bigger than SOF field can handle */ |
||||
if ((long) cinfo->_jpeg_height > 65535L || |
||||
(long) cinfo->_jpeg_width > 65535L) |
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); |
||||
|
||||
emit_byte(cinfo, cinfo->data_precision); |
||||
emit_2bytes(cinfo, (int) cinfo->_jpeg_height); |
||||
emit_2bytes(cinfo, (int) cinfo->_jpeg_width); |
||||
|
||||
emit_byte(cinfo, cinfo->num_components); |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
emit_byte(cinfo, compptr->component_id); |
||||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); |
||||
emit_byte(cinfo, compptr->quant_tbl_no); |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_sos (j_compress_ptr cinfo) |
||||
/* Emit a SOS marker */ |
||||
{ |
||||
int i, td, ta; |
||||
jpeg_component_info *compptr; |
||||
|
||||
emit_marker(cinfo, M_SOS); |
||||
|
||||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ |
||||
|
||||
emit_byte(cinfo, cinfo->comps_in_scan); |
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) { |
||||
compptr = cinfo->cur_comp_info[i]; |
||||
emit_byte(cinfo, compptr->component_id); |
||||
|
||||
/* We emit 0 for unused field(s); this is recommended by the P&M text
|
||||
* but does not seem to be specified in the standard. |
||||
*/ |
||||
|
||||
/* DC needs no table for refinement scan */ |
||||
td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0; |
||||
/* AC needs no table when not present */ |
||||
ta = cinfo->Se ? compptr->ac_tbl_no : 0; |
||||
|
||||
emit_byte(cinfo, (td << 4) + ta); |
||||
} |
||||
|
||||
emit_byte(cinfo, cinfo->Ss); |
||||
emit_byte(cinfo, cinfo->Se); |
||||
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_jfif_app0 (j_compress_ptr cinfo) |
||||
/* Emit a JFIF-compliant APP0 marker */ |
||||
{ |
||||
/*
|
||||
* Length of APP0 block (2 bytes) |
||||
* Block ID (4 bytes - ASCII "JFIF") |
||||
* Zero byte (1 byte to terminate the ID string) |
||||
* Version Major, Minor (2 bytes - major first) |
||||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) |
||||
* Xdpu (2 bytes - dots per unit horizontal) |
||||
* Ydpu (2 bytes - dots per unit vertical) |
||||
* Thumbnail X size (1 byte) |
||||
* Thumbnail Y size (1 byte) |
||||
*/ |
||||
|
||||
emit_marker(cinfo, M_APP0); |
||||
|
||||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ |
||||
|
||||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */ |
||||
emit_byte(cinfo, 0x46); |
||||
emit_byte(cinfo, 0x49); |
||||
emit_byte(cinfo, 0x46); |
||||
emit_byte(cinfo, 0); |
||||
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ |
||||
emit_byte(cinfo, cinfo->JFIF_minor_version); |
||||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ |
||||
emit_2bytes(cinfo, (int) cinfo->X_density); |
||||
emit_2bytes(cinfo, (int) cinfo->Y_density); |
||||
emit_byte(cinfo, 0); /* No thumbnail image */ |
||||
emit_byte(cinfo, 0); |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
emit_adobe_app14 (j_compress_ptr cinfo) |
||||
/* Emit an Adobe APP14 marker */ |
||||
{ |
||||
/*
|
||||
* Length of APP14 block (2 bytes) |
||||
* Block ID (5 bytes - ASCII "Adobe") |
||||
* Version Number (2 bytes - currently 100) |
||||
* Flags0 (2 bytes - currently 0) |
||||
* Flags1 (2 bytes - currently 0) |
||||
* Color transform (1 byte) |
||||
* |
||||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files |
||||
* now in circulation seem to use Version = 100, so that's what we write. |
||||
* |
||||
* We write the color transform byte as 1 if the JPEG color space is |
||||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with |
||||
* whether the encoder performed a transformation, which is pretty useless. |
||||
*/ |
||||
|
||||
emit_marker(cinfo, M_APP14); |
||||
|
||||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ |
||||
|
||||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */ |
||||
emit_byte(cinfo, 0x64); |
||||
emit_byte(cinfo, 0x6F); |
||||
emit_byte(cinfo, 0x62); |
||||
emit_byte(cinfo, 0x65); |
||||
emit_2bytes(cinfo, 100); /* Version */ |
||||
emit_2bytes(cinfo, 0); /* Flags0 */ |
||||
emit_2bytes(cinfo, 0); /* Flags1 */ |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_YCbCr: |
||||
emit_byte(cinfo, 1); /* Color transform = 1 */ |
||||
break; |
||||
case JCS_YCCK: |
||||
emit_byte(cinfo, 2); /* Color transform = 2 */ |
||||
break; |
||||
default: |
||||
emit_byte(cinfo, 0); /* Color transform = 0 */ |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These routines allow writing an arbitrary marker with parameters. |
||||
* The only intended use is to emit COM or APPn markers after calling |
||||
* write_file_header and before calling write_frame_header. |
||||
* Other uses are not guaranteed to produce desirable results. |
||||
* Counting the parameter bytes properly is the caller's responsibility. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen) |
||||
/* Emit an arbitrary marker header */ |
||||
{ |
||||
if (datalen > (unsigned int) 65533) /* safety check */ |
||||
ERREXIT(cinfo, JERR_BAD_LENGTH); |
||||
|
||||
emit_marker(cinfo, (JPEG_MARKER) marker); |
||||
|
||||
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */ |
||||
} |
||||
|
||||
METHODDEF(void) |
||||
write_marker_byte (j_compress_ptr cinfo, int val) |
||||
/* Emit one byte of marker parameters following write_marker_header */ |
||||
{ |
||||
emit_byte(cinfo, val); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write datastream header. |
||||
* This consists of an SOI and optional APPn markers. |
||||
* We recommend use of the JFIF marker, but not the Adobe marker, |
||||
* when using YCbCr or grayscale data. The JFIF marker should NOT |
||||
* be used for any other JPEG colorspace. The Adobe marker is helpful |
||||
* to distinguish RGB, CMYK, and YCCK colorspaces. |
||||
* Note that an application can write additional header markers after |
||||
* jpeg_start_compress returns. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_file_header (j_compress_ptr cinfo) |
||||
{ |
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker; |
||||
|
||||
emit_marker(cinfo, M_SOI); /* first the SOI */ |
||||
|
||||
/* SOI is defined to reset restart interval to 0 */ |
||||
marker->last_restart_interval = 0; |
||||
|
||||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */ |
||||
emit_jfif_app0(cinfo); |
||||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ |
||||
emit_adobe_app14(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write frame header. |
||||
* This consists of DQT and SOFn markers. |
||||
* Note that we do not emit the SOF until we have emitted the DQT(s). |
||||
* This avoids compatibility problems with incorrect implementations that |
||||
* try to error-check the quant table numbers as soon as they see the SOF. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_frame_header (j_compress_ptr cinfo) |
||||
{ |
||||
int ci, prec; |
||||
boolean is_baseline; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Emit DQT for each quantization table.
|
||||
* Note that emit_dqt() suppresses any duplicate tables. |
||||
*/ |
||||
prec = 0; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
prec += emit_dqt(cinfo, compptr->quant_tbl_no); |
||||
} |
||||
/* now prec is nonzero iff there are any 16-bit quant tables. */ |
||||
|
||||
/* Check for a non-baseline specification.
|
||||
* Note we assume that Huffman table numbers won't be changed later. |
||||
*/ |
||||
if (cinfo->arith_code || cinfo->progressive_mode || |
||||
cinfo->data_precision != 8) { |
||||
is_baseline = FALSE; |
||||
} else { |
||||
is_baseline = TRUE; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) |
||||
is_baseline = FALSE; |
||||
} |
||||
if (prec && is_baseline) { |
||||
is_baseline = FALSE; |
||||
/* If it's baseline except for quantizer size, warn the user */ |
||||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); |
||||
} |
||||
} |
||||
|
||||
/* Emit the proper SOF marker */ |
||||
if (cinfo->arith_code) { |
||||
if (cinfo->progressive_mode) |
||||
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */ |
||||
else |
||||
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */ |
||||
} else { |
||||
if (cinfo->progressive_mode) |
||||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */ |
||||
else if (is_baseline) |
||||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */ |
||||
else |
||||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */ |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write scan header. |
||||
* This consists of DHT or DAC markers, optional DRI, and SOS. |
||||
* Compressed data will be written following the SOS. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_scan_header (j_compress_ptr cinfo) |
||||
{ |
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker; |
||||
int i; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->arith_code) { |
||||
/* Emit arith conditioning info. We may have some duplication
|
||||
* if the file has multiple scans, but it's so small it's hardly |
||||
* worth worrying about. |
||||
*/ |
||||
emit_dac(cinfo); |
||||
} else { |
||||
/* Emit Huffman tables.
|
||||
* Note that emit_dht() suppresses any duplicate tables. |
||||
*/ |
||||
for (i = 0; i < cinfo->comps_in_scan; i++) { |
||||
compptr = cinfo->cur_comp_info[i]; |
||||
/* DC needs no table for refinement scan */ |
||||
if (cinfo->Ss == 0 && cinfo->Ah == 0) |
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE); |
||||
/* AC needs no table when not present */ |
||||
if (cinfo->Se) |
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE); |
||||
} |
||||
} |
||||
|
||||
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||
* We avoid wasting space with unnecessary DRIs, however. |
||||
*/ |
||||
if (cinfo->restart_interval != marker->last_restart_interval) { |
||||
emit_dri(cinfo); |
||||
marker->last_restart_interval = cinfo->restart_interval; |
||||
} |
||||
|
||||
emit_sos(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write datastream trailer. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_file_trailer (j_compress_ptr cinfo) |
||||
{ |
||||
emit_marker(cinfo, M_EOI); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Write an abbreviated table-specification datastream. |
||||
* This consists of SOI, DQT and DHT tables, and EOI. |
||||
* Any table that is defined and not marked sent_table = TRUE will be |
||||
* emitted. Note that all tables will be marked sent_table = TRUE at exit. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
write_tables_only (j_compress_ptr cinfo) |
||||
{ |
||||
int i; |
||||
|
||||
emit_marker(cinfo, M_SOI); |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
||||
if (cinfo->quant_tbl_ptrs[i] != NULL) |
||||
(void) emit_dqt(cinfo, i); |
||||
} |
||||
|
||||
if (! cinfo->arith_code) { |
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL) |
||||
emit_dht(cinfo, i, FALSE); |
||||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL) |
||||
emit_dht(cinfo, i, TRUE); |
||||
} |
||||
} |
||||
|
||||
emit_marker(cinfo, M_EOI); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the marker writer module. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_marker_writer (j_compress_ptr cinfo) |
||||
{ |
||||
my_marker_ptr marker; |
||||
|
||||
/* Create the subobject */ |
||||
marker = (my_marker_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_marker_writer)); |
||||
cinfo->marker = (struct jpeg_marker_writer *) marker; |
||||
/* Initialize method pointers */ |
||||
marker->pub.write_file_header = write_file_header; |
||||
marker->pub.write_frame_header = write_frame_header; |
||||
marker->pub.write_scan_header = write_scan_header; |
||||
marker->pub.write_file_trailer = write_file_trailer; |
||||
marker->pub.write_tables_only = write_tables_only; |
||||
marker->pub.write_marker_header = write_marker_header; |
||||
marker->pub.write_marker_byte = write_marker_byte; |
||||
/* Initialize private state */ |
||||
marker->last_restart_interval = 0; |
||||
} |
@ -0,0 +1,639 @@ |
||||
/*
|
||||
* jcmaster.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2003-2010 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2010, 2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains master control logic for the JPEG compressor. |
||||
* These routines are concerned with parameter validation, initial setup, |
||||
* and inter-pass control (determining the number of passes and the work |
||||
* to be done in each pass). |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jpegcomp.h" |
||||
#include "jconfigint.h" |
||||
|
||||
|
||||
/* Private state */ |
||||
|
||||
typedef enum { |
||||
main_pass, /* input data, also do first output step */ |
||||
huff_opt_pass, /* Huffman code optimization pass */ |
||||
output_pass /* data output pass */ |
||||
} c_pass_type; |
||||
|
||||
typedef struct { |
||||
struct jpeg_comp_master pub; /* public fields */ |
||||
|
||||
c_pass_type pass_type; /* the type of the current pass */ |
||||
|
||||
int pass_number; /* # of passes completed */ |
||||
int total_passes; /* total # of passes needed */ |
||||
|
||||
int scan_number; /* current index in scan_info[] */ |
||||
|
||||
/*
|
||||
* This is here so we can add libjpeg-turbo version/build information to the |
||||
* global string table without introducing a new global symbol. Adding this |
||||
* information to the global string table allows one to examine a binary |
||||
* object and determine which version of libjpeg-turbo it was built from or |
||||
* linked against. |
||||
*/ |
||||
const char *jpeg_version; |
||||
|
||||
} my_comp_master; |
||||
|
||||
typedef my_comp_master *my_master_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Support routines that do various essential calculations. |
||||
*/ |
||||
|
||||
#if JPEG_LIB_VERSION >= 70 |
||||
/*
|
||||
* Compute JPEG image dimensions and related values. |
||||
* NOTE: this is exported for possible use by application. |
||||
* Hence it mustn't do anything that can't be done twice. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase */ |
||||
{ |
||||
/* Hardwire it to "no scaling" */ |
||||
cinfo->jpeg_width = cinfo->image_width; |
||||
cinfo->jpeg_height = cinfo->image_height; |
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE; |
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE; |
||||
} |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
initial_setup (j_compress_ptr cinfo, boolean transcode_only) |
||||
/* Do computations that are needed before master selection phase */ |
||||
{ |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
long samplesperrow; |
||||
JDIMENSION jd_samplesperrow; |
||||
|
||||
#if JPEG_LIB_VERSION >= 70 |
||||
#if JPEG_LIB_VERSION >= 80 |
||||
if (!transcode_only) |
||||
#endif |
||||
jpeg_calc_jpeg_dimensions(cinfo); |
||||
#endif |
||||
|
||||
/* Sanity check on image dimensions */ |
||||
if (cinfo->_jpeg_height <= 0 || cinfo->_jpeg_width <= 0 |
||||
|| cinfo->num_components <= 0 || cinfo->input_components <= 0) |
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE); |
||||
|
||||
/* Make sure image isn't bigger than I can handle */ |
||||
if ((long) cinfo->_jpeg_height > (long) JPEG_MAX_DIMENSION || |
||||
(long) cinfo->_jpeg_width > (long) JPEG_MAX_DIMENSION) |
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); |
||||
|
||||
/* Width of an input scanline must be representable as JDIMENSION. */ |
||||
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; |
||||
jd_samplesperrow = (JDIMENSION) samplesperrow; |
||||
if ((long) jd_samplesperrow != samplesperrow) |
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
||||
|
||||
/* For now, precision must match compiled-in value... */ |
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE) |
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
||||
|
||||
/* Check that number of components won't exceed internal array sizes */ |
||||
if (cinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
|
||||
/* Compute maximum sampling factors; check factor validity */ |
||||
cinfo->max_h_samp_factor = 1; |
||||
cinfo->max_v_samp_factor = 1; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || |
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) |
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING); |
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, |
||||
compptr->h_samp_factor); |
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, |
||||
compptr->v_samp_factor); |
||||
} |
||||
|
||||
/* Compute dimensions of components */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Fill in the correct component_index value; don't rely on application */ |
||||
compptr->component_index = ci; |
||||
/* For compression, we never do DCT scaling. */ |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE; |
||||
#else |
||||
compptr->DCT_scaled_size = DCTSIZE; |
||||
#endif |
||||
/* Size in DCT blocks */ |
||||
compptr->width_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor, |
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE)); |
||||
compptr->height_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor, |
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE)); |
||||
/* Size in samples */ |
||||
compptr->downsampled_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor, |
||||
(long) cinfo->max_h_samp_factor); |
||||
compptr->downsampled_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor, |
||||
(long) cinfo->max_v_samp_factor); |
||||
/* Mark component needed (this flag isn't actually used for compression) */ |
||||
compptr->component_needed = TRUE; |
||||
} |
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient controller). |
||||
*/ |
||||
cinfo->total_iMCU_rows = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->_jpeg_height, |
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE)); |
||||
} |
||||
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
LOCAL(void) |
||||
validate_script (j_compress_ptr cinfo) |
||||
/* Verify that the scan script in cinfo->scan_info[] is valid; also
|
||||
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode. |
||||
*/ |
||||
{ |
||||
const jpeg_scan_info *scanptr; |
||||
int scanno, ncomps, ci, coefi, thisi; |
||||
int Ss, Se, Ah, Al; |
||||
boolean component_sent[MAX_COMPONENTS]; |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
int *last_bitpos_ptr; |
||||
int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; |
||||
/* -1 until that coefficient has been seen; then last Al for it */ |
||||
#endif |
||||
|
||||
if (cinfo->num_scans <= 0) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); |
||||
|
||||
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
|
||||
* for progressive JPEG, no scan can have this. |
||||
*/ |
||||
scanptr = cinfo->scan_info; |
||||
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
cinfo->progressive_mode = TRUE; |
||||
last_bitpos_ptr = & last_bitpos[0][0]; |
||||
for (ci = 0; ci < cinfo->num_components; ci++) |
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) |
||||
*last_bitpos_ptr++ = -1; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
cinfo->progressive_mode = FALSE; |
||||
for (ci = 0; ci < cinfo->num_components; ci++) |
||||
component_sent[ci] = FALSE; |
||||
} |
||||
|
||||
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { |
||||
/* Validate component indexes */ |
||||
ncomps = scanptr->comps_in_scan; |
||||
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); |
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
thisi = scanptr->component_index[ci]; |
||||
if (thisi < 0 || thisi >= cinfo->num_components) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
||||
/* Components must appear in SOF order within each scan */ |
||||
if (ci > 0 && thisi <= scanptr->component_index[ci-1]) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
||||
} |
||||
/* Validate progression parameters */ |
||||
Ss = scanptr->Ss; |
||||
Se = scanptr->Se; |
||||
Ah = scanptr->Ah; |
||||
Al = scanptr->Al; |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
|
||||
* seems wrong: the upper bound ought to depend on data precision. |
||||
* Perhaps they really meant 0..N+1 for N-bit precision. |
||||
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in |
||||
* out-of-range reconstructed DC values during the first DC scan, |
||||
* which might cause problems for some decoders. |
||||
*/ |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define MAX_AH_AL 10 |
||||
#else |
||||
#define MAX_AH_AL 13 |
||||
#endif |
||||
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || |
||||
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
if (Ss == 0) { |
||||
if (Se != 0) /* DC and AC together not OK */ |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} else { |
||||
if (ncomps != 1) /* AC scans must be for only one component */ |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} |
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; |
||||
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
for (coefi = Ss; coefi <= Se; coefi++) { |
||||
if (last_bitpos_ptr[coefi] < 0) { |
||||
/* first scan of this coefficient */ |
||||
if (Ah != 0) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} else { |
||||
/* not first scan */ |
||||
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
} |
||||
last_bitpos_ptr[coefi] = Al; |
||||
} |
||||
} |
||||
#endif |
||||
} else { |
||||
/* For sequential JPEG, all progression parameters must be these: */ |
||||
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) |
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
||||
/* Make sure components are not sent twice */ |
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
thisi = scanptr->component_index[ci]; |
||||
if (component_sent[thisi]) |
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
||||
component_sent[thisi] = TRUE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/* Now verify that everything got sent. */ |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
/* For progressive mode, we only check that at least some DC data
|
||||
* got sent for each component; the spec does not require that all bits |
||||
* of all coefficients be transmitted. Would it be wiser to enforce |
||||
* transmission of all coefficient bits?? |
||||
*/ |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
if (last_bitpos[ci][0] < 0) |
||||
ERREXIT(cinfo, JERR_MISSING_DATA); |
||||
} |
||||
#endif |
||||
} else { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
if (! component_sent[ci]) |
||||
ERREXIT(cinfo, JERR_MISSING_DATA); |
||||
} |
||||
} |
||||
} |
||||
|
||||
#endif /* C_MULTISCAN_FILES_SUPPORTED */ |
||||
|
||||
|
||||
LOCAL(void) |
||||
select_scan_parameters (j_compress_ptr cinfo) |
||||
/* Set up the scan parameters for the current scan */ |
||||
{ |
||||
int ci; |
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
if (cinfo->scan_info != NULL) { |
||||
/* Prepare for current scan --- the script is already validated */ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
const jpeg_scan_info *scanptr = cinfo->scan_info + master->scan_number; |
||||
|
||||
cinfo->comps_in_scan = scanptr->comps_in_scan; |
||||
for (ci = 0; ci < scanptr->comps_in_scan; ci++) { |
||||
cinfo->cur_comp_info[ci] = |
||||
&cinfo->comp_info[scanptr->component_index[ci]]; |
||||
} |
||||
cinfo->Ss = scanptr->Ss; |
||||
cinfo->Se = scanptr->Se; |
||||
cinfo->Ah = scanptr->Ah; |
||||
cinfo->Al = scanptr->Al; |
||||
} |
||||
else |
||||
#endif |
||||
{ |
||||
/* Prepare for single sequential-JPEG scan containing all components */ |
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPS_IN_SCAN); |
||||
cinfo->comps_in_scan = cinfo->num_components; |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; |
||||
} |
||||
cinfo->Ss = 0; |
||||
cinfo->Se = DCTSIZE2-1; |
||||
cinfo->Ah = 0; |
||||
cinfo->Al = 0; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
per_scan_setup (j_compress_ptr cinfo) |
||||
/* Do computations that are needed before processing a JPEG scan */ |
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ |
||||
{ |
||||
int ci, mcublks, tmp; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->comps_in_scan == 1) { |
||||
|
||||
/* Noninterleaved (single-component) scan */ |
||||
compptr = cinfo->cur_comp_info[0]; |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = compptr->width_in_blocks; |
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks; |
||||
|
||||
/* For noninterleaved scan, always one block per MCU */ |
||||
compptr->MCU_width = 1; |
||||
compptr->MCU_height = 1; |
||||
compptr->MCU_blocks = 1; |
||||
compptr->MCU_sample_width = DCTSIZE; |
||||
compptr->last_col_width = 1; |
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row. |
||||
*/ |
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (tmp == 0) tmp = compptr->v_samp_factor; |
||||
compptr->last_row_height = tmp; |
||||
|
||||
/* Prepare array describing MCU composition */ |
||||
cinfo->blocks_in_MCU = 1; |
||||
cinfo->MCU_membership[0] = 0; |
||||
|
||||
} else { |
||||
|
||||
/* Interleaved (multi-component) scan */ |
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, |
||||
MAX_COMPS_IN_SCAN); |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->_jpeg_width, |
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE)); |
||||
cinfo->MCU_rows_in_scan = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->_jpeg_height, |
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE)); |
||||
|
||||
cinfo->blocks_in_MCU = 0; |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Sampling factors give # of blocks of component in each MCU */ |
||||
compptr->MCU_width = compptr->h_samp_factor; |
||||
compptr->MCU_height = compptr->v_samp_factor; |
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; |
||||
compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE; |
||||
/* Figure number of non-dummy blocks in last MCU column & row */ |
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); |
||||
if (tmp == 0) tmp = compptr->MCU_width; |
||||
compptr->last_col_width = tmp; |
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); |
||||
if (tmp == 0) tmp = compptr->MCU_height; |
||||
compptr->last_row_height = tmp; |
||||
/* Prepare array describing MCU composition */ |
||||
mcublks = compptr->MCU_blocks; |
||||
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) |
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE); |
||||
while (mcublks-- > 0) { |
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
/* Convert restart specified in rows to actual MCU count. */ |
||||
/* Note that count must fit in 16 bits, so we provide limiting. */ |
||||
if (cinfo->restart_in_rows > 0) { |
||||
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; |
||||
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup. |
||||
* This is called at the beginning of each pass. We determine which modules |
||||
* will be active during this pass and give them appropriate start_pass calls. |
||||
* We also set is_last_pass to indicate whether any more passes will be |
||||
* required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
prepare_for_pass (j_compress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
switch (master->pass_type) { |
||||
case main_pass: |
||||
/* Initial pass: will collect input data, and do either Huffman
|
||||
* optimization or data output for the first scan. |
||||
*/ |
||||
select_scan_parameters(cinfo); |
||||
per_scan_setup(cinfo); |
||||
if (! cinfo->raw_data_in) { |
||||
(*cinfo->cconvert->start_pass) (cinfo); |
||||
(*cinfo->downsample->start_pass) (cinfo); |
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); |
||||
} |
||||
(*cinfo->fdct->start_pass) (cinfo); |
||||
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); |
||||
(*cinfo->coef->start_pass) (cinfo, |
||||
(master->total_passes > 1 ? |
||||
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
||||
if (cinfo->optimize_coding) { |
||||
/* No immediate data output; postpone writing frame/scan headers */ |
||||
master->pub.call_pass_startup = FALSE; |
||||
} else { |
||||
/* Will write frame/scan headers at first jpeg_write_scanlines call */ |
||||
master->pub.call_pass_startup = TRUE; |
||||
} |
||||
break; |
||||
#ifdef ENTROPY_OPT_SUPPORTED |
||||
case huff_opt_pass: |
||||
/* Do Huffman optimization for a scan after the first one. */ |
||||
select_scan_parameters(cinfo); |
||||
per_scan_setup(cinfo); |
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) { |
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE); |
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
master->pub.call_pass_startup = FALSE; |
||||
break; |
||||
} |
||||
/* Special case: Huffman DC refinement scans need no Huffman table
|
||||
* and therefore we can skip the optimization pass for them. |
||||
*/ |
||||
master->pass_type = output_pass; |
||||
master->pass_number++; |
||||
/*FALLTHROUGH*/ |
||||
#endif |
||||
case output_pass: |
||||
/* Do a data-output pass. */ |
||||
/* We need not repeat per-scan setup if prior optimization pass did it. */ |
||||
if (! cinfo->optimize_coding) { |
||||
select_scan_parameters(cinfo); |
||||
per_scan_setup(cinfo); |
||||
} |
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE); |
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
/* We emit frame/scan headers now */ |
||||
if (master->scan_number == 0) |
||||
(*cinfo->marker->write_frame_header) (cinfo); |
||||
(*cinfo->marker->write_scan_header) (cinfo); |
||||
master->pub.call_pass_startup = FALSE; |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
} |
||||
|
||||
master->pub.is_last_pass = (master->pass_number == master->total_passes-1); |
||||
|
||||
/* Set up progress monitor's pass info if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->completed_passes = master->pass_number; |
||||
cinfo->progress->total_passes = master->total_passes; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Special start-of-pass hook. |
||||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE. |
||||
* In single-pass processing, we need this hook because we don't want to |
||||
* write frame/scan headers during jpeg_start_compress; we want to let the |
||||
* application write COM markers etc. between jpeg_start_compress and the |
||||
* jpeg_write_scanlines loop. |
||||
* In multi-pass processing, this routine is not used. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
pass_startup (j_compress_ptr cinfo) |
||||
{ |
||||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ |
||||
|
||||
(*cinfo->marker->write_frame_header) (cinfo); |
||||
(*cinfo->marker->write_scan_header) (cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass_master (j_compress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
/* The entropy coder always needs an end-of-pass call,
|
||||
* either to analyze statistics or to flush its output buffer. |
||||
*/ |
||||
(*cinfo->entropy->finish_pass) (cinfo); |
||||
|
||||
/* Update state for next pass */ |
||||
switch (master->pass_type) { |
||||
case main_pass: |
||||
/* next pass is either output of scan 0 (after optimization)
|
||||
* or output of scan 1 (if no optimization). |
||||
*/ |
||||
master->pass_type = output_pass; |
||||
if (! cinfo->optimize_coding) |
||||
master->scan_number++; |
||||
break; |
||||
case huff_opt_pass: |
||||
/* next pass is always output of current scan */ |
||||
master->pass_type = output_pass; |
||||
break; |
||||
case output_pass: |
||||
/* next pass is either optimization or output of next scan */ |
||||
if (cinfo->optimize_coding) |
||||
master->pass_type = huff_opt_pass; |
||||
master->scan_number++; |
||||
break; |
||||
} |
||||
|
||||
master->pass_number++; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize master compression control. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) |
||||
{ |
||||
my_master_ptr master; |
||||
|
||||
master = (my_master_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_comp_master)); |
||||
cinfo->master = (struct jpeg_comp_master *) master; |
||||
master->pub.prepare_for_pass = prepare_for_pass; |
||||
master->pub.pass_startup = pass_startup; |
||||
master->pub.finish_pass = finish_pass_master; |
||||
master->pub.is_last_pass = FALSE; |
||||
|
||||
/* Validate parameters, determine derived values */ |
||||
initial_setup(cinfo, transcode_only); |
||||
|
||||
if (cinfo->scan_info != NULL) { |
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED |
||||
validate_script(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
cinfo->progressive_mode = FALSE; |
||||
cinfo->num_scans = 1; |
||||
} |
||||
|
||||
if (cinfo->progressive_mode && !cinfo->arith_code) /* TEMPORARY HACK ??? */ |
||||
cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */ |
||||
|
||||
/* Initialize my private state */ |
||||
if (transcode_only) { |
||||
/* no main pass in transcoding */ |
||||
if (cinfo->optimize_coding) |
||||
master->pass_type = huff_opt_pass; |
||||
else |
||||
master->pass_type = output_pass; |
||||
} else { |
||||
/* for normal compression, first pass is always this type: */ |
||||
master->pass_type = main_pass; |
||||
} |
||||
master->scan_number = 0; |
||||
master->pass_number = 0; |
||||
if (cinfo->optimize_coding) |
||||
master->total_passes = cinfo->num_scans * 2; |
||||
else |
||||
master->total_passes = cinfo->num_scans; |
||||
|
||||
master->jpeg_version = PACKAGE_NAME " version " VERSION " (build " BUILD ")"; |
||||
} |
@ -0,0 +1,109 @@ |
||||
/*
|
||||
* jcomapi.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains application interface routines that are used for both |
||||
* compression and decompression. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression or decompression operation, |
||||
* but don't destroy the object itself. |
||||
* |
||||
* For this, we merely clean up all the nonpermanent memory pools. |
||||
* Note that temp files (virtual arrays) are not allowed to belong to |
||||
* the permanent pool, so we will be able to close all temp files here. |
||||
* Closing a data source or destination, if necessary, is the application's |
||||
* responsibility. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_abort (j_common_ptr cinfo) |
||||
{ |
||||
int pool; |
||||
|
||||
/* Do nothing if called on a not-initialized or destroyed JPEG object. */ |
||||
if (cinfo->mem == NULL) |
||||
return; |
||||
|
||||
/* Releasing pools in reverse order might help avoid fragmentation
|
||||
* with some (brain-damaged) malloc libraries. |
||||
*/ |
||||
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { |
||||
(*cinfo->mem->free_pool) (cinfo, pool); |
||||
} |
||||
|
||||
/* Reset overall state for possible reuse of object */ |
||||
if (cinfo->is_decompressor) { |
||||
cinfo->global_state = DSTATE_START; |
||||
/* Try to keep application from accessing now-deleted marker list.
|
||||
* A bit kludgy to do it here, but this is the most central place. |
||||
*/ |
||||
((j_decompress_ptr) cinfo)->marker_list = NULL; |
||||
} else { |
||||
cinfo->global_state = CSTATE_START; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG object. |
||||
* |
||||
* Everything gets deallocated except the master jpeg_compress_struct itself |
||||
* and the error manager struct. Both of these are supplied by the application |
||||
* and must be freed, if necessary, by the application. (Often they are on |
||||
* the stack and so don't need to be freed anyway.) |
||||
* Closing a data source or destination, if necessary, is the application's |
||||
* responsibility. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_destroy (j_common_ptr cinfo) |
||||
{ |
||||
/* We need only tell the memory manager to release everything. */ |
||||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */ |
||||
if (cinfo->mem != NULL) |
||||
(*cinfo->mem->self_destruct) (cinfo); |
||||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */ |
||||
cinfo->global_state = 0; /* mark it destroyed */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convenience routines for allocating quantization and Huffman tables. |
||||
* (Would jutils.c be a more reasonable place to put these?) |
||||
*/ |
||||
|
||||
GLOBAL(JQUANT_TBL *) |
||||
jpeg_alloc_quant_table (j_common_ptr cinfo) |
||||
{ |
||||
JQUANT_TBL *tbl; |
||||
|
||||
tbl = (JQUANT_TBL *) |
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JQUANT_TBL)); |
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */ |
||||
return tbl; |
||||
} |
||||
|
||||
|
||||
GLOBAL(JHUFF_TBL *) |
||||
jpeg_alloc_huff_table (j_common_ptr cinfo) |
||||
{ |
||||
JHUFF_TBL *tbl; |
||||
|
||||
tbl = (JHUFF_TBL *) |
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JHUFF_TBL)); |
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */ |
||||
return tbl; |
||||
} |
@ -0,0 +1,542 @@ |
||||
/*
|
||||
* jcparam.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1998, Thomas G. Lane. |
||||
* Modified 2003-2008 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2009-2011, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains optional default-setting code for the JPEG compressor. |
||||
* Applications do not have to use this file, but those that don't use it |
||||
* must know a lot more about the innards of the JPEG code. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jstdhuff.c" |
||||
|
||||
|
||||
/*
|
||||
* Quantization table setup routines |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, |
||||
const unsigned int *basic_table, |
||||
int scale_factor, boolean force_baseline) |
||||
/* Define a quantization table equal to the basic_table times
|
||||
* a scale factor (given as a percentage). |
||||
* If force_baseline is TRUE, the computed quantization table entries |
||||
* are limited to 1..255 for JPEG baseline compatibility. |
||||
*/ |
||||
{ |
||||
JQUANT_TBL **qtblptr; |
||||
int i; |
||||
long temp; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) |
||||
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); |
||||
|
||||
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; |
||||
|
||||
if (*qtblptr == NULL) |
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; |
||||
/* limit the values to the valid range */ |
||||
if (temp <= 0L) temp = 1L; |
||||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ |
||||
if (force_baseline && temp > 255L) |
||||
temp = 255L; /* limit to baseline range if requested */ |
||||
(*qtblptr)->quantval[i] = (UINT16) temp; |
||||
} |
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */ |
||||
(*qtblptr)->sent_table = FALSE; |
||||
} |
||||
|
||||
|
||||
/* These are the sample quantization tables given in JPEG spec section K.1.
|
||||
* The spec says that the values given produce "good" quality, and |
||||
* when divided by 2, "very good" quality. |
||||
*/ |
||||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { |
||||
16, 11, 10, 16, 24, 40, 51, 61, |
||||
12, 12, 14, 19, 26, 58, 60, 55, |
||||
14, 13, 16, 24, 40, 57, 69, 56, |
||||
14, 17, 22, 29, 51, 87, 80, 62, |
||||
18, 22, 37, 56, 68, 109, 103, 77, |
||||
24, 35, 55, 64, 81, 104, 113, 92, |
||||
49, 64, 78, 87, 103, 121, 120, 101, |
||||
72, 92, 95, 98, 112, 100, 103, 99 |
||||
}; |
||||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { |
||||
17, 18, 24, 47, 99, 99, 99, 99, |
||||
18, 21, 26, 66, 99, 99, 99, 99, |
||||
24, 26, 56, 99, 99, 99, 99, 99, |
||||
47, 66, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99, |
||||
99, 99, 99, 99, 99, 99, 99, 99 |
||||
}; |
||||
|
||||
|
||||
#if JPEG_LIB_VERSION >= 70 |
||||
GLOBAL(void) |
||||
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) |
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and straight percentage-scaling quality scales. |
||||
* This entry point allows different scalings for luminance and chrominance. |
||||
*/ |
||||
{ |
||||
/* Set up two quantization tables using the specified scaling */ |
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, |
||||
cinfo->q_scale_factor[0], force_baseline); |
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, |
||||
cinfo->q_scale_factor[1], force_baseline); |
||||
} |
||||
#endif |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, |
||||
boolean force_baseline) |
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and a straight percentage-scaling quality scale. In most cases it's better |
||||
* to use jpeg_set_quality (below); this entry point is provided for |
||||
* applications that insist on a linear percentage scaling. |
||||
*/ |
||||
{ |
||||
/* Set up two quantization tables using the specified scaling */ |
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, |
||||
scale_factor, force_baseline); |
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, |
||||
scale_factor, force_baseline); |
||||
} |
||||
|
||||
|
||||
GLOBAL(int) |
||||
jpeg_quality_scaling (int quality) |
||||
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||
* for an underlying quantization table, using our recommended scaling curve. |
||||
* The input 'quality' factor should be 0 (terrible) to 100 (very good). |
||||
*/ |
||||
{ |
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ |
||||
if (quality <= 0) quality = 1; |
||||
if (quality > 100) quality = 100; |
||||
|
||||
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q; |
||||
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table |
||||
* to make all the table entries 1 (hence, minimum quantization loss). |
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q. |
||||
*/ |
||||
if (quality < 50) |
||||
quality = 5000 / quality; |
||||
else |
||||
quality = 200 - quality*2; |
||||
|
||||
return quality; |
||||
} |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) |
||||
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||
* This is the standard quality-adjusting entry point for typical user |
||||
* interfaces; only those who want detailed control over quantization tables |
||||
* would use the preceding three routines directly. |
||||
*/ |
||||
{ |
||||
/* Convert user 0-100 rating to percentage scaling */ |
||||
quality = jpeg_quality_scaling(quality); |
||||
|
||||
/* Set up standard quality tables */ |
||||
jpeg_set_linear_quality(cinfo, quality, force_baseline); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Default parameter setup for compression. |
||||
* |
||||
* Applications that don't choose to use this routine must do their |
||||
* own setup of all these parameters. Alternately, you can call this |
||||
* to establish defaults and then alter parameters selectively. This |
||||
* is the recommended approach since, if we add any new parameters, |
||||
* your code will still work (they'll be set to reasonable defaults). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_defaults (j_compress_ptr cinfo) |
||||
{ |
||||
int i; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* Allocate comp_info array large enough for maximum component count.
|
||||
* Array is made permanent in case application wants to compress |
||||
* multiple images at same param settings. |
||||
*/ |
||||
if (cinfo->comp_info == NULL) |
||||
cinfo->comp_info = (jpeg_component_info *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
MAX_COMPONENTS * sizeof(jpeg_component_info)); |
||||
|
||||
/* Initialize everything not dependent on the color space */ |
||||
|
||||
#if JPEG_LIB_VERSION >= 70 |
||||
cinfo->scale_num = 1; /* 1:1 scaling */ |
||||
cinfo->scale_denom = 1; |
||||
#endif |
||||
cinfo->data_precision = BITS_IN_JSAMPLE; |
||||
/* Set up two quantization tables using default quality of 75 */ |
||||
jpeg_set_quality(cinfo, 75, TRUE); |
||||
/* Set up two Huffman tables */ |
||||
std_huff_tables((j_common_ptr) cinfo); |
||||
|
||||
/* Initialize default arithmetic coding conditioning */ |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
cinfo->arith_dc_L[i] = 0; |
||||
cinfo->arith_dc_U[i] = 1; |
||||
cinfo->arith_ac_K[i] = 5; |
||||
} |
||||
|
||||
/* Default is no multiple-scan output */ |
||||
cinfo->scan_info = NULL; |
||||
cinfo->num_scans = 0; |
||||
|
||||
/* Expect normal source image, not raw downsampled data */ |
||||
cinfo->raw_data_in = FALSE; |
||||
|
||||
/* Use Huffman coding, not arithmetic coding, by default */ |
||||
cinfo->arith_code = FALSE; |
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */ |
||||
cinfo->optimize_coding = FALSE; |
||||
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||
* If the precision is higher, force optimization on so that usable |
||||
* tables will be computed. This test can be removed if default tables |
||||
* are supplied that are valid for the desired precision. |
||||
*/ |
||||
if (cinfo->data_precision > 8) |
||||
cinfo->optimize_coding = TRUE; |
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */ |
||||
cinfo->CCIR601_sampling = FALSE; |
||||
|
||||
#if JPEG_LIB_VERSION >= 70 |
||||
/* By default, apply fancy downsampling */ |
||||
cinfo->do_fancy_downsampling = TRUE; |
||||
#endif |
||||
|
||||
/* No input smoothing */ |
||||
cinfo->smoothing_factor = 0; |
||||
|
||||
/* DCT algorithm preference */ |
||||
cinfo->dct_method = JDCT_DEFAULT; |
||||
|
||||
/* No restart markers */ |
||||
cinfo->restart_interval = 0; |
||||
cinfo->restart_in_rows = 0; |
||||
|
||||
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||
* will actually be written is determined by jpeg_set_colorspace. |
||||
* |
||||
* By default, the library emits JFIF version code 1.01. |
||||
* An application that wants to emit JFIF 1.02 extension markers should set |
||||
* JFIF_minor_version to 2. We could probably get away with just defaulting |
||||
* to 1.02, but there may still be some decoders in use that will complain |
||||
* about that; saying 1.01 should minimize compatibility problems. |
||||
*/ |
||||
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ |
||||
cinfo->JFIF_minor_version = 1; |
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */ |
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ |
||||
cinfo->Y_density = 1; |
||||
|
||||
/* Choose JPEG colorspace based on input space, set defaults accordingly */ |
||||
|
||||
jpeg_default_colorspace(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Select an appropriate JPEG colorspace for in_color_space. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_default_colorspace (j_compress_ptr cinfo) |
||||
{ |
||||
switch (cinfo->in_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); |
||||
break; |
||||
case JCS_RGB: |
||||
case JCS_EXT_RGB: |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_BGR: |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_RGBA: |
||||
case JCS_EXT_BGRA: |
||||
case JCS_EXT_ABGR: |
||||
case JCS_EXT_ARGB: |
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr); |
||||
break; |
||||
case JCS_YCbCr: |
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr); |
||||
break; |
||||
case JCS_CMYK: |
||||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ |
||||
break; |
||||
case JCS_YCCK: |
||||
jpeg_set_colorspace(cinfo, JCS_YCCK); |
||||
break; |
||||
case JCS_UNKNOWN: |
||||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN); |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Set the JPEG colorspace, and choose colorspace-dependent default values. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) |
||||
{ |
||||
jpeg_component_info *compptr; |
||||
int ci; |
||||
|
||||
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ |
||||
(compptr = &cinfo->comp_info[index], \
|
||||
compptr->component_id = (id), \
|
||||
compptr->h_samp_factor = (hsamp), \
|
||||
compptr->v_samp_factor = (vsamp), \
|
||||
compptr->quant_tbl_no = (quant), \
|
||||
compptr->dc_tbl_no = (dctbl), \
|
||||
compptr->ac_tbl_no = (actbl) ) |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||
* tables 1 for chrominance components. |
||||
*/ |
||||
|
||||
cinfo->jpeg_color_space = colorspace; |
||||
|
||||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ |
||||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ |
||||
|
||||
switch (colorspace) { |
||||
case JCS_GRAYSCALE: |
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
||||
cinfo->num_components = 1; |
||||
/* JFIF specifies component ID 1 */ |
||||
SET_COMP(0, 1, 1,1, 0, 0,0); |
||||
break; |
||||
case JCS_RGB: |
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ |
||||
cinfo->num_components = 3; |
||||
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); |
||||
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); |
||||
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); |
||||
break; |
||||
case JCS_YCbCr: |
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
||||
cinfo->num_components = 3; |
||||
/* JFIF specifies component IDs 1,2,3 */ |
||||
/* We default to 2x2 subsamples of chrominance */ |
||||
SET_COMP(0, 1, 2,2, 0, 0,0); |
||||
SET_COMP(1, 2, 1,1, 1, 1,1); |
||||
SET_COMP(2, 3, 1,1, 1, 1,1); |
||||
break; |
||||
case JCS_CMYK: |
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ |
||||
cinfo->num_components = 4; |
||||
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); |
||||
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); |
||||
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); |
||||
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); |
||||
break; |
||||
case JCS_YCCK: |
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ |
||||
cinfo->num_components = 4; |
||||
SET_COMP(0, 1, 2,2, 0, 0,0); |
||||
SET_COMP(1, 2, 1,1, 1, 1,1); |
||||
SET_COMP(2, 3, 1,1, 1, 1,1); |
||||
SET_COMP(3, 4, 2,2, 0, 0,0); |
||||
break; |
||||
case JCS_UNKNOWN: |
||||
cinfo->num_components = cinfo->input_components; |
||||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
SET_COMP(ci, ci, 1,1, 0, 0,0); |
||||
} |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
|
||||
LOCAL(jpeg_scan_info *) |
||||
fill_a_scan (jpeg_scan_info *scanptr, int ci, |
||||
int Ss, int Se, int Ah, int Al) |
||||
/* Support routine: generate one scan for specified component */ |
||||
{ |
||||
scanptr->comps_in_scan = 1; |
||||
scanptr->component_index[0] = ci; |
||||
scanptr->Ss = Ss; |
||||
scanptr->Se = Se; |
||||
scanptr->Ah = Ah; |
||||
scanptr->Al = Al; |
||||
scanptr++; |
||||
return scanptr; |
||||
} |
||||
|
||||
LOCAL(jpeg_scan_info *) |
||||
fill_scans (jpeg_scan_info *scanptr, int ncomps, |
||||
int Ss, int Se, int Ah, int Al) |
||||
/* Support routine: generate one scan for each component */ |
||||
{ |
||||
int ci; |
||||
|
||||
for (ci = 0; ci < ncomps; ci++) { |
||||
scanptr->comps_in_scan = 1; |
||||
scanptr->component_index[0] = ci; |
||||
scanptr->Ss = Ss; |
||||
scanptr->Se = Se; |
||||
scanptr->Ah = Ah; |
||||
scanptr->Al = Al; |
||||
scanptr++; |
||||
} |
||||
return scanptr; |
||||
} |
||||
|
||||
LOCAL(jpeg_scan_info *) |
||||
fill_dc_scans (jpeg_scan_info *scanptr, int ncomps, int Ah, int Al) |
||||
/* Support routine: generate interleaved DC scan if possible, else N scans */ |
||||
{ |
||||
int ci; |
||||
|
||||
if (ncomps <= MAX_COMPS_IN_SCAN) { |
||||
/* Single interleaved DC scan */ |
||||
scanptr->comps_in_scan = ncomps; |
||||
for (ci = 0; ci < ncomps; ci++) |
||||
scanptr->component_index[ci] = ci; |
||||
scanptr->Ss = scanptr->Se = 0; |
||||
scanptr->Ah = Ah; |
||||
scanptr->Al = Al; |
||||
scanptr++; |
||||
} else { |
||||
/* Noninterleaved DC scan for each component */ |
||||
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); |
||||
} |
||||
return scanptr; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create a recommended progressive-JPEG script. |
||||
* cinfo->num_components and cinfo->jpeg_color_space must be correct. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_simple_progression (j_compress_ptr cinfo) |
||||
{ |
||||
int ncomps = cinfo->num_components; |
||||
int nscans; |
||||
jpeg_scan_info *scanptr; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* Figure space needed for script. Calculation must match code below! */ |
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { |
||||
/* Custom script for YCbCr color images. */ |
||||
nscans = 10; |
||||
} else { |
||||
/* All-purpose script for other color spaces. */ |
||||
if (ncomps > MAX_COMPS_IN_SCAN) |
||||
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ |
||||
else |
||||
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ |
||||
} |
||||
|
||||
/* Allocate space for script.
|
||||
* We need to put it in the permanent pool in case the application performs |
||||
* multiple compressions without changing the settings. To avoid a memory |
||||
* leak if jpeg_simple_progression is called repeatedly for the same JPEG |
||||
* object, we try to re-use previously allocated space, and we allocate |
||||
* enough space to handle YCbCr even if initially asked for grayscale. |
||||
*/ |
||||
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { |
||||
cinfo->script_space_size = MAX(nscans, 10); |
||||
cinfo->script_space = (jpeg_scan_info *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
cinfo->script_space_size * sizeof(jpeg_scan_info)); |
||||
} |
||||
scanptr = cinfo->script_space; |
||||
cinfo->scan_info = scanptr; |
||||
cinfo->num_scans = nscans; |
||||
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { |
||||
/* Custom script for YCbCr color images. */ |
||||
/* Initial DC scan */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); |
||||
/* Initial AC scan: get some luma data out in a hurry */ |
||||
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); |
||||
/* Chroma data is too small to be worth expending many scans on */ |
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); |
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); |
||||
/* Complete spectral selection for luma AC */ |
||||
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); |
||||
/* Refine next bit of luma AC */ |
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); |
||||
/* Finish DC successive approximation */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); |
||||
/* Finish AC successive approximation */ |
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); |
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); |
||||
/* Luma bottom bit comes last since it's usually largest scan */ |
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); |
||||
} else { |
||||
/* All-purpose script for other color spaces. */ |
||||
/* Successive approximation first pass */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); |
||||
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); |
||||
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); |
||||
/* Successive approximation second pass */ |
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); |
||||
/* Successive approximation final pass */ |
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); |
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); |
||||
} |
||||
} |
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */ |
@ -0,0 +1,834 @@ |
||||
/*
|
||||
* jcphuff.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1995-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains Huffman entropy encoding routines for progressive JPEG. |
||||
* |
||||
* We do not support output suspension in this module, since the library |
||||
* currently does not allow multiple-scan files to be written with output |
||||
* suspension. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jchuff.h" /* Declarations shared with jchuff.c */ |
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
|
||||
/* Expanded entropy encoder object for progressive Huffman encoding. */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_entropy_encoder pub; /* public fields */ |
||||
|
||||
/* Mode flag: TRUE for optimization, FALSE for actual data output */ |
||||
boolean gather_statistics; |
||||
|
||||
/* Bit-level coding status.
|
||||
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
||||
*/ |
||||
JOCTET *next_output_byte; /* => next byte to write in buffer */ |
||||
size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
||||
size_t put_buffer; /* current bit-accumulation buffer */ |
||||
int put_bits; /* # of bits now in it */ |
||||
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
||||
|
||||
/* Coding status for DC components */ |
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
||||
|
||||
/* Coding status for AC components */ |
||||
int ac_tbl_no; /* the table number of the single component */ |
||||
unsigned int EOBRUN; /* run length of EOBs */ |
||||
unsigned int BE; /* # of buffered correction bits before MCU */ |
||||
char *bit_buffer; /* buffer for correction bits (1 per char) */ |
||||
/* packing correction bits tightly would save some space but cost time... */ |
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
||||
int next_restart_num; /* next restart number to write (0-7) */ |
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan).
|
||||
* Since any one scan codes only DC or only AC, we only need one set |
||||
* of tables, not one for DC and one for AC. |
||||
*/ |
||||
c_derived_tbl *derived_tbls[NUM_HUFF_TBLS]; |
||||
|
||||
/* Statistics tables for optimization; again, one set is enough */ |
||||
long *count_ptrs[NUM_HUFF_TBLS]; |
||||
} phuff_entropy_encoder; |
||||
|
||||
typedef phuff_entropy_encoder *phuff_entropy_ptr; |
||||
|
||||
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
||||
* buffer can hold. Larger sizes may slightly improve compression, but |
||||
* 1000 is already well into the realm of overkill. |
||||
* The minimum safe size is 64 bits. |
||||
*/ |
||||
|
||||
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
|
||||
* We assume that int right shift is unsigned if JLONG right shift is, |
||||
* which should be safe. |
||||
*/ |
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
||||
#define ISHIFT_TEMPS int ishift_temp; |
||||
#define IRIGHT_SHIFT(x,shft) \ |
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||
(ishift_temp >> (shft))) |
||||
#else |
||||
#define ISHIFT_TEMPS |
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
||||
#endif |
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo); |
||||
METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo); |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan using progressive JPEG. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
boolean is_DC_band; |
||||
int ci, tbl; |
||||
jpeg_component_info *compptr; |
||||
|
||||
entropy->cinfo = cinfo; |
||||
entropy->gather_statistics = gather_statistics; |
||||
|
||||
is_DC_band = (cinfo->Ss == 0); |
||||
|
||||
/* We assume jcmaster.c already validated the scan parameters. */ |
||||
|
||||
/* Select execution routines */ |
||||
if (cinfo->Ah == 0) { |
||||
if (is_DC_band) |
||||
entropy->pub.encode_mcu = encode_mcu_DC_first; |
||||
else |
||||
entropy->pub.encode_mcu = encode_mcu_AC_first; |
||||
} else { |
||||
if (is_DC_band) |
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine; |
||||
else { |
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine; |
||||
/* AC refinement needs a correction bit buffer */ |
||||
if (entropy->bit_buffer == NULL) |
||||
entropy->bit_buffer = (char *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
MAX_CORR_BITS * sizeof(char)); |
||||
} |
||||
} |
||||
if (gather_statistics) |
||||
entropy->pub.finish_pass = finish_pass_gather_phuff; |
||||
else |
||||
entropy->pub.finish_pass = finish_pass_phuff; |
||||
|
||||
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
|
||||
* for AC coefficients. |
||||
*/ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Initialize DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
/* Get table index */ |
||||
if (is_DC_band) { |
||||
if (cinfo->Ah != 0) /* DC refinement needs no table */ |
||||
continue; |
||||
tbl = compptr->dc_tbl_no; |
||||
} else { |
||||
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
||||
} |
||||
if (gather_statistics) { |
||||
/* Check for invalid table index */ |
||||
/* (make_c_derived_tbl does this in the other path) */ |
||||
if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
||||
/* Allocate and zero the statistics tables */ |
||||
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
||||
if (entropy->count_ptrs[tbl] == NULL) |
||||
entropy->count_ptrs[tbl] = (long *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
257 * sizeof(long)); |
||||
MEMZERO(entropy->count_ptrs[tbl], 257 * sizeof(long)); |
||||
} else { |
||||
/* Compute derived values for Huffman table */ |
||||
/* We may do this more than once for a table, but it's not expensive */ |
||||
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
||||
& entropy->derived_tbls[tbl]); |
||||
} |
||||
} |
||||
|
||||
/* Initialize AC stuff */ |
||||
entropy->EOBRUN = 0; |
||||
entropy->BE = 0; |
||||
|
||||
/* Initialize bit buffer to empty */ |
||||
entropy->put_buffer = 0; |
||||
entropy->put_bits = 0; |
||||
|
||||
/* Initialize restart stuff */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num = 0; |
||||
} |
||||
|
||||
|
||||
/* Outputting bytes to the file.
|
||||
* NB: these must be called only when actually outputting, |
||||
* that is, entropy->gather_statistics == FALSE. |
||||
*/ |
||||
|
||||
/* Emit a byte */ |
||||
#define emit_byte(entropy,val) \ |
||||
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
||||
if (--(entropy)->free_in_buffer == 0) \
|
||||
dump_buffer(entropy); } |
||||
|
||||
|
||||
LOCAL(void) |
||||
dump_buffer (phuff_entropy_ptr entropy) |
||||
/* Empty the output buffer; we do not support suspension in this module. */ |
||||
{ |
||||
struct jpeg_destination_mgr *dest = entropy->cinfo->dest; |
||||
|
||||
if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
||||
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
||||
/* After a successful buffer dump, must reset buffer pointers */ |
||||
entropy->next_output_byte = dest->next_output_byte; |
||||
entropy->free_in_buffer = dest->free_in_buffer; |
||||
} |
||||
|
||||
|
||||
/* Outputting bits to the file */ |
||||
|
||||
/* Only the right 24 bits of put_buffer are used; the valid bits are
|
||||
* left-justified in this part. At most 16 bits can be passed to emit_bits |
||||
* in one call, and we never retain more than 7 bits in put_buffer |
||||
* between calls, so 24 bits are sufficient. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
||||
/* Emit some bits, unless we are in gather mode */ |
||||
{ |
||||
/* This routine is heavily used, so it's worth coding tightly. */ |
||||
register size_t put_buffer = (size_t) code; |
||||
register int put_bits = entropy->put_bits; |
||||
|
||||
/* if size is 0, caller used an invalid Huffman table entry */ |
||||
if (size == 0) |
||||
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
||||
|
||||
if (entropy->gather_statistics) |
||||
return; /* do nothing if we're only getting stats */ |
||||
|
||||
put_buffer &= (((size_t) 1)<<size) - 1; /* mask off any extra bits in code */ |
||||
|
||||
put_bits += size; /* new number of bits in buffer */ |
||||
|
||||
put_buffer <<= 24 - put_bits; /* align incoming bits */ |
||||
|
||||
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
||||
|
||||
while (put_bits >= 8) { |
||||
int c = (int) ((put_buffer >> 16) & 0xFF); |
||||
|
||||
emit_byte(entropy, c); |
||||
if (c == 0xFF) { /* need to stuff a zero byte? */ |
||||
emit_byte(entropy, 0); |
||||
} |
||||
put_buffer <<= 8; |
||||
put_bits -= 8; |
||||
} |
||||
|
||||
entropy->put_buffer = put_buffer; /* update variables */ |
||||
entropy->put_bits = put_bits; |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
flush_bits (phuff_entropy_ptr entropy) |
||||
{ |
||||
emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
||||
entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
||||
entropy->put_bits = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Emit (or just count) a Huffman symbol. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
||||
{ |
||||
if (entropy->gather_statistics) |
||||
entropy->count_ptrs[tbl_no][symbol]++; |
||||
else { |
||||
c_derived_tbl *tbl = entropy->derived_tbls[tbl_no]; |
||||
emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Emit bits from a correction bit buffer. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_buffered_bits (phuff_entropy_ptr entropy, char *bufstart, |
||||
unsigned int nbits) |
||||
{ |
||||
if (entropy->gather_statistics) |
||||
return; /* no real work */ |
||||
|
||||
while (nbits > 0) { |
||||
emit_bits(entropy, (unsigned int) (*bufstart), 1); |
||||
bufstart++; |
||||
nbits--; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Emit any pending EOBRUN symbol. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_eobrun (phuff_entropy_ptr entropy) |
||||
{ |
||||
register int temp, nbits; |
||||
|
||||
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
||||
temp = entropy->EOBRUN; |
||||
nbits = 0; |
||||
while ((temp >>= 1)) |
||||
nbits++; |
||||
/* safety check: shouldn't happen given limited correction-bit buffer */ |
||||
if (nbits > 14) |
||||
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
||||
|
||||
emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
||||
if (nbits) |
||||
emit_bits(entropy, entropy->EOBRUN, nbits); |
||||
|
||||
entropy->EOBRUN = 0; |
||||
|
||||
/* Emit any buffered correction bits */ |
||||
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
||||
entropy->BE = 0; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
emit_restart (phuff_entropy_ptr entropy, int restart_num) |
||||
{ |
||||
int ci; |
||||
|
||||
emit_eobrun(entropy); |
||||
|
||||
if (! entropy->gather_statistics) { |
||||
flush_bits(entropy); |
||||
emit_byte(entropy, 0xFF); |
||||
emit_byte(entropy, JPEG_RST0 + restart_num); |
||||
} |
||||
|
||||
if (entropy->cinfo->Ss == 0) { |
||||
/* Re-initialize DC predictions to 0 */ |
||||
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
||||
entropy->last_dc_val[ci] = 0; |
||||
} else { |
||||
/* Re-initialize all AC-related fields to 0 */ |
||||
entropy->EOBRUN = 0; |
||||
entropy->BE = 0; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
register int temp, temp2; |
||||
register int nbits; |
||||
int blkn, ci; |
||||
int Al = cinfo->Al; |
||||
JBLOCKROW block; |
||||
jpeg_component_info *compptr; |
||||
ISHIFT_TEMPS |
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte; |
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) |
||||
if (entropy->restarts_to_go == 0) |
||||
emit_restart(entropy, entropy->next_restart_num); |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift. |
||||
*/ |
||||
temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
||||
|
||||
/* DC differences are figured on the point-transformed values. */ |
||||
temp = temp2 - entropy->last_dc_val[ci]; |
||||
entropy->last_dc_val[ci] = temp2; |
||||
|
||||
/* Encode the DC coefficient difference per section G.1.2.1 */ |
||||
temp2 = temp; |
||||
if (temp < 0) { |
||||
temp = -temp; /* temp is abs value of input */ |
||||
/* For a negative input, want temp2 = bitwise complement of abs(input) */ |
||||
/* This code assumes we are on a two's complement machine */ |
||||
temp2--; |
||||
} |
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */ |
||||
nbits = 0; |
||||
while (temp) { |
||||
nbits++; |
||||
temp >>= 1; |
||||
} |
||||
/* Check for out-of-range coefficient values.
|
||||
* Since we're encoding a difference, the range limit is twice as much. |
||||
*/ |
||||
if (nbits > MAX_COEF_BITS+1) |
||||
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
||||
|
||||
/* Count/emit the Huffman-coded symbol for the number of bits */ |
||||
emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
||||
|
||||
/* Emit that number of bits of the value, if positive, */ |
||||
/* or the complement of its magnitude, if negative. */ |
||||
if (nbits) /* emit_bits rejects calls with size 0 */ |
||||
emit_bits(entropy, (unsigned int) temp2, nbits); |
||||
} |
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte; |
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
||||
|
||||
/* Update restart-interval state too */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
register int temp, temp2; |
||||
register int nbits; |
||||
register int r, k; |
||||
int Se = cinfo->Se; |
||||
int Al = cinfo->Al; |
||||
JBLOCKROW block; |
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte; |
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) |
||||
if (entropy->restarts_to_go == 0) |
||||
emit_restart(entropy, entropy->next_restart_num); |
||||
|
||||
/* Encode the MCU data block */ |
||||
block = MCU_data[0]; |
||||
|
||||
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
||||
|
||||
r = 0; /* r = run length of zeros */ |
||||
|
||||
for (k = cinfo->Ss; k <= Se; k++) { |
||||
if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
||||
r++; |
||||
continue; |
||||
} |
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably |
||||
* in C, we shift after obtaining the absolute value; so the code is |
||||
* interwoven with finding the abs value (temp) and output bits (temp2). |
||||
*/ |
||||
if (temp < 0) { |
||||
temp = -temp; /* temp is abs value of input */ |
||||
temp >>= Al; /* apply the point transform */ |
||||
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
||||
temp2 = ~temp; |
||||
} else { |
||||
temp >>= Al; /* apply the point transform */ |
||||
temp2 = temp; |
||||
} |
||||
/* Watch out for case that nonzero coef is zero after point transform */ |
||||
if (temp == 0) { |
||||
r++; |
||||
continue; |
||||
} |
||||
|
||||
/* Emit any pending EOBRUN */ |
||||
if (entropy->EOBRUN > 0) |
||||
emit_eobrun(entropy); |
||||
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
||||
while (r > 15) { |
||||
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
||||
r -= 16; |
||||
} |
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */ |
||||
nbits = 1; /* there must be at least one 1 bit */ |
||||
while ((temp >>= 1)) |
||||
nbits++; |
||||
/* Check for out-of-range coefficient values */ |
||||
if (nbits > MAX_COEF_BITS) |
||||
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
||||
|
||||
/* Count/emit Huffman symbol for run length / number of bits */ |
||||
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
||||
|
||||
/* Emit that number of bits of the value, if positive, */ |
||||
/* or the complement of its magnitude, if negative. */ |
||||
emit_bits(entropy, (unsigned int) temp2, nbits); |
||||
|
||||
r = 0; /* reset zero run length */ |
||||
} |
||||
|
||||
if (r > 0) { /* If there are trailing zeroes, */ |
||||
entropy->EOBRUN++; /* count an EOB */ |
||||
if (entropy->EOBRUN == 0x7FFF) |
||||
emit_eobrun(entropy); /* force it out to avoid overflow */ |
||||
} |
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte; |
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
||||
|
||||
/* Update restart-interval state too */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan. |
||||
* Note: we assume such scans can be multi-component, although the spec |
||||
* is not very clear on the point. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
register int temp; |
||||
int blkn; |
||||
int Al = cinfo->Al; |
||||
JBLOCKROW block; |
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte; |
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) |
||||
if (entropy->restarts_to_go == 0) |
||||
emit_restart(entropy, entropy->next_restart_num); |
||||
|
||||
/* Encode the MCU data blocks */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
|
||||
/* We simply emit the Al'th bit of the DC coefficient value. */ |
||||
temp = (*block)[0]; |
||||
emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
||||
} |
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte; |
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
||||
|
||||
/* Update restart-interval state too */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
register int temp; |
||||
register int r, k; |
||||
int EOB; |
||||
char *BR_buffer; |
||||
unsigned int BR; |
||||
int Se = cinfo->Se; |
||||
int Al = cinfo->Al; |
||||
JBLOCKROW block; |
||||
int absvalues[DCTSIZE2]; |
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte; |
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
||||
|
||||
/* Emit restart marker if needed */ |
||||
if (cinfo->restart_interval) |
||||
if (entropy->restarts_to_go == 0) |
||||
emit_restart(entropy, entropy->next_restart_num); |
||||
|
||||
/* Encode the MCU data block */ |
||||
block = MCU_data[0]; |
||||
|
||||
/* It is convenient to make a pre-pass to determine the transformed
|
||||
* coefficients' absolute values and the EOB position. |
||||
*/ |
||||
EOB = 0; |
||||
for (k = cinfo->Ss; k <= Se; k++) { |
||||
temp = (*block)[jpeg_natural_order[k]]; |
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably |
||||
* in C, we shift after obtaining the absolute value. |
||||
*/ |
||||
if (temp < 0) |
||||
temp = -temp; /* temp is abs value of input */ |
||||
temp >>= Al; /* apply the point transform */ |
||||
absvalues[k] = temp; /* save abs value for main pass */ |
||||
if (temp == 1) |
||||
EOB = k; /* EOB = index of last newly-nonzero coef */ |
||||
} |
||||
|
||||
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
||||
|
||||
r = 0; /* r = run length of zeros */ |
||||
BR = 0; /* BR = count of buffered bits added now */ |
||||
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
||||
|
||||
for (k = cinfo->Ss; k <= Se; k++) { |
||||
if ((temp = absvalues[k]) == 0) { |
||||
r++; |
||||
continue; |
||||
} |
||||
|
||||
/* Emit any required ZRLs, but not if they can be folded into EOB */ |
||||
while (r > 15 && k <= EOB) { |
||||
/* emit any pending EOBRUN and the BE correction bits */ |
||||
emit_eobrun(entropy); |
||||
/* Emit ZRL */ |
||||
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
||||
r -= 16; |
||||
/* Emit buffered correction bits that must be associated with ZRL */ |
||||
emit_buffered_bits(entropy, BR_buffer, BR); |
||||
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
||||
BR = 0; |
||||
} |
||||
|
||||
/* If the coef was previously nonzero, it only needs a correction bit.
|
||||
* NOTE: a straight translation of the spec's figure G.7 would suggest |
||||
* that we also need to test r > 15. But if r > 15, we can only get here |
||||
* if k > EOB, which implies that this coefficient is not 1. |
||||
*/ |
||||
if (temp > 1) { |
||||
/* The correction bit is the next bit of the absolute value. */ |
||||
BR_buffer[BR++] = (char) (temp & 1); |
||||
continue; |
||||
} |
||||
|
||||
/* Emit any pending EOBRUN and the BE correction bits */ |
||||
emit_eobrun(entropy); |
||||
|
||||
/* Count/emit Huffman symbol for run length / number of bits */ |
||||
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
||||
|
||||
/* Emit output bit for newly-nonzero coef */ |
||||
temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
||||
emit_bits(entropy, (unsigned int) temp, 1); |
||||
|
||||
/* Emit buffered correction bits that must be associated with this code */ |
||||
emit_buffered_bits(entropy, BR_buffer, BR); |
||||
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
||||
BR = 0; |
||||
r = 0; /* reset zero run length */ |
||||
} |
||||
|
||||
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
||||
entropy->EOBRUN++; /* count an EOB */ |
||||
entropy->BE += BR; /* concat my correction bits to older ones */ |
||||
/* We force out the EOB if we risk either:
|
||||
* 1. overflow of the EOB counter; |
||||
* 2. overflow of the correction bit buffer during the next MCU. |
||||
*/ |
||||
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
||||
emit_eobrun(entropy); |
||||
} |
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte; |
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
||||
|
||||
/* Update restart-interval state too */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) { |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
entropy->next_restart_num++; |
||||
entropy->next_restart_num &= 7; |
||||
} |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of a Huffman-compressed progressive scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass_phuff (j_compress_ptr cinfo) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
|
||||
entropy->next_output_byte = cinfo->dest->next_output_byte; |
||||
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
||||
|
||||
/* Flush out any buffered data */ |
||||
emit_eobrun(entropy); |
||||
flush_bits(entropy); |
||||
|
||||
cinfo->dest->next_output_byte = entropy->next_output_byte; |
||||
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up a statistics-gathering pass and create the new Huffman tables. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass_gather_phuff (j_compress_ptr cinfo) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
boolean is_DC_band; |
||||
int ci, tbl; |
||||
jpeg_component_info *compptr; |
||||
JHUFF_TBL **htblptr; |
||||
boolean did[NUM_HUFF_TBLS]; |
||||
|
||||
/* Flush out buffered data (all we care about is counting the EOB symbol) */ |
||||
emit_eobrun(entropy); |
||||
|
||||
is_DC_band = (cinfo->Ss == 0); |
||||
|
||||
/* It's important not to apply jpeg_gen_optimal_table more than once
|
||||
* per table, because it clobbers the input frequency counts! |
||||
*/ |
||||
MEMZERO(did, sizeof(did)); |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
if (is_DC_band) { |
||||
if (cinfo->Ah != 0) /* DC refinement needs no table */ |
||||
continue; |
||||
tbl = compptr->dc_tbl_no; |
||||
} else { |
||||
tbl = compptr->ac_tbl_no; |
||||
} |
||||
if (! did[tbl]) { |
||||
if (is_DC_band) |
||||
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
||||
else |
||||
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
||||
if (*htblptr == NULL) |
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
||||
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
||||
did[tbl] = TRUE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for progressive Huffman entropy encoding. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_phuff_encoder (j_compress_ptr cinfo) |
||||
{ |
||||
phuff_entropy_ptr entropy; |
||||
int i; |
||||
|
||||
entropy = (phuff_entropy_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(phuff_entropy_encoder)); |
||||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
||||
entropy->pub.start_pass = start_pass_phuff; |
||||
|
||||
/* Mark tables unallocated */ |
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
entropy->derived_tbls[i] = NULL; |
||||
entropy->count_ptrs[i] = NULL; |
||||
} |
||||
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
||||
} |
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */ |
@ -0,0 +1,357 @@ |
||||
/*
|
||||
* jcprepct.c |
||||
* |
||||
* This file is part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the compression preprocessing controller. |
||||
* This controller manages the color conversion, downsampling, |
||||
* and edge expansion steps. |
||||
* |
||||
* Most of the complexity here is associated with buffering input rows |
||||
* as required by the downsampler. See the comments at the head of |
||||
* jcsample.c for the downsampler's needs. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* At present, jcsample.c can request context rows only for smoothing.
|
||||
* In the future, we might also need context rows for CCIR601 sampling |
||||
* or other more-complex downsampling procedures. The code to support |
||||
* context rows should be compiled only if needed. |
||||
*/ |
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
#define CONTEXT_ROWS_SUPPORTED |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* For the simple (no-context-row) case, we just need to buffer one |
||||
* row group's worth of pixels for the downsampling step. At the bottom of |
||||
* the image, we pad to a full row group by replicating the last pixel row. |
||||
* The downsampler's last output row is then replicated if needed to pad |
||||
* out to a full iMCU row. |
||||
* |
||||
* When providing context rows, we must buffer three row groups' worth of |
||||
* pixels. Three row groups are physically allocated, but the row pointer |
||||
* arrays are made five row groups high, with the extra pointers above and |
||||
* below "wrapping around" to point to the last and first real row groups. |
||||
* This allows the downsampler to access the proper context rows. |
||||
* At the top and bottom of the image, we create dummy context rows by |
||||
* copying the first or last real pixel row. This copying could be avoided |
||||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the |
||||
* trouble on the compression side. |
||||
*/ |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_prep_controller pub; /* public fields */ |
||||
|
||||
/* Downsampling input buffer. This buffer holds color-converted data
|
||||
* until we have enough to do a downsample step. |
||||
*/ |
||||
JSAMPARRAY color_buf[MAX_COMPONENTS]; |
||||
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in source image */ |
||||
int next_buf_row; /* index of next row to store in color_buf */ |
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */ |
||||
int this_row_group; /* starting row index of group to process */ |
||||
int next_buf_stop; /* downsample when we reach this index */ |
||||
#endif |
||||
} my_prep_controller; |
||||
|
||||
typedef my_prep_controller *my_prep_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
|
||||
if (pass_mode != JBUF_PASS_THRU) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
/* Initialize total-height counter for detecting bottom of image */ |
||||
prep->rows_to_go = cinfo->image_height; |
||||
/* Mark the conversion buffer empty */ |
||||
prep->next_buf_row = 0; |
||||
#ifdef CONTEXT_ROWS_SUPPORTED |
||||
/* Preset additional state variables for context mode.
|
||||
* These aren't used in non-context mode, so we needn't test which mode. |
||||
*/ |
||||
prep->this_row_group = 0; |
||||
/* Set next_buf_stop to stop after two row groups have been read in. */ |
||||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Expand an image vertically from height input_rows to height output_rows, |
||||
* by duplicating the bottom row. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, |
||||
int input_rows, int output_rows) |
||||
{ |
||||
register int row; |
||||
|
||||
for (row = input_rows; row < output_rows; row++) { |
||||
jcopy_sample_rows(image_data, input_rows-1, image_data, row, |
||||
1, num_cols); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the simple no-context case. |
||||
* |
||||
* Preprocessor output data is counted in "row groups". A row group |
||||
* is defined to be v_samp_factor sample rows of each component. |
||||
* Downsampling will produce this much data from each max_v_samp_factor |
||||
* input rows. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
pre_process_data (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail, |
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, |
||||
JDIMENSION out_row_groups_avail) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
int numrows, ci; |
||||
JDIMENSION inrows; |
||||
jpeg_component_info *compptr; |
||||
|
||||
while (*in_row_ctr < in_rows_avail && |
||||
*out_row_group_ctr < out_row_groups_avail) { |
||||
/* Do color conversion to fill the conversion buffer. */ |
||||
inrows = in_rows_avail - *in_row_ctr; |
||||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row; |
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows); |
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, |
||||
prep->color_buf, |
||||
(JDIMENSION) prep->next_buf_row, |
||||
numrows); |
||||
*in_row_ctr += numrows; |
||||
prep->next_buf_row += numrows; |
||||
prep->rows_to_go -= numrows; |
||||
/* If at bottom of image, pad to fill the conversion buffer. */ |
||||
if (prep->rows_to_go == 0 && |
||||
prep->next_buf_row < cinfo->max_v_samp_factor) { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, |
||||
prep->next_buf_row, cinfo->max_v_samp_factor); |
||||
} |
||||
prep->next_buf_row = cinfo->max_v_samp_factor; |
||||
} |
||||
/* If we've filled the conversion buffer, empty it. */ |
||||
if (prep->next_buf_row == cinfo->max_v_samp_factor) { |
||||
(*cinfo->downsample->downsample) (cinfo, |
||||
prep->color_buf, (JDIMENSION) 0, |
||||
output_buf, *out_row_group_ctr); |
||||
prep->next_buf_row = 0; |
||||
(*out_row_group_ctr)++; |
||||
} |
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer! |
||||
*/ |
||||
if (prep->rows_to_go == 0 && |
||||
*out_row_group_ctr < out_row_groups_avail) { |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
expand_bottom_edge(output_buf[ci], |
||||
compptr->width_in_blocks * DCTSIZE, |
||||
(int) (*out_row_group_ctr * compptr->v_samp_factor), |
||||
(int) (out_row_groups_avail * compptr->v_samp_factor)); |
||||
} |
||||
*out_row_group_ctr = out_row_groups_avail; |
||||
break; /* can exit outer loop without test */ |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED |
||||
|
||||
/*
|
||||
* Process some data in the context case. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
pre_process_context (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, |
||||
JDIMENSION in_rows_avail, |
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, |
||||
JDIMENSION out_row_groups_avail) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
int numrows, ci; |
||||
int buf_height = cinfo->max_v_samp_factor * 3; |
||||
JDIMENSION inrows; |
||||
|
||||
while (*out_row_group_ctr < out_row_groups_avail) { |
||||
if (*in_row_ctr < in_rows_avail) { |
||||
/* Do color conversion to fill the conversion buffer. */ |
||||
inrows = in_rows_avail - *in_row_ctr; |
||||
numrows = prep->next_buf_stop - prep->next_buf_row; |
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows); |
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, |
||||
prep->color_buf, |
||||
(JDIMENSION) prep->next_buf_row, |
||||
numrows); |
||||
/* Pad at top of image, if first time through */ |
||||
if (prep->rows_to_go == cinfo->image_height) { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
int row; |
||||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) { |
||||
jcopy_sample_rows(prep->color_buf[ci], 0, |
||||
prep->color_buf[ci], -row, |
||||
1, cinfo->image_width); |
||||
} |
||||
} |
||||
} |
||||
*in_row_ctr += numrows; |
||||
prep->next_buf_row += numrows; |
||||
prep->rows_to_go -= numrows; |
||||
} else { |
||||
/* Return for more data, unless we are at the bottom of the image. */ |
||||
if (prep->rows_to_go != 0) |
||||
break; |
||||
/* When at bottom of image, pad to fill the conversion buffer. */ |
||||
if (prep->next_buf_row < prep->next_buf_stop) { |
||||
for (ci = 0; ci < cinfo->num_components; ci++) { |
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, |
||||
prep->next_buf_row, prep->next_buf_stop); |
||||
} |
||||
prep->next_buf_row = prep->next_buf_stop; |
||||
} |
||||
} |
||||
/* If we've gotten enough data, downsample a row group. */ |
||||
if (prep->next_buf_row == prep->next_buf_stop) { |
||||
(*cinfo->downsample->downsample) (cinfo, |
||||
prep->color_buf, |
||||
(JDIMENSION) prep->this_row_group, |
||||
output_buf, *out_row_group_ctr); |
||||
(*out_row_group_ctr)++; |
||||
/* Advance pointers with wraparound as necessary. */ |
||||
prep->this_row_group += cinfo->max_v_samp_factor; |
||||
if (prep->this_row_group >= buf_height) |
||||
prep->this_row_group = 0; |
||||
if (prep->next_buf_row >= buf_height) |
||||
prep->next_buf_row = 0; |
||||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the wrapped-around downsampling input buffer needed for context mode. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_context_buffer (j_compress_ptr cinfo) |
||||
{ |
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; |
||||
int rgroup_height = cinfo->max_v_samp_factor; |
||||
int ci, i; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY true_buffer, fake_buffer; |
||||
|
||||
/* Grab enough space for fake row pointers for all the components;
|
||||
* we need five row groups' worth of pointers for each component. |
||||
*/ |
||||
fake_buffer = (JSAMPARRAY) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(cinfo->num_components * 5 * rgroup_height) * |
||||
sizeof(JSAMPROW)); |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand |
||||
* horizontally within the buffer, if it so chooses. |
||||
*/ |
||||
true_buffer = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * |
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor), |
||||
(JDIMENSION) (3 * rgroup_height)); |
||||
/* Copy true buffer row pointers into the middle of the fake row array */ |
||||
MEMCOPY(fake_buffer + rgroup_height, true_buffer, |
||||
3 * rgroup_height * sizeof(JSAMPROW)); |
||||
/* Fill in the above and below wraparound pointers */ |
||||
for (i = 0; i < rgroup_height; i++) { |
||||
fake_buffer[i] = true_buffer[2 * rgroup_height + i]; |
||||
fake_buffer[4 * rgroup_height + i] = true_buffer[i]; |
||||
} |
||||
prep->color_buf[ci] = fake_buffer + rgroup_height; |
||||
fake_buffer += 5 * rgroup_height; /* point to space for next component */ |
||||
} |
||||
} |
||||
|
||||
#endif /* CONTEXT_ROWS_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize preprocessing controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_prep_ptr prep; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (need_full_buffer) /* safety check */ |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
prep = (my_prep_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_prep_controller)); |
||||
cinfo->prep = (struct jpeg_c_prep_controller *) prep; |
||||
prep->pub.start_pass = start_pass_prep; |
||||
|
||||
/* Allocate the color conversion buffer.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand |
||||
* horizontally within the buffer, if it so chooses. |
||||
*/ |
||||
if (cinfo->downsample->need_context_rows) { |
||||
/* Set up to provide context rows */ |
||||
#ifdef CONTEXT_ROWS_SUPPORTED |
||||
prep->pub.pre_process_data = pre_process_context; |
||||
create_context_buffer(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
/* No context, just make it tall enough for one row group */ |
||||
prep->pub.pre_process_data = pre_process_data; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * |
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor), |
||||
(JDIMENSION) cinfo->max_v_samp_factor); |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,539 @@ |
||||
/*
|
||||
* jcsample.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2014, MIPS Technologies, Inc., California. |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains downsampling routines. |
||||
* |
||||
* Downsampling input data is counted in "row groups". A row group |
||||
* is defined to be max_v_samp_factor pixel rows of each component, |
||||
* from which the downsampler produces v_samp_factor sample rows. |
||||
* A single row group is processed in each call to the downsampler module. |
||||
* |
||||
* The downsampler is responsible for edge-expansion of its output data |
||||
* to fill an integral number of DCT blocks horizontally. The source buffer |
||||
* may be modified if it is helpful for this purpose (the source buffer is |
||||
* allocated wide enough to correspond to the desired output width). |
||||
* The caller (the prep controller) is responsible for vertical padding. |
||||
* |
||||
* The downsampler may request "context rows" by setting need_context_rows |
||||
* during startup. In this case, the input arrays will contain at least |
||||
* one row group's worth of pixels above and below the passed-in data; |
||||
* the caller will create dummy rows at image top and bottom by replicating |
||||
* the first or last real pixel row. |
||||
* |
||||
* An excellent reference for image resampling is |
||||
* Digital Image Warping, George Wolberg, 1990. |
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
||||
* |
||||
* The downsampling algorithm used here is a simple average of the source |
||||
* pixels covered by the output pixel. The hi-falutin sampling literature |
||||
* refers to this as a "box filter". In general the characteristics of a box |
||||
* filter are not very good, but for the specific cases we normally use (1:1 |
||||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
||||
* nearly so bad. If you intend to use other sampling ratios, you'd be well |
||||
* advised to improve this code. |
||||
* |
||||
* A simple input-smoothing capability is provided. This is mainly intended |
||||
* for cleaning up color-dithered GIF input files (if you find it inadequate, |
||||
* we suggest using an external filtering program such as pnmconvol). When |
||||
* enabled, each input pixel P is replaced by a weighted sum of itself and its |
||||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
||||
* where SF = (smoothing_factor / 1024). |
||||
* Currently, smoothing is only supported for 2h2v sampling factors. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jsimd.h" |
||||
|
||||
|
||||
/* Pointer to routine to downsample a single component */ |
||||
typedef void (*downsample1_ptr) (j_compress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, |
||||
JSAMPARRAY output_data); |
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_downsampler pub; /* public fields */ |
||||
|
||||
/* Downsampling method pointers, one per component */ |
||||
downsample1_ptr methods[MAX_COMPONENTS]; |
||||
} my_downsampler; |
||||
|
||||
typedef my_downsampler *my_downsample_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a downsampling pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_downsample (j_compress_ptr cinfo) |
||||
{ |
||||
/* no work for now */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Expand a component horizontally from width input_cols to width output_cols, |
||||
* by duplicating the rightmost samples. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
expand_right_edge (JSAMPARRAY image_data, int num_rows, |
||||
JDIMENSION input_cols, JDIMENSION output_cols) |
||||
{ |
||||
register JSAMPROW ptr; |
||||
register JSAMPLE pixval; |
||||
register int count; |
||||
int row; |
||||
int numcols = (int) (output_cols - input_cols); |
||||
|
||||
if (numcols > 0) { |
||||
for (row = 0; row < num_rows; row++) { |
||||
ptr = image_data[row] + input_cols; |
||||
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
||||
for (count = numcols; count > 0; count--) |
||||
*ptr++ = pixval; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Do downsampling for a whole row group (all components). |
||||
* |
||||
* In this version we simply downsample each component independently. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
sep_downsample (j_compress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
||||
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
||||
{ |
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY in_ptr, out_ptr; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
in_ptr = input_buf[ci] + in_row_index; |
||||
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); |
||||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* One row group is processed per call. |
||||
* This version handles arbitrary integral sampling ratios, without smoothing. |
||||
* Note that this version is not actually used for customary sampling ratios. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
int_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
||||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
||||
JSAMPROW inptr, outptr; |
||||
JLONG outvalue; |
||||
|
||||
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; |
||||
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; |
||||
numpix = h_expand * v_expand; |
||||
numpix2 = numpix/2; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
||||
cinfo->image_width, output_cols * h_expand); |
||||
|
||||
inrow = 0; |
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
||||
outptr = output_data[outrow]; |
||||
for (outcol = 0, outcol_h = 0; outcol < output_cols; |
||||
outcol++, outcol_h += h_expand) { |
||||
outvalue = 0; |
||||
for (v = 0; v < v_expand; v++) { |
||||
inptr = input_data[inrow+v] + outcol_h; |
||||
for (h = 0; h < h_expand; h++) { |
||||
outvalue += (JLONG) GETJSAMPLE(*inptr++); |
||||
} |
||||
} |
||||
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
||||
} |
||||
inrow += v_expand; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the special case of a full-size component, |
||||
* without smoothing. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
/* Copy the data */ |
||||
jcopy_sample_rows(input_data, 0, output_data, 0, |
||||
cinfo->max_v_samp_factor, cinfo->image_width); |
||||
/* Edge-expand */ |
||||
expand_right_edge(output_data, cinfo->max_v_samp_factor, |
||||
cinfo->image_width, compptr->width_in_blocks * DCTSIZE); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the common case of 2:1 horizontal and 1:1 vertical, |
||||
* without smoothing. |
||||
* |
||||
* A note about the "bias" calculations: when rounding fractional values to |
||||
* integer, we do not want to always round 0.5 up to the next integer. |
||||
* If we did that, we'd introduce a noticeable bias towards larger values. |
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at |
||||
* alternate pixel locations (a simple ordered dither pattern). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int outrow; |
||||
JDIMENSION outcol; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
||||
register JSAMPROW inptr, outptr; |
||||
register int bias; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
||||
cinfo->image_width, output_cols * 2); |
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
||||
outptr = output_data[outrow]; |
||||
inptr = input_data[outrow]; |
||||
bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
||||
for (outcol = 0; outcol < output_cols; outcol++) { |
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
||||
+ bias) >> 1); |
||||
bias ^= 1; /* 0=>1, 1=>0 */ |
||||
inptr += 2; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
||||
* without smoothing. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int inrow, outrow; |
||||
JDIMENSION outcol; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
||||
register JSAMPROW inptr0, inptr1, outptr; |
||||
register int bias; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
||||
cinfo->image_width, output_cols * 2); |
||||
|
||||
inrow = 0; |
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
||||
outptr = output_data[outrow]; |
||||
inptr0 = input_data[inrow]; |
||||
inptr1 = input_data[inrow+1]; |
||||
bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
||||
for (outcol = 0; outcol < output_cols; outcol++) { |
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
||||
+ bias) >> 2); |
||||
bias ^= 3; /* 1=>2, 2=>1 */ |
||||
inptr0 += 2; inptr1 += 2; |
||||
} |
||||
inrow += 2; |
||||
} |
||||
} |
||||
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
||||
* with smoothing. One row of context is required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int inrow, outrow; |
||||
JDIMENSION colctr; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
||||
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
||||
JLONG membersum, neighsum, memberscale, neighscale; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
||||
cinfo->image_width, output_cols * 2); |
||||
|
||||
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||
* we can directly compute the output which is the average of the four |
||||
* smoothed values. Each of the four member pixels contributes a fraction |
||||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
||||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
||||
* output. The four corner-adjacent neighbor pixels contribute a fraction |
||||
* SF to just one smoothed pixel, or SF/4 to the final output; while the |
||||
* eight edge-adjacent neighbors contribute SF to each of two smoothed |
||||
* pixels, or SF/2 overall. In order to use integer arithmetic, these |
||||
* factors are scaled by 2^16 = 65536. |
||||
* Also recall that SF = smoothing_factor / 1024. |
||||
*/ |
||||
|
||||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
||||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
||||
|
||||
inrow = 0; |
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
||||
outptr = output_data[outrow]; |
||||
inptr0 = input_data[inrow]; |
||||
inptr1 = input_data[inrow+1]; |
||||
above_ptr = input_data[inrow-1]; |
||||
below_ptr = input_data[inrow+2]; |
||||
|
||||
/* Special case for first column: pretend column -1 is same as column 0 */ |
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
||||
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
||||
neighsum += neighsum; |
||||
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
||||
/* sum of pixels directly mapped to this output element */ |
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
||||
/* sum of edge-neighbor pixels */ |
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
||||
/* The edge-neighbors count twice as much as corner-neighbors */ |
||||
neighsum += neighsum; |
||||
/* Add in the corner-neighbors */ |
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
||||
/* form final output scaled up by 2^16 */ |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
/* round, descale and output it */ |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
||||
} |
||||
|
||||
/* Special case for last column */ |
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
||||
neighsum += neighsum; |
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
|
||||
inrow += 2; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component. |
||||
* This version handles the special case of a full-size component, |
||||
* with smoothing. One row of context is required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
int outrow; |
||||
JDIMENSION colctr; |
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
||||
register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
||||
JLONG membersum, neighsum, memberscale, neighscale; |
||||
int colsum, lastcolsum, nextcolsum; |
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more |
||||
* efficient. |
||||
*/ |
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
||||
cinfo->image_width, output_cols); |
||||
|
||||
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order |
||||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
||||
* Also recall that SF = smoothing_factor / 1024. |
||||
*/ |
||||
|
||||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
||||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
||||
outptr = output_data[outrow]; |
||||
inptr = input_data[outrow]; |
||||
above_ptr = input_data[outrow-1]; |
||||
below_ptr = input_data[outrow+1]; |
||||
|
||||
/* Special case for first column */ |
||||
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
||||
GETJSAMPLE(*inptr); |
||||
membersum = GETJSAMPLE(*inptr++); |
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
||||
GETJSAMPLE(*inptr); |
||||
neighsum = colsum + (colsum - membersum) + nextcolsum; |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
lastcolsum = colsum; colsum = nextcolsum; |
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
||||
membersum = GETJSAMPLE(*inptr++); |
||||
above_ptr++; below_ptr++; |
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
||||
GETJSAMPLE(*inptr); |
||||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
lastcolsum = colsum; colsum = nextcolsum; |
||||
} |
||||
|
||||
/* Special case for last column */ |
||||
membersum = GETJSAMPLE(*inptr); |
||||
neighsum = lastcolsum + (colsum - membersum) + colsum; |
||||
membersum = membersum * memberscale + neighsum * neighscale; |
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
||||
|
||||
} |
||||
} |
||||
|
||||
#endif /* INPUT_SMOOTHING_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for downsampling. |
||||
* Note that we must select a routine for each component. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_downsampler (j_compress_ptr cinfo) |
||||
{ |
||||
my_downsample_ptr downsample; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
boolean smoothok = TRUE; |
||||
|
||||
downsample = (my_downsample_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_downsampler)); |
||||
cinfo->downsample = (struct jpeg_downsampler *) downsample; |
||||
downsample->pub.start_pass = start_pass_downsample; |
||||
downsample->pub.downsample = sep_downsample; |
||||
downsample->pub.need_context_rows = FALSE; |
||||
|
||||
if (cinfo->CCIR601_sampling) |
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
||||
|
||||
/* Verify we can handle the sampling factors, and set up method pointers */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (compptr->h_samp_factor == cinfo->max_h_samp_factor && |
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
if (cinfo->smoothing_factor) { |
||||
downsample->methods[ci] = fullsize_smooth_downsample; |
||||
downsample->pub.need_context_rows = TRUE; |
||||
} else |
||||
#endif |
||||
downsample->methods[ci] = fullsize_downsample; |
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
||||
smoothok = FALSE; |
||||
if (jsimd_can_h2v1_downsample()) |
||||
downsample->methods[ci] = jsimd_h2v1_downsample; |
||||
else |
||||
downsample->methods[ci] = h2v1_downsample; |
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
||||
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { |
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
if (cinfo->smoothing_factor) { |
||||
#if defined(__mips__) |
||||
if (jsimd_can_h2v2_smooth_downsample()) |
||||
downsample->methods[ci] = jsimd_h2v2_smooth_downsample; |
||||
else |
||||
#endif |
||||
downsample->methods[ci] = h2v2_smooth_downsample; |
||||
downsample->pub.need_context_rows = TRUE; |
||||
} else |
||||
#endif |
||||
{ |
||||
if (jsimd_can_h2v2_downsample()) |
||||
downsample->methods[ci] = jsimd_h2v2_downsample; |
||||
else |
||||
downsample->methods[ci] = h2v2_downsample; |
||||
} |
||||
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && |
||||
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { |
||||
smoothok = FALSE; |
||||
downsample->methods[ci] = int_downsample; |
||||
} else |
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
||||
} |
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED |
||||
if (cinfo->smoothing_factor && !smoothok) |
||||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
||||
#endif |
||||
} |
@ -0,0 +1,402 @@ |
||||
/*
|
||||
* jctrans.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1995-1998, Thomas G. Lane. |
||||
* Modified 2000-2009 by Guido Vollbeding. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains library routines for transcoding compression, |
||||
* that is, writing raw DCT coefficient arrays to an output JPEG file. |
||||
* The routines in jcapimin.c will also be needed by a transcoder. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
LOCAL(void) transencode_master_selection |
||||
(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays); |
||||
LOCAL(void) transencode_coef_controller |
||||
(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays); |
||||
|
||||
|
||||
/*
|
||||
* Compression initialization for writing raw-coefficient data. |
||||
* Before calling this, all parameters and a data destination must be set up. |
||||
* Call jpeg_finish_compress() to actually write the data. |
||||
* |
||||
* The number of passed virtual arrays must match cinfo->num_components. |
||||
* Note that the virtual arrays need not be filled or even realized at |
||||
* the time write_coefficients is called; indeed, if the virtual arrays |
||||
* were requested from this compression object's memory manager, they |
||||
* typically will be realized during this routine and filled afterwards. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays) |
||||
{ |
||||
if (cinfo->global_state != CSTATE_START) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Mark all tables to be written */ |
||||
jpeg_suppress_tables(cinfo, FALSE); |
||||
/* (Re)initialize error mgr and destination modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->dest->init_destination) (cinfo); |
||||
/* Perform master selection of active modules */ |
||||
transencode_master_selection(cinfo, coef_arrays); |
||||
/* Wait for jpeg_finish_compress() call */ |
||||
cinfo->next_scanline = 0; /* so jpeg_write_marker works */ |
||||
cinfo->global_state = CSTATE_WRCOEFS; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the compression object with default parameters, |
||||
* then copy from the source object all parameters needed for lossless |
||||
* transcoding. Parameters that can be varied without loss (such as |
||||
* scan script and Huffman optimization) are left in their default states. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, |
||||
j_compress_ptr dstinfo) |
||||
{ |
||||
JQUANT_TBL **qtblptr; |
||||
jpeg_component_info *incomp, *outcomp; |
||||
JQUANT_TBL *c_quant, *slot_quant; |
||||
int tblno, ci, coefi; |
||||
|
||||
/* Safety check to ensure start_compress not called yet. */ |
||||
if (dstinfo->global_state != CSTATE_START) |
||||
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); |
||||
/* Copy fundamental image dimensions */ |
||||
dstinfo->image_width = srcinfo->image_width; |
||||
dstinfo->image_height = srcinfo->image_height; |
||||
dstinfo->input_components = srcinfo->num_components; |
||||
dstinfo->in_color_space = srcinfo->jpeg_color_space; |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
dstinfo->jpeg_width = srcinfo->output_width; |
||||
dstinfo->jpeg_height = srcinfo->output_height; |
||||
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; |
||||
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; |
||||
#endif |
||||
/* Initialize all parameters to default values */ |
||||
jpeg_set_defaults(dstinfo); |
||||
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
||||
* Fix it to get the right header markers for the image colorspace. |
||||
*/ |
||||
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); |
||||
dstinfo->data_precision = srcinfo->data_precision; |
||||
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; |
||||
/* Copy the source's quantization tables. */ |
||||
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
||||
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { |
||||
qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; |
||||
if (*qtblptr == NULL) |
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); |
||||
MEMCOPY((*qtblptr)->quantval, |
||||
srcinfo->quant_tbl_ptrs[tblno]->quantval, |
||||
sizeof((*qtblptr)->quantval)); |
||||
(*qtblptr)->sent_table = FALSE; |
||||
} |
||||
} |
||||
/* Copy the source's per-component info.
|
||||
* Note we assume jpeg_set_defaults has allocated the dest comp_info array. |
||||
*/ |
||||
dstinfo->num_components = srcinfo->num_components; |
||||
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; |
||||
ci < dstinfo->num_components; ci++, incomp++, outcomp++) { |
||||
outcomp->component_id = incomp->component_id; |
||||
outcomp->h_samp_factor = incomp->h_samp_factor; |
||||
outcomp->v_samp_factor = incomp->v_samp_factor; |
||||
outcomp->quant_tbl_no = incomp->quant_tbl_no; |
||||
/* Make sure saved quantization table for component matches the qtable
|
||||
* slot. If not, the input file re-used this qtable slot. |
||||
* IJG encoder currently cannot duplicate this. |
||||
*/ |
||||
tblno = outcomp->quant_tbl_no; |
||||
if (tblno < 0 || tblno >= NUM_QUANT_TBLS || |
||||
srcinfo->quant_tbl_ptrs[tblno] == NULL) |
||||
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); |
||||
slot_quant = srcinfo->quant_tbl_ptrs[tblno]; |
||||
c_quant = incomp->quant_table; |
||||
if (c_quant != NULL) { |
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) { |
||||
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) |
||||
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); |
||||
} |
||||
} |
||||
/* Note: we do not copy the source's Huffman table assignments;
|
||||
* instead we rely on jpeg_set_colorspace to have made a suitable choice. |
||||
*/ |
||||
} |
||||
/* Also copy JFIF version and resolution information, if available.
|
||||
* Strictly speaking this isn't "critical" info, but it's nearly |
||||
* always appropriate to copy it if available. In particular, |
||||
* if the application chooses to copy JFIF 1.02 extension markers from |
||||
* the source file, we need to copy the version to make sure we don't |
||||
* emit a file that has 1.02 extensions but a claimed version of 1.01. |
||||
* We will *not*, however, copy version info from mislabeled "2.01" files. |
||||
*/ |
||||
if (srcinfo->saw_JFIF_marker) { |
||||
if (srcinfo->JFIF_major_version == 1) { |
||||
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; |
||||
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; |
||||
} |
||||
dstinfo->density_unit = srcinfo->density_unit; |
||||
dstinfo->X_density = srcinfo->X_density; |
||||
dstinfo->Y_density = srcinfo->Y_density; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules for transcoding. |
||||
* This substitutes for jcinit.c's initialization of the full compressor. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
transencode_master_selection (j_compress_ptr cinfo, |
||||
jvirt_barray_ptr *coef_arrays) |
||||
{ |
||||
/* Although we don't actually use input_components for transcoding,
|
||||
* jcmaster.c's initial_setup will complain if input_components is 0. |
||||
*/ |
||||
cinfo->input_components = 1; |
||||
/* Initialize master control (includes parameter checking/processing) */ |
||||
jinit_c_master_control(cinfo, TRUE /* transcode only */); |
||||
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) { |
||||
#ifdef C_ARITH_CODING_SUPPORTED |
||||
jinit_arith_encoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL); |
||||
#endif |
||||
} else { |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef C_PROGRESSIVE_SUPPORTED |
||||
jinit_phuff_encoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else |
||||
jinit_huff_encoder(cinfo); |
||||
} |
||||
|
||||
/* We need a special coefficient buffer controller. */ |
||||
transencode_coef_controller(cinfo, coef_arrays); |
||||
|
||||
jinit_marker_writer(cinfo); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Write the datastream header (SOI, JFIF) immediately.
|
||||
* Frame and scan headers are postponed till later. |
||||
* This lets application insert special markers after the SOI. |
||||
*/ |
||||
(*cinfo->marker->write_file_header) (cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* The rest of this file is a special implementation of the coefficient |
||||
* buffer controller. This is similar to jccoefct.c, but it handles only |
||||
* output from presupplied virtual arrays. Furthermore, we generate any |
||||
* dummy padding blocks on-the-fly rather than expecting them to be present |
||||
* in the arrays. |
||||
*/ |
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_c_coef_controller pub; /* public fields */ |
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
||||
|
||||
/* Virtual block array for each component. */ |
||||
jvirt_barray_ptr *whole_image; |
||||
|
||||
/* Workspace for constructing dummy blocks at right/bottom edges. */ |
||||
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; |
||||
} my_coef_controller; |
||||
|
||||
typedef my_coef_controller *my_coef_ptr; |
||||
|
||||
|
||||
LOCAL(void) |
||||
start_iMCU_row (j_compress_ptr cinfo) |
||||
/* Reset within-iMCU-row counters for a new row */ |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
||||
* But at the bottom of the image, process only what's left. |
||||
*/ |
||||
if (cinfo->comps_in_scan > 1) { |
||||
coef->MCU_rows_per_iMCU_row = 1; |
||||
} else { |
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
||||
else |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
||||
} |
||||
|
||||
coef->mcu_ctr = 0; |
||||
coef->MCU_vert_offset = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
if (pass_mode != JBUF_CRANK_DEST) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
coef->iMCU_row_num = 0; |
||||
start_iMCU_row(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||||
* per call, ie, v_samp_factor block rows for each component in the scan. |
||||
* The data is obtained from the virtual arrays and fed to the entropy coder. |
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||||
* |
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
int blkn, ci, xindex, yindex, yoffset, blockcnt; |
||||
JDIMENSION start_col; |
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
||||
JBLOCKROW buffer_ptr; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
buffer[ci] = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
||||
coef->iMCU_row_num * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, FALSE); |
||||
} |
||||
|
||||
/* Loop to process one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
||||
MCU_col_num++) { |
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
||||
blkn = 0; /* index of current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
start_col = MCU_col_num * compptr->MCU_width; |
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
||||
: compptr->last_col_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
if (coef->iMCU_row_num < last_iMCU_row || |
||||
yindex+yoffset < compptr->last_row_height) { |
||||
/* Fill in pointers to real blocks in this row */ |
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
||||
for (xindex = 0; xindex < blockcnt; xindex++) |
||||
MCU_buffer[blkn++] = buffer_ptr++; |
||||
} else { |
||||
/* At bottom of image, need a whole row of dummy blocks */ |
||||
xindex = 0; |
||||
} |
||||
/* Fill in any dummy blocks needed in this row.
|
||||
* Dummy blocks are filled in the same way as in jccoefct.c: |
||||
* all zeroes in the AC entries, DC entries equal to previous |
||||
* block's DC value. The init routine has already zeroed the |
||||
* AC entries, so we need only set the DC entries correctly. |
||||
*/ |
||||
for (; xindex < compptr->MCU_width; xindex++) { |
||||
MCU_buffer[blkn] = coef->dummy_buffer[blkn]; |
||||
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0]; |
||||
blkn++; |
||||
} |
||||
} |
||||
} |
||||
/* Try to write the MCU. */ |
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->mcu_ctr = MCU_col_num; |
||||
return FALSE; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->mcu_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
coef->iMCU_row_num++; |
||||
start_iMCU_row(cinfo); |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller. |
||||
* |
||||
* Each passed coefficient array must be the right size for that |
||||
* coefficient: width_in_blocks wide and height_in_blocks high, |
||||
* with unitheight at least v_samp_factor. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
transencode_coef_controller (j_compress_ptr cinfo, |
||||
jvirt_barray_ptr *coef_arrays) |
||||
{ |
||||
my_coef_ptr coef; |
||||
JBLOCKROW buffer; |
||||
int i; |
||||
|
||||
coef = (my_coef_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_coef_controller)); |
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef; |
||||
coef->pub.start_pass = start_pass_coef; |
||||
coef->pub.compress_data = compress_output; |
||||
|
||||
/* Save pointer to virtual arrays */ |
||||
coef->whole_image = coef_arrays; |
||||
|
||||
/* Allocate and pre-zero space for dummy DCT blocks. */ |
||||
buffer = (JBLOCKROW) |
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
||||
jzero_far((void *) buffer, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
||||
coef->dummy_buffer[i] = buffer + i; |
||||
} |
||||
} |
@ -0,0 +1,407 @@ |
||||
/*
|
||||
* jdapimin.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains application interface code for the decompression half |
||||
* of the JPEG library. These are the "minimum" API routines that may be |
||||
* needed in either the normal full-decompression case or the |
||||
* transcoding-only case. |
||||
* |
||||
* Most of the routines intended to be called directly by an application |
||||
* are in this file or in jdapistd.c. But also see jcomapi.c for routines |
||||
* shared by compression and decompression, and jdtrans.c for the transcoding |
||||
* case. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdmaster.h" |
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG decompression object. |
||||
* The error manager must already be set up (in case memory manager fails). |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize) |
||||
{ |
||||
int i; |
||||
|
||||
/* Guard against version mismatches between library and caller. */ |
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ |
||||
if (version != JPEG_LIB_VERSION) |
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); |
||||
if (structsize != sizeof(struct jpeg_decompress_struct)) |
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, |
||||
(int) sizeof(struct jpeg_decompress_struct), (int) structsize); |
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set |
||||
* client_data, so we have to save and restore those fields. |
||||
* Note: if application hasn't set client_data, tools like Purify may |
||||
* complain here. |
||||
*/ |
||||
{ |
||||
struct jpeg_error_mgr * err = cinfo->err; |
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */ |
||||
MEMZERO(cinfo, sizeof(struct jpeg_decompress_struct)); |
||||
cinfo->err = err; |
||||
cinfo->client_data = client_data; |
||||
} |
||||
cinfo->is_decompressor = TRUE; |
||||
|
||||
/* Initialize a memory manager instance for this object */ |
||||
jinit_memory_mgr((j_common_ptr) cinfo); |
||||
|
||||
/* Zero out pointers to permanent structures. */ |
||||
cinfo->progress = NULL; |
||||
cinfo->src = NULL; |
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) |
||||
cinfo->quant_tbl_ptrs[i] = NULL; |
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL; |
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL; |
||||
} |
||||
|
||||
/* Initialize marker processor so application can override methods
|
||||
* for COM, APPn markers before calling jpeg_read_header. |
||||
*/ |
||||
cinfo->marker_list = NULL; |
||||
jinit_marker_reader(cinfo); |
||||
|
||||
/* And initialize the overall input controller. */ |
||||
jinit_input_controller(cinfo); |
||||
|
||||
/* OK, I'm ready */ |
||||
cinfo->global_state = DSTATE_START; |
||||
|
||||
/* The master struct is used to store extension parameters, so we allocate it
|
||||
* here. |
||||
*/ |
||||
cinfo->master = (struct jpeg_decomp_master *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
sizeof(my_decomp_master)); |
||||
MEMZERO(cinfo->master, sizeof(my_decomp_master)); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG decompression object |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_destroy_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG decompression operation, |
||||
* but don't destroy the object itself. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_abort_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Set default decompression parameters. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
default_decompress_parms (j_decompress_ptr cinfo) |
||||
{ |
||||
/* Guess the input colorspace, and set output colorspace accordingly. */ |
||||
/* (Wish JPEG committee had provided a real way to specify this...) */ |
||||
/* Note application may override our guesses. */ |
||||
switch (cinfo->num_components) { |
||||
case 1: |
||||
cinfo->jpeg_color_space = JCS_GRAYSCALE; |
||||
cinfo->out_color_space = JCS_GRAYSCALE; |
||||
break; |
||||
|
||||
case 3: |
||||
if (cinfo->saw_JFIF_marker) { |
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ |
||||
} else if (cinfo->saw_Adobe_marker) { |
||||
switch (cinfo->Adobe_transform) { |
||||
case 0: |
||||
cinfo->jpeg_color_space = JCS_RGB; |
||||
break; |
||||
case 1: |
||||
cinfo->jpeg_color_space = JCS_YCbCr; |
||||
break; |
||||
default: |
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); |
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ |
||||
break; |
||||
} |
||||
} else { |
||||
/* Saw no special markers, try to guess from the component IDs */ |
||||
int cid0 = cinfo->comp_info[0].component_id; |
||||
int cid1 = cinfo->comp_info[1].component_id; |
||||
int cid2 = cinfo->comp_info[2].component_id; |
||||
|
||||
if (cid0 == 1 && cid1 == 2 && cid2 == 3) |
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ |
||||
else if (cid0 == 82 && cid1 == 71 && cid2 == 66) |
||||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ |
||||
else { |
||||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); |
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ |
||||
} |
||||
} |
||||
/* Always guess RGB is proper output colorspace. */ |
||||
cinfo->out_color_space = JCS_RGB; |
||||
break; |
||||
|
||||
case 4: |
||||
if (cinfo->saw_Adobe_marker) { |
||||
switch (cinfo->Adobe_transform) { |
||||
case 0: |
||||
cinfo->jpeg_color_space = JCS_CMYK; |
||||
break; |
||||
case 2: |
||||
cinfo->jpeg_color_space = JCS_YCCK; |
||||
break; |
||||
default: |
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); |
||||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ |
||||
break; |
||||
} |
||||
} else { |
||||
/* No special markers, assume straight CMYK. */ |
||||
cinfo->jpeg_color_space = JCS_CMYK; |
||||
} |
||||
cinfo->out_color_space = JCS_CMYK; |
||||
break; |
||||
|
||||
default: |
||||
cinfo->jpeg_color_space = JCS_UNKNOWN; |
||||
cinfo->out_color_space = JCS_UNKNOWN; |
||||
break; |
||||
} |
||||
|
||||
/* Set defaults for other decompression parameters. */ |
||||
cinfo->scale_num = 1; /* 1:1 scaling */ |
||||
cinfo->scale_denom = 1; |
||||
cinfo->output_gamma = 1.0; |
||||
cinfo->buffered_image = FALSE; |
||||
cinfo->raw_data_out = FALSE; |
||||
cinfo->dct_method = JDCT_DEFAULT; |
||||
cinfo->do_fancy_upsampling = TRUE; |
||||
cinfo->do_block_smoothing = TRUE; |
||||
cinfo->quantize_colors = FALSE; |
||||
/* We set these in case application only sets quantize_colors. */ |
||||
cinfo->dither_mode = JDITHER_FS; |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
cinfo->two_pass_quantize = TRUE; |
||||
#else |
||||
cinfo->two_pass_quantize = FALSE; |
||||
#endif |
||||
cinfo->desired_number_of_colors = 256; |
||||
cinfo->colormap = NULL; |
||||
/* Initialize for no mode change in buffered-image mode. */ |
||||
cinfo->enable_1pass_quant = FALSE; |
||||
cinfo->enable_external_quant = FALSE; |
||||
cinfo->enable_2pass_quant = FALSE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decompression startup: read start of JPEG datastream to see what's there. |
||||
* Need only initialize JPEG object and supply a data source before calling. |
||||
* |
||||
* This routine will read as far as the first SOS marker (ie, actual start of |
||||
* compressed data), and will save all tables and parameters in the JPEG |
||||
* object. It will also initialize the decompression parameters to default |
||||
* values, and finally return JPEG_HEADER_OK. On return, the application may |
||||
* adjust the decompression parameters and then call jpeg_start_decompress. |
||||
* (Or, if the application only wanted to determine the image parameters, |
||||
* the data need not be decompressed. In that case, call jpeg_abort or |
||||
* jpeg_destroy to release any temporary space.) |
||||
* If an abbreviated (tables only) datastream is presented, the routine will |
||||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then |
||||
* re-use the JPEG object to read the abbreviated image datastream(s). |
||||
* It is unnecessary (but OK) to call jpeg_abort in this case. |
||||
* The JPEG_SUSPENDED return code only occurs if the data source module |
||||
* requests suspension of the decompressor. In this case the application |
||||
* should load more source data and then re-call jpeg_read_header to resume |
||||
* processing. |
||||
* If a non-suspending data source is used and require_image is TRUE, then the |
||||
* return code need not be inspected since only JPEG_HEADER_OK is possible. |
||||
* |
||||
* This routine is now just a front end to jpeg_consume_input, with some |
||||
* extra error checking. |
||||
*/ |
||||
|
||||
GLOBAL(int) |
||||
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) |
||||
{ |
||||
int retcode; |
||||
|
||||
if (cinfo->global_state != DSTATE_START && |
||||
cinfo->global_state != DSTATE_INHEADER) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
retcode = jpeg_consume_input(cinfo); |
||||
|
||||
switch (retcode) { |
||||
case JPEG_REACHED_SOS: |
||||
retcode = JPEG_HEADER_OK; |
||||
break; |
||||
case JPEG_REACHED_EOI: |
||||
if (require_image) /* Complain if application wanted an image */ |
||||
ERREXIT(cinfo, JERR_NO_IMAGE); |
||||
/* Reset to start state; it would be safer to require the application to
|
||||
* call jpeg_abort, but we can't change it now for compatibility reasons. |
||||
* A side effect is to free any temporary memory (there shouldn't be any). |
||||
*/ |
||||
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ |
||||
retcode = JPEG_HEADER_TABLES_ONLY; |
||||
break; |
||||
case JPEG_SUSPENDED: |
||||
/* no work */ |
||||
break; |
||||
} |
||||
|
||||
return retcode; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Consume data in advance of what the decompressor requires. |
||||
* This can be called at any time once the decompressor object has |
||||
* been created and a data source has been set up. |
||||
* |
||||
* This routine is essentially a state machine that handles a couple |
||||
* of critical state-transition actions, namely initial setup and |
||||
* transition from header scanning to ready-for-start_decompress. |
||||
* All the actual input is done via the input controller's consume_input |
||||
* method. |
||||
*/ |
||||
|
||||
GLOBAL(int) |
||||
jpeg_consume_input (j_decompress_ptr cinfo) |
||||
{ |
||||
int retcode = JPEG_SUSPENDED; |
||||
|
||||
/* NB: every possible DSTATE value should be listed in this switch */ |
||||
switch (cinfo->global_state) { |
||||
case DSTATE_START: |
||||
/* Start-of-datastream actions: reset appropriate modules */ |
||||
(*cinfo->inputctl->reset_input_controller) (cinfo); |
||||
/* Initialize application's data source module */ |
||||
(*cinfo->src->init_source) (cinfo); |
||||
cinfo->global_state = DSTATE_INHEADER; |
||||
/*FALLTHROUGH*/ |
||||
case DSTATE_INHEADER: |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ |
||||
/* Set up default parameters based on header data */ |
||||
default_decompress_parms(cinfo); |
||||
/* Set global state: ready for start_decompress */ |
||||
cinfo->global_state = DSTATE_READY; |
||||
} |
||||
break; |
||||
case DSTATE_READY: |
||||
/* Can't advance past first SOS until start_decompress is called */ |
||||
retcode = JPEG_REACHED_SOS; |
||||
break; |
||||
case DSTATE_PRELOAD: |
||||
case DSTATE_PRESCAN: |
||||
case DSTATE_SCANNING: |
||||
case DSTATE_RAW_OK: |
||||
case DSTATE_BUFIMAGE: |
||||
case DSTATE_BUFPOST: |
||||
case DSTATE_STOPPING: |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
break; |
||||
default: |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
} |
||||
return retcode; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Have we finished reading the input file? |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_input_complete (j_decompress_ptr cinfo) |
||||
{ |
||||
/* Check for valid jpeg object */ |
||||
if (cinfo->global_state < DSTATE_START || |
||||
cinfo->global_state > DSTATE_STOPPING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
return cinfo->inputctl->eoi_reached; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Is there more than one scan? |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_has_multiple_scans (j_decompress_ptr cinfo) |
||||
{ |
||||
/* Only valid after jpeg_read_header completes */ |
||||
if (cinfo->global_state < DSTATE_READY || |
||||
cinfo->global_state > DSTATE_STOPPING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
return cinfo->inputctl->has_multiple_scans; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG decompression. |
||||
* |
||||
* This will normally just verify the file trailer and release temp storage. |
||||
* |
||||
* Returns FALSE if suspended. The return value need be inspected only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_finish_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
if ((cinfo->global_state == DSTATE_SCANNING || |
||||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { |
||||
/* Terminate final pass of non-buffered mode */ |
||||
if (cinfo->output_scanline < cinfo->output_height) |
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); |
||||
(*cinfo->master->finish_output_pass) (cinfo); |
||||
cinfo->global_state = DSTATE_STOPPING; |
||||
} else if (cinfo->global_state == DSTATE_BUFIMAGE) { |
||||
/* Finishing after a buffered-image operation */ |
||||
cinfo->global_state = DSTATE_STOPPING; |
||||
} else if (cinfo->global_state != DSTATE_STOPPING) { |
||||
/* STOPPING = repeat call after a suspension, anything else is error */ |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
} |
||||
/* Read until EOI */ |
||||
while (! cinfo->inputctl->eoi_reached) { |
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
||||
return FALSE; /* Suspend, come back later */ |
||||
} |
||||
/* Do final cleanup */ |
||||
(*cinfo->src->term_source) (cinfo); |
||||
/* We can use jpeg_abort to release memory and reset global_state */ |
||||
jpeg_abort((j_common_ptr) cinfo); |
||||
return TRUE; |
||||
} |
@ -0,0 +1,637 @@ |
||||
/*
|
||||
* jdapistd.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2010, 2015-2017, D. R. Commander. |
||||
* Copyright (C) 2015, Google, Inc. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains application interface code for the decompression half |
||||
* of the JPEG library. These are the "standard" API routines that are |
||||
* used in the normal full-decompression case. They are not used by a |
||||
* transcoding-only application. Note that if an application links in |
||||
* jpeg_start_decompress, it will end up linking in the entire decompressor. |
||||
* We thus must separate this file from jdapimin.c to avoid linking the |
||||
* whole decompression library into a transcoder. |
||||
*/ |
||||
|
||||
#include "jinclude.h" |
||||
#include "jdmainct.h" |
||||
#include "jdcoefct.h" |
||||
#include "jdsample.h" |
||||
#include "jmemsys.h" |
||||
|
||||
/* Forward declarations */ |
||||
LOCAL(boolean) output_pass_setup (j_decompress_ptr cinfo); |
||||
|
||||
|
||||
/*
|
||||
* Decompression initialization. |
||||
* jpeg_read_header must be completed before calling this. |
||||
* |
||||
* If a multipass operating mode was selected, this will do all but the |
||||
* last pass, and thus may take a great deal of time. |
||||
* |
||||
* Returns FALSE if suspended. The return value need be inspected only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_start_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state == DSTATE_READY) { |
||||
/* First call: initialize master control, select active modules */ |
||||
jinit_master_decompress(cinfo); |
||||
if (cinfo->buffered_image) { |
||||
/* No more work here; expecting jpeg_start_output next */ |
||||
cinfo->global_state = DSTATE_BUFIMAGE; |
||||
return TRUE; |
||||
} |
||||
cinfo->global_state = DSTATE_PRELOAD; |
||||
} |
||||
if (cinfo->global_state == DSTATE_PRELOAD) { |
||||
/* If file has multiple scans, absorb them all into the coef buffer */ |
||||
if (cinfo->inputctl->has_multiple_scans) { |
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
for (;;) { |
||||
int retcode; |
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
/* Absorb some more input */ |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
if (retcode == JPEG_SUSPENDED) |
||||
return FALSE; |
||||
if (retcode == JPEG_REACHED_EOI) |
||||
break; |
||||
/* Advance progress counter if appropriate */ |
||||
if (cinfo->progress != NULL && |
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { |
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { |
||||
/* jdmaster underestimated number of scans; ratchet up one scan */ |
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; |
||||
} |
||||
} |
||||
} |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
} |
||||
cinfo->output_scan_number = cinfo->input_scan_number; |
||||
} else if (cinfo->global_state != DSTATE_PRESCAN) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Perform any dummy output passes, and set up for the final pass */ |
||||
return output_pass_setup(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Set up for an output pass, and perform any dummy pass(es) needed. |
||||
* Common subroutine for jpeg_start_decompress and jpeg_start_output. |
||||
* Entry: global_state = DSTATE_PRESCAN only if previously suspended. |
||||
* Exit: If done, returns TRUE and sets global_state for proper output mode. |
||||
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
output_pass_setup (j_decompress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state != DSTATE_PRESCAN) { |
||||
/* First call: do pass setup */ |
||||
(*cinfo->master->prepare_for_output_pass) (cinfo); |
||||
cinfo->output_scanline = 0; |
||||
cinfo->global_state = DSTATE_PRESCAN; |
||||
} |
||||
/* Loop over any required dummy passes */ |
||||
while (cinfo->master->is_dummy_pass) { |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
/* Crank through the dummy pass */ |
||||
while (cinfo->output_scanline < cinfo->output_height) { |
||||
JDIMENSION last_scanline; |
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->output_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
/* Process some data */ |
||||
last_scanline = cinfo->output_scanline; |
||||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, |
||||
&cinfo->output_scanline, (JDIMENSION) 0); |
||||
if (cinfo->output_scanline == last_scanline) |
||||
return FALSE; /* No progress made, must suspend */ |
||||
} |
||||
/* Finish up dummy pass, and set up for another one */ |
||||
(*cinfo->master->finish_output_pass) (cinfo); |
||||
(*cinfo->master->prepare_for_output_pass) (cinfo); |
||||
cinfo->output_scanline = 0; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
} |
||||
/* Ready for application to drive output pass through
|
||||
* jpeg_read_scanlines or jpeg_read_raw_data. |
||||
*/ |
||||
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Enable partial scanline decompression |
||||
* |
||||
* Must be called after jpeg_start_decompress() and before any calls to |
||||
* jpeg_read_scanlines() or jpeg_skip_scanlines(). |
||||
* |
||||
* Refer to libjpeg.txt for more information. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_crop_scanline (j_decompress_ptr cinfo, JDIMENSION *xoffset, |
||||
JDIMENSION *width) |
||||
{ |
||||
int ci, align, orig_downsampled_width; |
||||
JDIMENSION input_xoffset; |
||||
boolean reinit_upsampler = FALSE; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING || cinfo->output_scanline != 0) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
if (!xoffset || !width) |
||||
ERREXIT(cinfo, JERR_BAD_CROP_SPEC); |
||||
|
||||
/* xoffset and width must fall within the output image dimensions. */ |
||||
if (*width == 0 || *xoffset + *width > cinfo->output_width) |
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
||||
|
||||
/* No need to do anything if the caller wants the entire width. */ |
||||
if (*width == cinfo->output_width) |
||||
return; |
||||
|
||||
/* Ensuring the proper alignment of xoffset is tricky. At minimum, it
|
||||
* must align with an MCU boundary, because: |
||||
* |
||||
* (1) The IDCT is performed in blocks, and it is not feasible to modify |
||||
* the algorithm so that it can transform partial blocks. |
||||
* (2) Because of the SIMD extensions, any input buffer passed to the |
||||
* upsampling and color conversion routines must be aligned to the |
||||
* SIMD word size (for instance, 128-bit in the case of SSE2.) The |
||||
* easiest way to accomplish this without copying data is to ensure |
||||
* that upsampling and color conversion begin at the start of the |
||||
* first MCU column that will be inverse transformed. |
||||
* |
||||
* In practice, we actually impose a stricter alignment requirement. We |
||||
* require that xoffset be a multiple of the maximum MCU column width of all |
||||
* of the components (the "iMCU column width.") This is to simplify the |
||||
* single-pass decompression case, allowing us to use the same MCU column |
||||
* width for all of the components. |
||||
*/ |
||||
if (cinfo->comps_in_scan == 1 && cinfo->num_components == 1) |
||||
align = cinfo->_min_DCT_scaled_size; |
||||
else |
||||
align = cinfo->_min_DCT_scaled_size * cinfo->max_h_samp_factor; |
||||
|
||||
/* Adjust xoffset to the nearest iMCU boundary <= the requested value */ |
||||
input_xoffset = *xoffset; |
||||
*xoffset = (input_xoffset / align) * align; |
||||
|
||||
/* Adjust the width so that the right edge of the output image is as
|
||||
* requested (only the left edge is altered.) It is important that calling |
||||
* programs check this value after this function returns, so that they can |
||||
* allocate an output buffer with the appropriate size. |
||||
*/ |
||||
*width = *width + input_xoffset - *xoffset; |
||||
cinfo->output_width = *width; |
||||
|
||||
/* Set the first and last iMCU columns that we must decompress. These values
|
||||
* will be used in single-scan decompressions. |
||||
*/ |
||||
cinfo->master->first_iMCU_col = |
||||
(JDIMENSION) (long) (*xoffset) / (long) align; |
||||
cinfo->master->last_iMCU_col = |
||||
(JDIMENSION) jdiv_round_up((long) (*xoffset + cinfo->output_width), |
||||
(long) align) - 1; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
int hsf = (cinfo->comps_in_scan == 1 && cinfo->num_components == 1) ? |
||||
1 : compptr->h_samp_factor; |
||||
|
||||
/* Set downsampled_width to the new output width. */ |
||||
orig_downsampled_width = compptr->downsampled_width; |
||||
compptr->downsampled_width = |
||||
(JDIMENSION) jdiv_round_up((long) (cinfo->output_width * |
||||
compptr->h_samp_factor), |
||||
(long) cinfo->max_h_samp_factor); |
||||
if (compptr->downsampled_width < 2 && orig_downsampled_width >= 2) |
||||
reinit_upsampler = TRUE; |
||||
|
||||
/* Set the first and last iMCU columns that we must decompress. These
|
||||
* values will be used in multi-scan decompressions. |
||||
*/ |
||||
cinfo->master->first_MCU_col[ci] = |
||||
(JDIMENSION) (long) (*xoffset * hsf) / (long) align; |
||||
cinfo->master->last_MCU_col[ci] = |
||||
(JDIMENSION) jdiv_round_up((long) ((*xoffset + cinfo->output_width) * |
||||
hsf), |
||||
(long) align) - 1; |
||||
} |
||||
|
||||
if (reinit_upsampler) { |
||||
cinfo->master->jinit_upsampler_no_alloc = TRUE; |
||||
jinit_upsampler(cinfo); |
||||
cinfo->master->jinit_upsampler_no_alloc = FALSE; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Read some scanlines of data from the JPEG decompressor. |
||||
* |
||||
* The return value will be the number of lines actually read. |
||||
* This may be less than the number requested in several cases, |
||||
* including bottom of image, data source suspension, and operating |
||||
* modes that emit multiple scanlines at a time. |
||||
* |
||||
* Note: we warn about excess calls to jpeg_read_scanlines() since |
||||
* this likely signals an application programmer error. However, |
||||
* an oversize buffer (max_lines > scanlines remaining) is not an error. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, |
||||
JDIMENSION max_lines) |
||||
{ |
||||
JDIMENSION row_ctr; |
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->output_scanline >= cinfo->output_height) { |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
return 0; |
||||
} |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->output_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Process some data */ |
||||
row_ctr = 0; |
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); |
||||
cinfo->output_scanline += row_ctr; |
||||
return row_ctr; |
||||
} |
||||
|
||||
|
||||
/* Dummy color convert function used by jpeg_skip_scanlines() */ |
||||
LOCAL(void) |
||||
noop_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
} |
||||
|
||||
|
||||
/* Dummy quantize function used by jpeg_skip_scanlines() */ |
||||
LOCAL(void) |
||||
noop_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* In some cases, it is best to call jpeg_read_scanlines() and discard the |
||||
* output, rather than skipping the scanlines, because this allows us to |
||||
* maintain the internal state of the context-based upsampler. In these cases, |
||||
* we set up and tear down a dummy color converter in order to avoid valgrind |
||||
* errors and to achieve the best possible performance. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
read_and_discard_scanlines (j_decompress_ptr cinfo, JDIMENSION num_lines) |
||||
{ |
||||
JDIMENSION n; |
||||
void (*color_convert) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION input_row, JSAMPARRAY output_buf, |
||||
int num_rows); |
||||
void (*color_quantize) (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) = NULL; |
||||
|
||||
color_convert = cinfo->cconvert->color_convert; |
||||
cinfo->cconvert->color_convert = noop_convert; |
||||
if (cinfo->cquantize && cinfo->cquantize->color_quantize) { |
||||
color_quantize = cinfo->cquantize->color_quantize; |
||||
cinfo->cquantize->color_quantize = noop_quantize; |
||||
} |
||||
|
||||
for (n = 0; n < num_lines; n++) |
||||
jpeg_read_scanlines(cinfo, NULL, 1); |
||||
|
||||
cinfo->cconvert->color_convert = color_convert; |
||||
if (color_quantize) |
||||
cinfo->cquantize->color_quantize = color_quantize; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Called by jpeg_skip_scanlines(). This partially skips a decompress block by |
||||
* incrementing the rowgroup counter. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
increment_simple_rowgroup_ctr (j_decompress_ptr cinfo, JDIMENSION rows) |
||||
{ |
||||
JDIMENSION rows_left; |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
|
||||
/* Increment the counter to the next row group after the skipped rows. */ |
||||
main_ptr->rowgroup_ctr += rows / cinfo->max_v_samp_factor; |
||||
|
||||
/* Partially skipping a row group would involve modifying the internal state
|
||||
* of the upsampler, so read the remaining rows into a dummy buffer instead. |
||||
*/ |
||||
rows_left = rows % cinfo->max_v_samp_factor; |
||||
cinfo->output_scanline += rows - rows_left; |
||||
|
||||
read_and_discard_scanlines(cinfo, rows_left); |
||||
} |
||||
|
||||
/*
|
||||
* Skips some scanlines of data from the JPEG decompressor. |
||||
* |
||||
* The return value will be the number of lines actually skipped. If skipping |
||||
* num_lines would move beyond the end of the image, then the actual number of |
||||
* lines remaining in the image is returned. Otherwise, the return value will |
||||
* be equal to num_lines. |
||||
* |
||||
* Refer to libjpeg.txt for more information. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_skip_scanlines (j_decompress_ptr cinfo, JDIMENSION num_lines) |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
JDIMENSION i, x; |
||||
int y; |
||||
JDIMENSION lines_per_iMCU_row, lines_left_in_iMCU_row, lines_after_iMCU_row; |
||||
JDIMENSION lines_to_skip, lines_to_read; |
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* Do not skip past the bottom of the image. */ |
||||
if (cinfo->output_scanline + num_lines >= cinfo->output_height) { |
||||
cinfo->output_scanline = cinfo->output_height; |
||||
(*cinfo->inputctl->finish_input_pass) (cinfo); |
||||
cinfo->inputctl->eoi_reached = TRUE; |
||||
return cinfo->output_height - cinfo->output_scanline; |
||||
} |
||||
|
||||
if (num_lines == 0) |
||||
return 0; |
||||
|
||||
lines_per_iMCU_row = cinfo->_min_DCT_scaled_size * cinfo->max_v_samp_factor; |
||||
lines_left_in_iMCU_row = |
||||
(lines_per_iMCU_row - (cinfo->output_scanline % lines_per_iMCU_row)) % |
||||
lines_per_iMCU_row; |
||||
lines_after_iMCU_row = num_lines - lines_left_in_iMCU_row; |
||||
|
||||
/* Skip the lines remaining in the current iMCU row. When upsampling
|
||||
* requires context rows, we need the previous and next rows in order to read |
||||
* the current row. This adds some complexity. |
||||
*/ |
||||
if (cinfo->upsample->need_context_rows) { |
||||
/* If the skipped lines would not move us past the current iMCU row, we
|
||||
* read the lines and ignore them. There might be a faster way of doing |
||||
* this, but we are facing increasing complexity for diminishing returns. |
||||
* The increasing complexity would be a by-product of meddling with the |
||||
* state machine used to skip context rows. Near the end of an iMCU row, |
||||
* the next iMCU row may have already been entropy-decoded. In this unique |
||||
* case, we will read the next iMCU row if we cannot skip past it as well. |
||||
*/ |
||||
if ((num_lines < lines_left_in_iMCU_row + 1) || |
||||
(lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full && |
||||
lines_after_iMCU_row < lines_per_iMCU_row + 1)) { |
||||
read_and_discard_scanlines(cinfo, num_lines); |
||||
return num_lines; |
||||
} |
||||
|
||||
/* If the next iMCU row has already been entropy-decoded, make sure that
|
||||
* we do not skip too far. |
||||
*/ |
||||
if (lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full) { |
||||
cinfo->output_scanline += lines_left_in_iMCU_row + lines_per_iMCU_row; |
||||
lines_after_iMCU_row -= lines_per_iMCU_row; |
||||
} else { |
||||
cinfo->output_scanline += lines_left_in_iMCU_row; |
||||
} |
||||
|
||||
/* If we have just completed the first block, adjust the buffer pointers */ |
||||
if (main_ptr->iMCU_row_ctr == 0 || |
||||
(main_ptr->iMCU_row_ctr == 1 && lines_left_in_iMCU_row > 2)) |
||||
set_wraparound_pointers(cinfo); |
||||
main_ptr->buffer_full = FALSE; |
||||
main_ptr->rowgroup_ctr = 0; |
||||
main_ptr->context_state = CTX_PREPARE_FOR_IMCU; |
||||
upsample->next_row_out = cinfo->max_v_samp_factor; |
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; |
||||
} |
||||
|
||||
/* Skipping is much simpler when context rows are not required. */ |
||||
else { |
||||
if (num_lines < lines_left_in_iMCU_row) { |
||||
increment_simple_rowgroup_ctr(cinfo, num_lines); |
||||
return num_lines; |
||||
} else { |
||||
cinfo->output_scanline += lines_left_in_iMCU_row; |
||||
main_ptr->buffer_full = FALSE; |
||||
main_ptr->rowgroup_ctr = 0; |
||||
upsample->next_row_out = cinfo->max_v_samp_factor; |
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; |
||||
} |
||||
} |
||||
|
||||
/* Calculate how many full iMCU rows we can skip. */ |
||||
if (cinfo->upsample->need_context_rows) |
||||
lines_to_skip = ((lines_after_iMCU_row - 1) / lines_per_iMCU_row) * |
||||
lines_per_iMCU_row; |
||||
else |
||||
lines_to_skip = (lines_after_iMCU_row / lines_per_iMCU_row) * |
||||
lines_per_iMCU_row; |
||||
/* Calculate the number of lines that remain to be skipped after skipping all
|
||||
* of the full iMCU rows that we can. We will not read these lines unless we |
||||
* have to. |
||||
*/ |
||||
lines_to_read = lines_after_iMCU_row - lines_to_skip; |
||||
|
||||
/* For images requiring multiple scans (progressive, non-interleaved, etc.),
|
||||
* all of the entropy decoding occurs in jpeg_start_decompress(), assuming |
||||
* that the input data source is non-suspending. This makes skipping easy. |
||||
*/ |
||||
if (cinfo->inputctl->has_multiple_scans) { |
||||
if (cinfo->upsample->need_context_rows) { |
||||
cinfo->output_scanline += lines_to_skip; |
||||
cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row; |
||||
main_ptr->iMCU_row_ctr += lines_after_iMCU_row / lines_per_iMCU_row; |
||||
/* It is complex to properly move to the middle of a context block, so
|
||||
* read the remaining lines instead of skipping them. |
||||
*/ |
||||
read_and_discard_scanlines(cinfo, lines_to_read); |
||||
} else { |
||||
cinfo->output_scanline += lines_to_skip; |
||||
cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row; |
||||
increment_simple_rowgroup_ctr(cinfo, lines_to_read); |
||||
} |
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; |
||||
return num_lines; |
||||
} |
||||
|
||||
/* Skip the iMCU rows that we can safely skip. */ |
||||
for (i = 0; i < lines_to_skip; i += lines_per_iMCU_row) { |
||||
for (y = 0; y < coef->MCU_rows_per_iMCU_row; y++) { |
||||
for (x = 0; x < cinfo->MCUs_per_row; x++) { |
||||
/* Calling decode_mcu() with a NULL pointer causes it to discard the
|
||||
* decoded coefficients. This is ~5% faster for large subsets, but |
||||
* it's tough to tell a difference for smaller images. |
||||
*/ |
||||
(*cinfo->entropy->decode_mcu) (cinfo, NULL); |
||||
} |
||||
} |
||||
cinfo->input_iMCU_row++; |
||||
cinfo->output_iMCU_row++; |
||||
if (cinfo->input_iMCU_row < cinfo->total_iMCU_rows) |
||||
start_iMCU_row(cinfo); |
||||
else |
||||
(*cinfo->inputctl->finish_input_pass) (cinfo); |
||||
} |
||||
cinfo->output_scanline += lines_to_skip; |
||||
|
||||
if (cinfo->upsample->need_context_rows) { |
||||
/* Context-based upsampling keeps track of iMCU rows. */ |
||||
main_ptr->iMCU_row_ctr += lines_to_skip / lines_per_iMCU_row; |
||||
|
||||
/* It is complex to properly move to the middle of a context block, so
|
||||
* read the remaining lines instead of skipping them. |
||||
*/ |
||||
read_and_discard_scanlines(cinfo, lines_to_read); |
||||
} else { |
||||
increment_simple_rowgroup_ctr(cinfo, lines_to_read); |
||||
} |
||||
|
||||
/* Since skipping lines involves skipping the upsampling step, the value of
|
||||
* "rows_to_go" will become invalid unless we set it here. NOTE: This is a |
||||
* bit odd, since "rows_to_go" seems to be redundantly keeping track of |
||||
* output_scanline. |
||||
*/ |
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; |
||||
|
||||
/* Always skip the requested number of lines. */ |
||||
return num_lines; |
||||
} |
||||
|
||||
/*
|
||||
* Alternate entry point to read raw data. |
||||
* Processes exactly one iMCU row per call, unless suspended. |
||||
*/ |
||||
|
||||
GLOBAL(JDIMENSION) |
||||
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, |
||||
JDIMENSION max_lines) |
||||
{ |
||||
JDIMENSION lines_per_iMCU_row; |
||||
|
||||
if (cinfo->global_state != DSTATE_RAW_OK) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
if (cinfo->output_scanline >= cinfo->output_height) { |
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); |
||||
return 0; |
||||
} |
||||
|
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; |
||||
cinfo->progress->pass_limit = (long) cinfo->output_height; |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
} |
||||
|
||||
/* Verify that at least one iMCU row can be returned. */ |
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size; |
||||
if (max_lines < lines_per_iMCU_row) |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
|
||||
/* Decompress directly into user's buffer. */ |
||||
if (! (*cinfo->coef->decompress_data) (cinfo, data)) |
||||
return 0; /* suspension forced, can do nothing more */ |
||||
|
||||
/* OK, we processed one iMCU row. */ |
||||
cinfo->output_scanline += lines_per_iMCU_row; |
||||
return lines_per_iMCU_row; |
||||
} |
||||
|
||||
|
||||
/* Additional entry points for buffered-image mode. */ |
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
/*
|
||||
* Initialize for an output pass in buffered-image mode. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_start_output (j_decompress_ptr cinfo, int scan_number) |
||||
{ |
||||
if (cinfo->global_state != DSTATE_BUFIMAGE && |
||||
cinfo->global_state != DSTATE_PRESCAN) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
/* Limit scan number to valid range */ |
||||
if (scan_number <= 0) |
||||
scan_number = 1; |
||||
if (cinfo->inputctl->eoi_reached && |
||||
scan_number > cinfo->input_scan_number) |
||||
scan_number = cinfo->input_scan_number; |
||||
cinfo->output_scan_number = scan_number; |
||||
/* Perform any dummy output passes, and set up for the real pass */ |
||||
return output_pass_setup(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up after an output pass in buffered-image mode. |
||||
* |
||||
* Returns FALSE if suspended. The return value need be inspected only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_finish_output (j_decompress_ptr cinfo) |
||||
{ |
||||
if ((cinfo->global_state == DSTATE_SCANNING || |
||||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { |
||||
/* Terminate this pass. */ |
||||
/* We do not require the whole pass to have been completed. */ |
||||
(*cinfo->master->finish_output_pass) (cinfo); |
||||
cinfo->global_state = DSTATE_BUFPOST; |
||||
} else if (cinfo->global_state != DSTATE_BUFPOST) { |
||||
/* BUFPOST = repeat call after a suspension, anything else is error */ |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
} |
||||
/* Read markers looking for SOS or EOI */ |
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number && |
||||
! cinfo->inputctl->eoi_reached) { |
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) |
||||
return FALSE; /* Suspend, come back later */ |
||||
} |
||||
cinfo->global_state = DSTATE_BUFIMAGE; |
||||
return TRUE; |
||||
} |
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
@ -0,0 +1,769 @@ |
||||
/*
|
||||
* jdarith.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Developed 1997-2015 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015-2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains portable arithmetic entropy decoding routines for JPEG |
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
||||
* |
||||
* Both sequential and progressive modes are supported in this single module. |
||||
* |
||||
* Suspension is not currently supported in this module. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
#define NEG_1 ((unsigned int)-1) |
||||
|
||||
|
||||
/* Expanded entropy decoder object for arithmetic decoding. */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_entropy_decoder pub; /* public fields */ |
||||
|
||||
JLONG c; /* C register, base of coding interval + input bit buffer */ |
||||
JLONG a; /* A register, normalized size of coding interval */ |
||||
int ct; /* bit shift counter, # of bits left in bit buffer part of C */ |
||||
/* init: ct = -16 */ |
||||
/* run: ct = 0..7 */ |
||||
/* error: ct = -1 */ |
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */ |
||||
unsigned char *dc_stats[NUM_ARITH_TBLS]; |
||||
unsigned char *ac_stats[NUM_ARITH_TBLS]; |
||||
|
||||
/* Statistics bin for coding with fixed probability 0.5 */ |
||||
unsigned char fixed_bin[4]; |
||||
} arith_entropy_decoder; |
||||
|
||||
typedef arith_entropy_decoder *arith_entropy_ptr; |
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area. |
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding. |
||||
* |
||||
* We use a compact representation with 1 byte per statistics bin, |
||||
* thus the numbers directly represent byte sizes. |
||||
* This 1 byte per statistics bin contains the meaning of the MPS |
||||
* (more probable symbol) in the highest bit (mask 0x80), and the |
||||
* index into the probability estimation state machine table |
||||
* in the lower bits (mask 0x7F). |
||||
*/ |
||||
|
||||
#define DC_STAT_BINS 64 |
||||
#define AC_STAT_BINS 256 |
||||
|
||||
|
||||
LOCAL(int) |
||||
get_byte (j_decompress_ptr cinfo) |
||||
/* Read next input byte; we do not support suspension in this module. */ |
||||
{ |
||||
struct jpeg_source_mgr *src = cinfo->src; |
||||
|
||||
if (src->bytes_in_buffer == 0) |
||||
if (! (*src->fill_input_buffer) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
src->bytes_in_buffer--; |
||||
return GETJOCTET(*src->next_input_byte++); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic decoding routine (common in JPEG and JBIG). |
||||
* This needs to go as fast as possible. |
||||
* Machine-dependent optimization facilities |
||||
* are not utilized in this portable implementation. |
||||
* However, this code should be fairly efficient and |
||||
* may be a good base for further optimizations anyway. |
||||
* |
||||
* Return value is 0 or 1 (binary decision). |
||||
* |
||||
* Note: I've changed the handling of the code base & bit |
||||
* buffer register C compared to other implementations |
||||
* based on the standards layout & procedures. |
||||
* While it also contains both the actual base of the |
||||
* coding interval (16 bits) and the next-bits buffer, |
||||
* the cut-point between these two parts is floating |
||||
* (instead of fixed) with the bit shift counter CT. |
||||
* Thus, we also need only one (variable instead of |
||||
* fixed size) shift for the LPS/MPS decision, and |
||||
* we can do away with any renormalization update |
||||
* of C (except for new data insertion, of course). |
||||
* |
||||
* I've also introduced a new scheme for accessing |
||||
* the probability estimation state machine table, |
||||
* derived from Markus Kuhn's JBIG implementation. |
||||
*/ |
||||
|
||||
LOCAL(int) |
||||
arith_decode (j_decompress_ptr cinfo, unsigned char *st) |
||||
{ |
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
||||
register unsigned char nl, nm; |
||||
register JLONG qe, temp; |
||||
register int sv, data; |
||||
|
||||
/* Renormalization & data input per section D.2.6 */ |
||||
while (e->a < 0x8000L) { |
||||
if (--e->ct < 0) { |
||||
/* Need to fetch next data byte */ |
||||
if (cinfo->unread_marker) |
||||
data = 0; /* stuff zero data */ |
||||
else { |
||||
data = get_byte(cinfo); /* read next input byte */ |
||||
if (data == 0xFF) { /* zero stuff or marker code */ |
||||
do data = get_byte(cinfo); |
||||
while (data == 0xFF); /* swallow extra 0xFF bytes */ |
||||
if (data == 0) |
||||
data = 0xFF; /* discard stuffed zero byte */ |
||||
else { |
||||
/* Note: Different from the Huffman decoder, hitting
|
||||
* a marker while processing the compressed data |
||||
* segment is legal in arithmetic coding. |
||||
* The convention is to supply zero data |
||||
* then until decoding is complete. |
||||
*/ |
||||
cinfo->unread_marker = data; |
||||
data = 0; |
||||
} |
||||
} |
||||
} |
||||
e->c = (e->c << 8) | data; /* insert data into C register */ |
||||
if ((e->ct += 8) < 0) /* update bit shift counter */ |
||||
/* Need more initial bytes */ |
||||
if (++e->ct == 0) |
||||
/* Got 2 initial bytes -> re-init A and exit loop */ |
||||
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ |
||||
} |
||||
e->a <<= 1; |
||||
} |
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine |
||||
*/ |
||||
sv = *st; |
||||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
||||
|
||||
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */ |
||||
temp = e->a - qe; |
||||
e->a = temp; |
||||
temp <<= e->ct; |
||||
if (e->c >= temp) { |
||||
e->c -= temp; |
||||
/* Conditional LPS (less probable symbol) exchange */ |
||||
if (e->a < qe) { |
||||
e->a = qe; |
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
||||
} else { |
||||
e->a = qe; |
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
||||
sv ^= 0x80; /* Exchange LPS/MPS */ |
||||
} |
||||
} else if (e->a < 0x8000L) { |
||||
/* Conditional MPS (more probable symbol) exchange */ |
||||
if (e->a < qe) { |
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
||||
sv ^= 0x80; /* Exchange LPS/MPS */ |
||||
} else { |
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
||||
} |
||||
} |
||||
|
||||
return sv >> 7; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
process_restart (j_decompress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Advance past the RSTn marker */ |
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
||||
|
||||
/* Re-initialize statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
||||
/* Reset DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
if (!cinfo->progressive_mode || cinfo->Ss) { |
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
||||
} |
||||
} |
||||
|
||||
/* Reset arithmetic decoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0; |
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
||||
|
||||
/* Reset restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Arithmetic MCU decoding. |
||||
* Each of these routines decodes and returns one MCU's worth of |
||||
* arithmetic-compressed coefficients. |
||||
* The coefficients are reordered from zigzag order into natural array order, |
||||
* but are not dequantized. |
||||
* |
||||
* The i'th block of the MCU is stored into the block pointed to by |
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
||||
*/ |
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int blkn, ci, tbl, sign; |
||||
int v, m; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */ |
||||
if (arith_decode(cinfo, st) == 0) |
||||
entropy->dc_context[ci] = 0; |
||||
else { |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, st + 1); |
||||
st += 2; st += sign; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == 0x8000) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
||||
else |
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
entropy->last_dc_val[ci] += v; |
||||
} |
||||
|
||||
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ |
||||
(*block)[0] = (JCOEF) LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int tbl, sign, k; |
||||
int v, m; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
/* There is always only one block per MCU */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */ |
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */ |
||||
while (arith_decode(cinfo, st + 1) == 0) { |
||||
st += 3; k++; |
||||
if (k > cinfo->Se) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* spectral overflow */ |
||||
return TRUE; |
||||
} |
||||
} |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, entropy->fixed_bin); |
||||
st += 2; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
if (arith_decode(cinfo, st)) { |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == 0x8000) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
/* Scale and output coefficient in natural (dezigzagged) order */ |
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) ((unsigned)v << cinfo->Al); |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
unsigned char *st; |
||||
int p1, blkn; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
st = entropy->fixed_bin; /* use fixed probability estimation */ |
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
/* Encoded data is simply the next bit of the two's-complement DC value */ |
||||
if (arith_decode(cinfo, st)) |
||||
MCU_data[blkn][0][0] |= p1; |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
JBLOCKROW block; |
||||
JCOEFPTR thiscoef; |
||||
unsigned char *st; |
||||
int tbl, k, kex; |
||||
int p1, m1; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
/* There is always only one block per MCU */ |
||||
block = MCU_data[0]; |
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
||||
m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */ |
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */ |
||||
for (kex = cinfo->Se; kex > 0; kex--) |
||||
if ((*block)[jpeg_natural_order[kex]]) break; |
||||
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
if (k > kex) |
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */ |
||||
for (;;) { |
||||
thiscoef = *block + jpeg_natural_order[k]; |
||||
if (*thiscoef) { /* previously nonzero coef */ |
||||
if (arith_decode(cinfo, st + 2)) { |
||||
if (*thiscoef < 0) |
||||
*thiscoef += m1; |
||||
else |
||||
*thiscoef += p1; |
||||
} |
||||
break; |
||||
} |
||||
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ |
||||
if (arith_decode(cinfo, entropy->fixed_bin)) |
||||
*thiscoef = m1; |
||||
else |
||||
*thiscoef = p1; |
||||
break; |
||||
} |
||||
st += 3; k++; |
||||
if (k > cinfo->Se) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* spectral overflow */ |
||||
return TRUE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decode one MCU's worth of arithmetic-compressed coefficients. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
jpeg_component_info *compptr; |
||||
JBLOCKROW block; |
||||
unsigned char *st; |
||||
int blkn, ci, tbl, sign, k; |
||||
int v, m; |
||||
|
||||
/* Process restart marker if needed */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
process_restart(cinfo); |
||||
entropy->restarts_to_go--; |
||||
} |
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data ? MCU_data[blkn] : NULL; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
||||
|
||||
tbl = compptr->dc_tbl_no; |
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */ |
||||
if (arith_decode(cinfo, st) == 0) |
||||
entropy->dc_context[ci] = 0; |
||||
else { |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, st + 1); |
||||
st += 2; st += sign; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == 0x8000) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
||||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 0; /* zero diff category */ |
||||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
||||
else |
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
entropy->last_dc_val[ci] += v; |
||||
} |
||||
|
||||
if (block) |
||||
(*block)[0] = (JCOEF) entropy->last_dc_val[ci]; |
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
||||
|
||||
tbl = compptr->ac_tbl_no; |
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */ |
||||
for (k = 1; k <= DCTSIZE2 - 1; k++) { |
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1); |
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */ |
||||
while (arith_decode(cinfo, st + 1) == 0) { |
||||
st += 3; k++; |
||||
if (k > DCTSIZE2 - 1) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* spectral overflow */ |
||||
return TRUE; |
||||
} |
||||
} |
||||
/* Figure F.21: Decoding nonzero value v */ |
||||
/* Figure F.22: Decoding the sign of v */ |
||||
sign = arith_decode(cinfo, entropy->fixed_bin); |
||||
st += 2; |
||||
/* Figure F.23: Decoding the magnitude category of v */ |
||||
if ((m = arith_decode(cinfo, st)) != 0) { |
||||
if (arith_decode(cinfo, st)) { |
||||
m <<= 1; |
||||
st = entropy->ac_stats[tbl] + |
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
||||
while (arith_decode(cinfo, st)) { |
||||
if ((m <<= 1) == 0x8000) { |
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
||||
entropy->ct = -1; /* magnitude overflow */ |
||||
return TRUE; |
||||
} |
||||
st += 1; |
||||
} |
||||
} |
||||
} |
||||
v = m; |
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */ |
||||
st += 14; |
||||
while (m >>= 1) |
||||
if (arith_decode(cinfo, st)) v |= m; |
||||
v += 1; if (sign) v = -v; |
||||
if (block) |
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) v; |
||||
} |
||||
} |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
||||
int ci, tbl; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->progressive_mode) { |
||||
/* Validate progressive scan parameters */ |
||||
if (cinfo->Ss == 0) { |
||||
if (cinfo->Se != 0) |
||||
goto bad; |
||||
} else { |
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */ |
||||
if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1) |
||||
goto bad; |
||||
/* AC scans may have only one component */ |
||||
if (cinfo->comps_in_scan != 1) |
||||
goto bad; |
||||
} |
||||
if (cinfo->Ah != 0) { |
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */ |
||||
if (cinfo->Ah-1 != cinfo->Al) |
||||
goto bad; |
||||
} |
||||
if (cinfo->Al > 13) { /* need not check for < 0 */ |
||||
bad: |
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
||||
} |
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings |
||||
* not fatal errors ... not clear if this is right way to behave. |
||||
*/ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; |
||||
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
||||
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
||||
if (cinfo->Ah != expected) |
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
||||
coef_bit_ptr[coefi] = cinfo->Al; |
||||
} |
||||
} |
||||
/* Select MCU decoding routine */ |
||||
if (cinfo->Ah == 0) { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.decode_mcu = decode_mcu_DC_first; |
||||
else |
||||
entropy->pub.decode_mcu = decode_mcu_AC_first; |
||||
} else { |
||||
if (cinfo->Ss == 0) |
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine; |
||||
else |
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine; |
||||
} |
||||
} else { |
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning. |
||||
*/ |
||||
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || |
||||
(cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1)) |
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
||||
/* Select MCU decoding routine */ |
||||
entropy->pub.decode_mcu = decode_mcu; |
||||
} |
||||
|
||||
/* Allocate & initialize requested statistics areas */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
||||
tbl = compptr->dc_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->dc_stats[tbl] == NULL) |
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
||||
/* Initialize DC predictions to 0 */ |
||||
entropy->last_dc_val[ci] = 0; |
||||
entropy->dc_context[ci] = 0; |
||||
} |
||||
if (!cinfo->progressive_mode || cinfo->Ss) { |
||||
tbl = compptr->ac_tbl_no; |
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
||||
if (entropy->ac_stats[tbl] == NULL) |
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
||||
} |
||||
} |
||||
|
||||
/* Initialize arithmetic decoding variables */ |
||||
entropy->c = 0; |
||||
entropy->a = 0; |
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
||||
|
||||
/* Initialize restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy decoding. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_arith_decoder (j_decompress_ptr cinfo) |
||||
{ |
||||
arith_entropy_ptr entropy; |
||||
int i; |
||||
|
||||
entropy = (arith_entropy_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(arith_entropy_decoder)); |
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
||||
entropy->pub.start_pass = start_pass; |
||||
|
||||
/* Mark tables unallocated */ |
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
||||
entropy->dc_stats[i] = NULL; |
||||
entropy->ac_stats[i] = NULL; |
||||
} |
||||
|
||||
/* Initialize index for fixed probability estimation */ |
||||
entropy->fixed_bin[0] = 113; |
||||
|
||||
if (cinfo->progressive_mode) { |
||||
/* Create progression status table */ |
||||
int *coef_bit_ptr, ci; |
||||
cinfo->coef_bits = (int (*)[DCTSIZE2]) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->num_components*DCTSIZE2*sizeof(int)); |
||||
coef_bit_ptr = & cinfo->coef_bits[0][0]; |
||||
for (ci = 0; ci < cinfo->num_components; ci++) |
||||
for (i = 0; i < DCTSIZE2; i++) |
||||
*coef_bit_ptr++ = -1; |
||||
} |
||||
} |
@ -0,0 +1,293 @@ |
||||
/*
|
||||
* jdatadst.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2009-2012 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2013, 2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains compression data destination routines for the case of |
||||
* emitting JPEG data to memory or to a file (or any stdio stream). |
||||
* While these routines are sufficient for most applications, |
||||
* some will want to use a different destination manager. |
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of |
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider |
||||
* than 8 bits on your machine, you may need to do some tweaking. |
||||
*/ |
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jerror.h" |
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ |
||||
extern void *malloc (size_t size); |
||||
extern void free (void *ptr); |
||||
#endif |
||||
|
||||
|
||||
/* Expanded data destination object for stdio output */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_destination_mgr pub; /* public fields */ |
||||
|
||||
FILE *outfile; /* target stream */ |
||||
JOCTET *buffer; /* start of buffer */ |
||||
} my_destination_mgr; |
||||
|
||||
typedef my_destination_mgr *my_dest_ptr; |
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ |
||||
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
/* Expanded data destination object for memory output */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_destination_mgr pub; /* public fields */ |
||||
|
||||
unsigned char **outbuffer; /* target buffer */ |
||||
unsigned long *outsize; |
||||
unsigned char *newbuffer; /* newly allocated buffer */ |
||||
JOCTET *buffer; /* start of buffer */ |
||||
size_t bufsize; |
||||
} my_mem_destination_mgr; |
||||
|
||||
typedef my_mem_destination_mgr *my_mem_dest_ptr; |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress |
||||
* before any data is actually written. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
init_destination (j_compress_ptr cinfo) |
||||
{ |
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; |
||||
|
||||
/* Allocate the output buffer --- it will be released when done with image */ |
||||
dest->buffer = (JOCTET *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
OUTPUT_BUF_SIZE * sizeof(JOCTET)); |
||||
|
||||
dest->pub.next_output_byte = dest->buffer; |
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; |
||||
} |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
METHODDEF(void) |
||||
init_mem_destination (j_compress_ptr cinfo) |
||||
{ |
||||
/* no work necessary here */ |
||||
} |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up. |
||||
* |
||||
* In typical applications, this should write the entire output buffer |
||||
* (ignoring the current state of next_output_byte & free_in_buffer), |
||||
* reset the pointer & count to the start of the buffer, and return TRUE |
||||
* indicating that the buffer has been dumped. |
||||
* |
||||
* In applications that need to be able to suspend compression due to output |
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now. |
||||
* In this situation, the compressor will return to its caller (possibly with |
||||
* an indication that it has not accepted all the supplied scanlines). The |
||||
* application should resume compression after it has made more room in the |
||||
* output buffer. Note that there are substantial restrictions on the use of |
||||
* suspension --- see the documentation. |
||||
* |
||||
* When suspending, the compressor will back up to a convenient restart point |
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer |
||||
* indicate where the restart point will be if the current call returns FALSE. |
||||
* Data beyond this point will be regenerated after resumption, so do not |
||||
* write it out when emptying the buffer externally. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
empty_output_buffer (j_compress_ptr cinfo) |
||||
{ |
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; |
||||
|
||||
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) != |
||||
(size_t) OUTPUT_BUF_SIZE) |
||||
ERREXIT(cinfo, JERR_FILE_WRITE); |
||||
|
||||
dest->pub.next_output_byte = dest->buffer; |
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
METHODDEF(boolean) |
||||
empty_mem_output_buffer (j_compress_ptr cinfo) |
||||
{ |
||||
size_t nextsize; |
||||
JOCTET *nextbuffer; |
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; |
||||
|
||||
/* Try to allocate new buffer with double size */ |
||||
nextsize = dest->bufsize * 2; |
||||
nextbuffer = (JOCTET *) malloc(nextsize); |
||||
|
||||
if (nextbuffer == NULL) |
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); |
||||
|
||||
MEMCOPY(nextbuffer, dest->buffer, dest->bufsize); |
||||
|
||||
if (dest->newbuffer != NULL) |
||||
free(dest->newbuffer); |
||||
|
||||
dest->newbuffer = nextbuffer; |
||||
|
||||
dest->pub.next_output_byte = nextbuffer + dest->bufsize; |
||||
dest->pub.free_in_buffer = dest->bufsize; |
||||
|
||||
dest->buffer = nextbuffer; |
||||
dest->bufsize = nextsize; |
||||
|
||||
return TRUE; |
||||
} |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress |
||||
* after all data has been written. Usually needs to flush buffer. |
||||
* |
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding |
||||
* application must deal with any cleanup that should happen even |
||||
* for error exit. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
term_destination (j_compress_ptr cinfo) |
||||
{ |
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; |
||||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; |
||||
|
||||
/* Write any data remaining in the buffer */ |
||||
if (datacount > 0) { |
||||
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount) |
||||
ERREXIT(cinfo, JERR_FILE_WRITE); |
||||
} |
||||
fflush(dest->outfile); |
||||
/* Make sure we wrote the output file OK */ |
||||
if (ferror(dest->outfile)) |
||||
ERREXIT(cinfo, JERR_FILE_WRITE); |
||||
} |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
METHODDEF(void) |
||||
term_mem_destination (j_compress_ptr cinfo) |
||||
{ |
||||
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; |
||||
|
||||
*dest->outbuffer = dest->buffer; |
||||
*dest->outsize = (unsigned long)(dest->bufsize - dest->pub.free_in_buffer); |
||||
} |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a stdio stream. |
||||
* The caller must have already opened the stream, and is responsible |
||||
* for closing it after finishing compression. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_stdio_dest (j_compress_ptr cinfo, FILE *outfile) |
||||
{ |
||||
my_dest_ptr dest; |
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same file without re-executing jpeg_stdio_dest. |
||||
*/ |
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->dest = (struct jpeg_destination_mgr *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
sizeof(my_destination_mgr)); |
||||
} else if (cinfo->dest->init_destination != init_destination) { |
||||
/* It is unsafe to reuse the existing destination manager unless it was
|
||||
* created by this function. Otherwise, there is no guarantee that the |
||||
* opaque structure is the right size. Note that we could just create a |
||||
* new structure, but the old structure would not be freed until |
||||
* jpeg_destroy_compress() was called. |
||||
*/ |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
} |
||||
|
||||
dest = (my_dest_ptr) cinfo->dest; |
||||
dest->pub.init_destination = init_destination; |
||||
dest->pub.empty_output_buffer = empty_output_buffer; |
||||
dest->pub.term_destination = term_destination; |
||||
dest->outfile = outfile; |
||||
} |
||||
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
/*
|
||||
* Prepare for output to a memory buffer. |
||||
* The caller may supply an own initial buffer with appropriate size. |
||||
* Otherwise, or when the actual data output exceeds the given size, |
||||
* the library adapts the buffer size as necessary. |
||||
* The standard library functions malloc/free are used for allocating |
||||
* larger memory, so the buffer is available to the application after |
||||
* finishing compression, and then the application is responsible for |
||||
* freeing the requested memory. |
||||
* Note: An initial buffer supplied by the caller is expected to be |
||||
* managed by the application. The library does not free such buffer |
||||
* when allocating a larger buffer. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_mem_dest (j_compress_ptr cinfo, |
||||
unsigned char **outbuffer, unsigned long *outsize) |
||||
{ |
||||
my_mem_dest_ptr dest; |
||||
|
||||
if (outbuffer == NULL || outsize == NULL) /* sanity check */ |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same buffer without re-executing jpeg_mem_dest. |
||||
*/ |
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->dest = (struct jpeg_destination_mgr *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
sizeof(my_mem_destination_mgr)); |
||||
} else if (cinfo->dest->init_destination != init_mem_destination) { |
||||
/* It is unsafe to reuse the existing destination manager unless it was
|
||||
* created by this function. |
||||
*/ |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
} |
||||
|
||||
dest = (my_mem_dest_ptr) cinfo->dest; |
||||
dest->pub.init_destination = init_mem_destination; |
||||
dest->pub.empty_output_buffer = empty_mem_output_buffer; |
||||
dest->pub.term_destination = term_mem_destination; |
||||
dest->outbuffer = outbuffer; |
||||
dest->outsize = outsize; |
||||
dest->newbuffer = NULL; |
||||
|
||||
if (*outbuffer == NULL || *outsize == 0) { |
||||
/* Allocate initial buffer */ |
||||
dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE); |
||||
if (dest->newbuffer == NULL) |
||||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); |
||||
*outsize = OUTPUT_BUF_SIZE; |
||||
} |
||||
|
||||
dest->pub.next_output_byte = dest->buffer = *outbuffer; |
||||
dest->pub.free_in_buffer = dest->bufsize = *outsize; |
||||
} |
||||
#endif |
@ -0,0 +1,295 @@ |
||||
/*
|
||||
* jdatasrc.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2009-2011 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2013, 2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains decompression data source routines for the case of |
||||
* reading JPEG data from memory or from a file (or any stdio stream). |
||||
* While these routines are sufficient for most applications, |
||||
* some will want to use a different source manager. |
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of |
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider |
||||
* than 8 bits on your machine, you may need to do some tweaking. |
||||
*/ |
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jerror.h" |
||||
|
||||
|
||||
/* Expanded data source object for stdio input */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_source_mgr pub; /* public fields */ |
||||
|
||||
FILE *infile; /* source stream */ |
||||
JOCTET *buffer; /* start of buffer */ |
||||
boolean start_of_file; /* have we gotten any data yet? */ |
||||
} my_source_mgr; |
||||
|
||||
typedef my_source_mgr *my_src_ptr; |
||||
|
||||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header |
||||
* before any data is actually read. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
init_source (j_decompress_ptr cinfo) |
||||
{ |
||||
my_src_ptr src = (my_src_ptr) cinfo->src; |
||||
|
||||
/* We reset the empty-input-file flag for each image,
|
||||
* but we don't clear the input buffer. |
||||
* This is correct behavior for reading a series of images from one source. |
||||
*/ |
||||
src->start_of_file = TRUE; |
||||
} |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
METHODDEF(void) |
||||
init_mem_source (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work necessary here */ |
||||
} |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied. |
||||
* |
||||
* In typical applications, this should read fresh data into the buffer |
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer), |
||||
* reset the pointer & count to the start of the buffer, and return TRUE |
||||
* indicating that the buffer has been reloaded. It is not necessary to |
||||
* fill the buffer entirely, only to obtain at least one more byte. |
||||
* |
||||
* There is no such thing as an EOF return. If the end of the file has been |
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into |
||||
* the buffer. In most cases, generating a warning message and inserting a |
||||
* fake EOI marker is the best course of action --- this will allow the |
||||
* decompressor to output however much of the image is there. However, |
||||
* the resulting error message is misleading if the real problem is an empty |
||||
* input file, so we handle that case specially. |
||||
* |
||||
* In applications that need to be able to suspend compression due to input |
||||
* not being available yet, a FALSE return indicates that no more data can be |
||||
* obtained right now, but more may be forthcoming later. In this situation, |
||||
* the decompressor will return to its caller (with an indication of the |
||||
* number of scanlines it has read, if any). The application should resume |
||||
* decompression after it has loaded more data into the input buffer. Note |
||||
* that there are substantial restrictions on the use of suspension --- see |
||||
* the documentation. |
||||
* |
||||
* When suspending, the decompressor will back up to a convenient restart point |
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer |
||||
* indicate where the restart point will be if the current call returns FALSE. |
||||
* Data beyond this point must be rescanned after resumption, so move it to |
||||
* the front of the buffer rather than discarding it. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
fill_input_buffer (j_decompress_ptr cinfo) |
||||
{ |
||||
my_src_ptr src = (my_src_ptr) cinfo->src; |
||||
size_t nbytes; |
||||
|
||||
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE); |
||||
|
||||
if (nbytes <= 0) { |
||||
if (src->start_of_file) /* Treat empty input file as fatal error */ |
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY); |
||||
WARNMS(cinfo, JWRN_JPEG_EOF); |
||||
/* Insert a fake EOI marker */ |
||||
src->buffer[0] = (JOCTET) 0xFF; |
||||
src->buffer[1] = (JOCTET) JPEG_EOI; |
||||
nbytes = 2; |
||||
} |
||||
|
||||
src->pub.next_input_byte = src->buffer; |
||||
src->pub.bytes_in_buffer = nbytes; |
||||
src->start_of_file = FALSE; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
METHODDEF(boolean) |
||||
fill_mem_input_buffer (j_decompress_ptr cinfo) |
||||
{ |
||||
static const JOCTET mybuffer[4] = { |
||||
(JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0 |
||||
}; |
||||
|
||||
/* The whole JPEG data is expected to reside in the supplied memory
|
||||
* buffer, so any request for more data beyond the given buffer size |
||||
* is treated as an error. |
||||
*/ |
||||
WARNMS(cinfo, JWRN_JPEG_EOF); |
||||
|
||||
/* Insert a fake EOI marker */ |
||||
|
||||
cinfo->src->next_input_byte = mybuffer; |
||||
cinfo->src->bytes_in_buffer = 2; |
||||
|
||||
return TRUE; |
||||
} |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of |
||||
* uninteresting data (such as an APPn marker). |
||||
* |
||||
* Writers of suspendable-input applications must note that skip_input_data |
||||
* is not granted the right to give a suspension return. If the skip extends |
||||
* beyond the data currently in the buffer, the buffer can be marked empty so |
||||
* that the next read will cause a fill_input_buffer call that can suspend. |
||||
* Arranging for additional bytes to be discarded before reloading the input |
||||
* buffer is the application writer's problem. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
skip_input_data (j_decompress_ptr cinfo, long num_bytes) |
||||
{ |
||||
struct jpeg_source_mgr *src = cinfo->src; |
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth |
||||
* any trouble anyway --- large skips are infrequent. |
||||
*/ |
||||
if (num_bytes > 0) { |
||||
while (num_bytes > (long) src->bytes_in_buffer) { |
||||
num_bytes -= (long) src->bytes_in_buffer; |
||||
(void) (*src->fill_input_buffer) (cinfo); |
||||
/* note we assume that fill_input_buffer will never return FALSE,
|
||||
* so suspension need not be handled. |
||||
*/ |
||||
} |
||||
src->next_input_byte += (size_t) num_bytes; |
||||
src->bytes_in_buffer -= (size_t) num_bytes; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the |
||||
* resync_to_restart method for error recovery in the presence of RST markers. |
||||
* For the moment, this source module just uses the default resync method |
||||
* provided by the JPEG library. That method assumes that no backtracking |
||||
* is possible. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress |
||||
* after all data has been read. Often a no-op. |
||||
* |
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding |
||||
* application must deal with any cleanup that should happen even |
||||
* for error exit. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
term_source (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work necessary here */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a stdio stream. |
||||
* The caller must have already opened the stream, and is responsible |
||||
* for closing it after finishing decompression. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_stdio_src (j_decompress_ptr cinfo, FILE *infile) |
||||
{ |
||||
my_src_ptr src; |
||||
|
||||
/* The source object and input buffer are made permanent so that a series
|
||||
* of JPEG images can be read from the same file by calling jpeg_stdio_src |
||||
* only before the first one. (If we discarded the buffer at the end of |
||||
* one image, we'd likely lose the start of the next one.) |
||||
*/ |
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->src = (struct jpeg_source_mgr *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
sizeof(my_source_mgr)); |
||||
src = (my_src_ptr) cinfo->src; |
||||
src->buffer = (JOCTET *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
INPUT_BUF_SIZE * sizeof(JOCTET)); |
||||
} else if (cinfo->src->init_source != init_source) { |
||||
/* It is unsafe to reuse the existing source manager unless it was created
|
||||
* by this function. Otherwise, there is no guarantee that the opaque |
||||
* structure is the right size. Note that we could just create a new |
||||
* structure, but the old structure would not be freed until |
||||
* jpeg_destroy_decompress() was called. |
||||
*/ |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
} |
||||
|
||||
src = (my_src_ptr) cinfo->src; |
||||
src->pub.init_source = init_source; |
||||
src->pub.fill_input_buffer = fill_input_buffer; |
||||
src->pub.skip_input_data = skip_input_data; |
||||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ |
||||
src->pub.term_source = term_source; |
||||
src->infile = infile; |
||||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ |
||||
src->pub.next_input_byte = NULL; /* until buffer loaded */ |
||||
} |
||||
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) |
||||
/*
|
||||
* Prepare for input from a supplied memory buffer. |
||||
* The buffer must contain the whole JPEG data. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_mem_src (j_decompress_ptr cinfo, |
||||
const unsigned char *inbuffer, unsigned long insize) |
||||
{ |
||||
struct jpeg_source_mgr *src; |
||||
|
||||
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ |
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY); |
||||
|
||||
/* The source object is made permanent so that a series of JPEG images
|
||||
* can be read from the same buffer by calling jpeg_mem_src only before |
||||
* the first one. |
||||
*/ |
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */ |
||||
cinfo->src = (struct jpeg_source_mgr *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
sizeof(struct jpeg_source_mgr)); |
||||
} else if (cinfo->src->init_source != init_mem_source) { |
||||
/* It is unsafe to reuse the existing source manager unless it was created
|
||||
* by this function. |
||||
*/ |
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE); |
||||
} |
||||
|
||||
src = cinfo->src; |
||||
src->init_source = init_mem_source; |
||||
src->fill_input_buffer = fill_mem_input_buffer; |
||||
src->skip_input_data = skip_input_data; |
||||
src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ |
||||
src->term_source = term_source; |
||||
src->bytes_in_buffer = (size_t) insize; |
||||
src->next_input_byte = (const JOCTET *) inbuffer; |
||||
} |
||||
#endif |
@ -0,0 +1,693 @@ |
||||
/*
|
||||
* jdcoefct.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2010, 2015-2016, D. R. Commander. |
||||
* Copyright (C) 2015, Google, Inc. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the coefficient buffer controller for decompression. |
||||
* This controller is the top level of the JPEG decompressor proper. |
||||
* The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
||||
* |
||||
* In buffered-image mode, this controller is the interface between |
||||
* input-oriented processing and output-oriented processing. |
||||
* Also, the input side (only) is used when reading a file for transcoding. |
||||
*/ |
||||
|
||||
#include "jinclude.h" |
||||
#include "jdcoefct.h" |
||||
#include "jpegcomp.h" |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(int) decompress_onepass |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); |
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
METHODDEF(int) decompress_data |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); |
||||
#endif |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo); |
||||
METHODDEF(int) decompress_smooth_data |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an input processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_input_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
cinfo->input_iMCU_row = 0; |
||||
start_iMCU_row(cinfo); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an output processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_output_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* If multipass, check to see whether to use block smoothing on this pass */ |
||||
if (coef->pub.coef_arrays != NULL) { |
||||
if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
||||
coef->pub.decompress_data = decompress_smooth_data; |
||||
else |
||||
coef->pub.decompress_data = decompress_data; |
||||
} |
||||
#endif |
||||
cinfo->output_iMCU_row = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the single-pass case. |
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
||||
* Input and output must run in lockstep since we have only a one-MCU buffer. |
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
||||
* |
||||
* NB: output_buf contains a plane for each component in image, |
||||
* which we index according to the component's SOF position. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
int blkn, ci, xindex, yindex, yoffset, useful_width; |
||||
JSAMPARRAY output_ptr; |
||||
JDIMENSION start_col, output_col; |
||||
jpeg_component_info *compptr; |
||||
inverse_DCT_method_ptr inverse_DCT; |
||||
|
||||
/* Loop to process as much as one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
||||
MCU_col_num++) { |
||||
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
||||
jzero_far((void *) coef->MCU_buffer[0], |
||||
(size_t) (cinfo->blocks_in_MCU * sizeof(JBLOCK))); |
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->MCU_ctr = MCU_col_num; |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
|
||||
/* Only perform the IDCT on blocks that are contained within the desired
|
||||
* cropping region. |
||||
*/ |
||||
if (MCU_col_num >= cinfo->master->first_iMCU_col && |
||||
MCU_col_num <= cinfo->master->last_iMCU_col) { |
||||
/* Determine where data should go in output_buf and do the IDCT thing.
|
||||
* We skip dummy blocks at the right and bottom edges (but blkn gets |
||||
* incremented past them!). Note the inner loop relies on having |
||||
* allocated the MCU_buffer[] blocks sequentially. |
||||
*/ |
||||
blkn = 0; /* index of current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Don't bother to IDCT an uninteresting component. */ |
||||
if (! compptr->component_needed) { |
||||
blkn += compptr->MCU_blocks; |
||||
continue; |
||||
} |
||||
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
||||
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
||||
: compptr->last_col_width; |
||||
output_ptr = output_buf[compptr->component_index] + |
||||
yoffset * compptr->_DCT_scaled_size; |
||||
start_col = (MCU_col_num - cinfo->master->first_iMCU_col) * |
||||
compptr->MCU_sample_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
if (cinfo->input_iMCU_row < last_iMCU_row || |
||||
yoffset+yindex < compptr->last_row_height) { |
||||
output_col = start_col; |
||||
for (xindex = 0; xindex < useful_width; xindex++) { |
||||
(*inverse_DCT) (cinfo, compptr, |
||||
(JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
||||
output_ptr, output_col); |
||||
output_col += compptr->_DCT_scaled_size; |
||||
} |
||||
} |
||||
blkn += compptr->MCU_width; |
||||
output_ptr += compptr->_DCT_scaled_size; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->MCU_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
cinfo->output_iMCU_row++; |
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
||||
start_iMCU_row(cinfo); |
||||
return JPEG_ROW_COMPLETED; |
||||
} |
||||
/* Completed the scan */ |
||||
(*cinfo->inputctl->finish_input_pass) (cinfo); |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Dummy consume-input routine for single-pass operation. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
dummy_consume_data (j_decompress_ptr cinfo) |
||||
{ |
||||
return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
||||
} |
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
/*
|
||||
* Consume input data and store it in the full-image coefficient buffer. |
||||
* We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
||||
* ie, v_samp_factor block rows for each component in the scan. |
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
consume_data (j_decompress_ptr cinfo) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||||
int blkn, ci, xindex, yindex, yoffset; |
||||
JDIMENSION start_col; |
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
||||
JBLOCKROW buffer_ptr; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
buffer[ci] = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
||||
cinfo->input_iMCU_row * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, TRUE); |
||||
/* Note: entropy decoder expects buffer to be zeroed,
|
||||
* but this is handled automatically by the memory manager |
||||
* because we requested a pre-zeroed array. |
||||
*/ |
||||
} |
||||
|
||||
/* Loop to process one whole iMCU row */ |
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||||
yoffset++) { |
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
||||
MCU_col_num++) { |
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
||||
blkn = 0; /* index of current DCT block within MCU */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
start_col = MCU_col_num * compptr->MCU_width; |
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
||||
coef->MCU_buffer[blkn++] = buffer_ptr++; |
||||
} |
||||
} |
||||
} |
||||
/* Try to fetch the MCU. */ |
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
||||
/* Suspension forced; update state counters and exit */ |
||||
coef->MCU_vert_offset = yoffset; |
||||
coef->MCU_ctr = MCU_col_num; |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
} |
||||
/* Completed an MCU row, but perhaps not an iMCU row */ |
||||
coef->MCU_ctr = 0; |
||||
} |
||||
/* Completed the iMCU row, advance counters for next one */ |
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
||||
start_iMCU_row(cinfo); |
||||
return JPEG_ROW_COMPLETED; |
||||
} |
||||
/* Completed the scan */ |
||||
(*cinfo->inputctl->finish_input_pass) (cinfo); |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the multi-pass case. |
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
||||
* |
||||
* NB: output_buf contains a plane for each component in image. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
JDIMENSION block_num; |
||||
int ci, block_row, block_rows; |
||||
JBLOCKARRAY buffer; |
||||
JBLOCKROW buffer_ptr; |
||||
JSAMPARRAY output_ptr; |
||||
JDIMENSION output_col; |
||||
jpeg_component_info *compptr; |
||||
inverse_DCT_method_ptr inverse_DCT; |
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */ |
||||
while (cinfo->input_scan_number < cinfo->output_scan_number || |
||||
(cinfo->input_scan_number == cinfo->output_scan_number && |
||||
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
|
||||
/* OK, output from the virtual arrays. */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Don't bother to IDCT an uninteresting component. */ |
||||
if (! compptr->component_needed) |
||||
continue; |
||||
/* Align the virtual buffer for this component. */ |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
cinfo->output_iMCU_row * compptr->v_samp_factor, |
||||
(JDIMENSION) compptr->v_samp_factor, FALSE); |
||||
/* Count non-dummy DCT block rows in this iMCU row. */ |
||||
if (cinfo->output_iMCU_row < last_iMCU_row) |
||||
block_rows = compptr->v_samp_factor; |
||||
else { |
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
||||
} |
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
||||
output_ptr = output_buf[ci]; |
||||
/* Loop over all DCT blocks to be processed. */ |
||||
for (block_row = 0; block_row < block_rows; block_row++) { |
||||
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; |
||||
output_col = 0; |
||||
for (block_num = cinfo->master->first_MCU_col[ci]; |
||||
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { |
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
||||
output_ptr, output_col); |
||||
buffer_ptr++; |
||||
output_col += compptr->_DCT_scaled_size; |
||||
} |
||||
output_ptr += compptr->_DCT_scaled_size; |
||||
} |
||||
} |
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
||||
return JPEG_ROW_COMPLETED; |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
|
||||
/*
|
||||
* This code applies interblock smoothing as described by section K.8 |
||||
* of the JPEG standard: the first 5 AC coefficients are estimated from |
||||
* the DC values of a DCT block and its 8 neighboring blocks. |
||||
* We apply smoothing only for progressive JPEG decoding, and only if |
||||
* the coefficients it can estimate are not yet known to full precision. |
||||
*/ |
||||
|
||||
/* Natural-order array positions of the first 5 zigzag-order coefficients */ |
||||
#define Q01_POS 1 |
||||
#define Q10_POS 8 |
||||
#define Q20_POS 16 |
||||
#define Q11_POS 9 |
||||
#define Q02_POS 2 |
||||
|
||||
/*
|
||||
* Determine whether block smoothing is applicable and safe. |
||||
* We also latch the current states of the coef_bits[] entries for the |
||||
* AC coefficients; otherwise, if the input side of the decompressor |
||||
* advances into a new scan, we might think the coefficients are known |
||||
* more accurately than they really are. |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
smoothing_ok (j_decompress_ptr cinfo) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
boolean smoothing_useful = FALSE; |
||||
int ci, coefi; |
||||
jpeg_component_info *compptr; |
||||
JQUANT_TBL *qtable; |
||||
int *coef_bits; |
||||
int *coef_bits_latch; |
||||
|
||||
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
||||
return FALSE; |
||||
|
||||
/* Allocate latch area if not already done */ |
||||
if (coef->coef_bits_latch == NULL) |
||||
coef->coef_bits_latch = (int *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->num_components * |
||||
(SAVED_COEFS * sizeof(int))); |
||||
coef_bits_latch = coef->coef_bits_latch; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* All components' quantization values must already be latched. */ |
||||
if ((qtable = compptr->quant_table) == NULL) |
||||
return FALSE; |
||||
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
||||
if (qtable->quantval[0] == 0 || |
||||
qtable->quantval[Q01_POS] == 0 || |
||||
qtable->quantval[Q10_POS] == 0 || |
||||
qtable->quantval[Q20_POS] == 0 || |
||||
qtable->quantval[Q11_POS] == 0 || |
||||
qtable->quantval[Q02_POS] == 0) |
||||
return FALSE; |
||||
/* DC values must be at least partly known for all components. */ |
||||
coef_bits = cinfo->coef_bits[ci]; |
||||
if (coef_bits[0] < 0) |
||||
return FALSE; |
||||
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
||||
for (coefi = 1; coefi <= 5; coefi++) { |
||||
coef_bits_latch[coefi] = coef_bits[coefi]; |
||||
if (coef_bits[coefi] != 0) |
||||
smoothing_useful = TRUE; |
||||
} |
||||
coef_bits_latch += SAVED_COEFS; |
||||
} |
||||
|
||||
return smoothing_useful; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Variant of decompress_data for use when doing block smoothing. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||||
JDIMENSION block_num, last_block_column; |
||||
int ci, block_row, block_rows, access_rows; |
||||
JBLOCKARRAY buffer; |
||||
JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
||||
JSAMPARRAY output_ptr; |
||||
JDIMENSION output_col; |
||||
jpeg_component_info *compptr; |
||||
inverse_DCT_method_ptr inverse_DCT; |
||||
boolean first_row, last_row; |
||||
JCOEF *workspace; |
||||
int *coef_bits; |
||||
JQUANT_TBL *quanttbl; |
||||
JLONG Q00,Q01,Q02,Q10,Q11,Q20, num; |
||||
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
||||
int Al, pred; |
||||
|
||||
/* Keep a local variable to avoid looking it up more than once */ |
||||
workspace = coef->workspace; |
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */ |
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number && |
||||
! cinfo->inputctl->eoi_reached) { |
||||
if (cinfo->input_scan_number == cinfo->output_scan_number) { |
||||
/* If input is working on current scan, we ordinarily want it to
|
||||
* have completed the current row. But if input scan is DC, |
||||
* we want it to keep one row ahead so that next block row's DC |
||||
* values are up to date. |
||||
*/ |
||||
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
||||
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
||||
break; |
||||
} |
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
||||
return JPEG_SUSPENDED; |
||||
} |
||||
|
||||
/* OK, output from the virtual arrays. */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Don't bother to IDCT an uninteresting component. */ |
||||
if (! compptr->component_needed) |
||||
continue; |
||||
/* Count non-dummy DCT block rows in this iMCU row. */ |
||||
if (cinfo->output_iMCU_row < last_iMCU_row) { |
||||
block_rows = compptr->v_samp_factor; |
||||
access_rows = block_rows * 2; /* this and next iMCU row */ |
||||
last_row = FALSE; |
||||
} else { |
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
||||
access_rows = block_rows; /* this iMCU row only */ |
||||
last_row = TRUE; |
||||
} |
||||
/* Align the virtual buffer for this component. */ |
||||
if (cinfo->output_iMCU_row > 0) { |
||||
access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
||||
(JDIMENSION) access_rows, FALSE); |
||||
buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
||||
first_row = FALSE; |
||||
} else { |
||||
buffer = (*cinfo->mem->access_virt_barray) |
||||
((j_common_ptr) cinfo, coef->whole_image[ci], |
||||
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
||||
first_row = TRUE; |
||||
} |
||||
/* Fetch component-dependent info */ |
||||
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
||||
quanttbl = compptr->quant_table; |
||||
Q00 = quanttbl->quantval[0]; |
||||
Q01 = quanttbl->quantval[Q01_POS]; |
||||
Q10 = quanttbl->quantval[Q10_POS]; |
||||
Q20 = quanttbl->quantval[Q20_POS]; |
||||
Q11 = quanttbl->quantval[Q11_POS]; |
||||
Q02 = quanttbl->quantval[Q02_POS]; |
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
||||
output_ptr = output_buf[ci]; |
||||
/* Loop over all DCT blocks to be processed. */ |
||||
for (block_row = 0; block_row < block_rows; block_row++) { |
||||
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; |
||||
if (first_row && block_row == 0) |
||||
prev_block_row = buffer_ptr; |
||||
else |
||||
prev_block_row = buffer[block_row-1]; |
||||
if (last_row && block_row == block_rows-1) |
||||
next_block_row = buffer_ptr; |
||||
else |
||||
next_block_row = buffer[block_row+1]; |
||||
/* We fetch the surrounding DC values using a sliding-register approach.
|
||||
* Initialize all nine here so as to do the right thing on narrow pics. |
||||
*/ |
||||
DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
||||
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
||||
DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
||||
output_col = 0; |
||||
last_block_column = compptr->width_in_blocks - 1; |
||||
for (block_num = cinfo->master->first_MCU_col[ci]; |
||||
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { |
||||
/* Fetch current DCT block into workspace so we can modify it. */ |
||||
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
||||
/* Update DC values */ |
||||
if (block_num < last_block_column) { |
||||
DC3 = (int) prev_block_row[1][0]; |
||||
DC6 = (int) buffer_ptr[1][0]; |
||||
DC9 = (int) next_block_row[1][0]; |
||||
} |
||||
/* Compute coefficient estimates per K.8.
|
||||
* An estimate is applied only if coefficient is still zero, |
||||
* and is not known to be fully accurate. |
||||
*/ |
||||
/* AC01 */ |
||||
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
||||
num = 36 * Q00 * (DC4 - DC6); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[1] = (JCOEF) pred; |
||||
} |
||||
/* AC10 */ |
||||
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
||||
num = 36 * Q00 * (DC2 - DC8); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[8] = (JCOEF) pred; |
||||
} |
||||
/* AC20 */ |
||||
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
||||
num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[16] = (JCOEF) pred; |
||||
} |
||||
/* AC11 */ |
||||
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
||||
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[9] = (JCOEF) pred; |
||||
} |
||||
/* AC02 */ |
||||
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
||||
num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
||||
if (num >= 0) { |
||||
pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
} else { |
||||
pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
||||
if (Al > 0 && pred >= (1<<Al)) |
||||
pred = (1<<Al)-1; |
||||
pred = -pred; |
||||
} |
||||
workspace[2] = (JCOEF) pred; |
||||
} |
||||
/* OK, do the IDCT */ |
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
||||
output_ptr, output_col); |
||||
/* Advance for next column */ |
||||
DC1 = DC2; DC2 = DC3; |
||||
DC4 = DC5; DC5 = DC6; |
||||
DC7 = DC8; DC8 = DC9; |
||||
buffer_ptr++, prev_block_row++, next_block_row++; |
||||
output_col += compptr->_DCT_scaled_size; |
||||
} |
||||
output_ptr += compptr->_DCT_scaled_size; |
||||
} |
||||
} |
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
||||
return JPEG_ROW_COMPLETED; |
||||
return JPEG_SCAN_COMPLETED; |
||||
} |
||||
|
||||
#endif /* BLOCK_SMOOTHING_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_coef_ptr coef; |
||||
|
||||
coef = (my_coef_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_coef_controller)); |
||||
cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
||||
coef->pub.start_input_pass = start_input_pass; |
||||
coef->pub.start_output_pass = start_output_pass; |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
coef->coef_bits_latch = NULL; |
||||
#endif |
||||
|
||||
/* Create the coefficient buffer. */ |
||||
if (need_full_buffer) { |
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
/* Allocate a full-image virtual array for each component, */ |
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
||||
/* Note we ask for a pre-zeroed array. */ |
||||
int ci, access_rows; |
||||
jpeg_component_info *compptr; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
access_rows = compptr->v_samp_factor; |
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
/* If block smoothing could be used, need a bigger window */ |
||||
if (cinfo->progressive_mode) |
||||
access_rows *= 3; |
||||
#endif |
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
||||
(long) compptr->h_samp_factor), |
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
||||
(long) compptr->v_samp_factor), |
||||
(JDIMENSION) access_rows); |
||||
} |
||||
coef->pub.consume_data = consume_data; |
||||
coef->pub.decompress_data = decompress_data; |
||||
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
/* We only need a single-MCU buffer. */ |
||||
JBLOCKROW buffer; |
||||
int i; |
||||
|
||||
buffer = (JBLOCKROW) |
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
||||
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
||||
coef->MCU_buffer[i] = buffer + i; |
||||
} |
||||
coef->pub.consume_data = dummy_consume_data; |
||||
coef->pub.decompress_data = decompress_onepass; |
||||
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
||||
} |
||||
|
||||
/* Allocate the workspace buffer */ |
||||
coef->workspace = (JCOEF *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(JCOEF) * DCTSIZE2); |
||||
} |
@ -0,0 +1,82 @@ |
||||
/*
|
||||
* jdcoefct.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Block smoothing is only applicable for progressive JPEG, so: */ |
||||
#ifndef D_PROGRESSIVE_SUPPORTED |
||||
#undef BLOCK_SMOOTHING_SUPPORTED |
||||
#endif |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_d_coef_controller pub; /* public fields */ |
||||
|
||||
/* These variables keep track of the current location of the input side. */ |
||||
/* cinfo->input_iMCU_row is also used for this. */ |
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
||||
|
||||
/* The output side's location is represented by cinfo->output_iMCU_row. */ |
||||
|
||||
/* In single-pass modes, it's sufficient to buffer just one MCU.
|
||||
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
||||
* and let the entropy decoder write into that workspace each time. |
||||
* In multi-pass modes, this array points to the current MCU's blocks |
||||
* within the virtual arrays; it is used only by the input side. |
||||
*/ |
||||
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
||||
|
||||
/* Temporary workspace for one MCU */ |
||||
JCOEF *workspace; |
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
/* In multi-pass modes, we need a virtual block array for each component. */ |
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
||||
#endif |
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED |
||||
/* When doing block smoothing, we latch coefficient Al values here */ |
||||
int *coef_bits_latch; |
||||
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
||||
#endif |
||||
} my_coef_controller; |
||||
|
||||
typedef my_coef_controller *my_coef_ptr; |
||||
|
||||
|
||||
LOCAL(void) |
||||
start_iMCU_row (j_decompress_ptr cinfo) |
||||
/* Reset within-iMCU-row counters for a new row (input side) */ |
||||
{ |
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
||||
* But at the bottom of the image, process only what's left. |
||||
*/ |
||||
if (cinfo->comps_in_scan > 1) { |
||||
coef->MCU_rows_per_iMCU_row = 1; |
||||
} else { |
||||
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
||||
else |
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
||||
} |
||||
|
||||
coef->MCU_ctr = 0; |
||||
coef->MCU_vert_offset = 0; |
||||
} |
@ -0,0 +1,384 @@ |
||||
/*
|
||||
* jdcol565.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modifications: |
||||
* Copyright (C) 2013, Linaro Limited. |
||||
* Copyright (C) 2014-2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains output colorspace conversion routines. |
||||
*/ |
||||
|
||||
/* This file is included by jdcolor.c */ |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
ycc_rgb565_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int y, cb, cr; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
register int * Crrtab = cconvert->Cr_r_tab; |
||||
register int * Cbbtab = cconvert->Cb_b_tab; |
||||
register JLONG * Crgtab = cconvert->Cr_g_tab; |
||||
register JLONG * Cbgtab = cconvert->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
JLONG rgb; |
||||
unsigned int r, g, b; |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
|
||||
if (PACK_NEED_ALIGNMENT(outptr)) { |
||||
y = GETJSAMPLE(*inptr0++); |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
r = range_limit[y + Crrtab[cr]]; |
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS))]; |
||||
b = range_limit[y + Cbbtab[cb]]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
outptr += 2; |
||||
num_cols--; |
||||
} |
||||
for (col = 0; col < (num_cols >> 1); col++) { |
||||
y = GETJSAMPLE(*inptr0++); |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
r = range_limit[y + Crrtab[cr]]; |
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS))]; |
||||
b = range_limit[y + Cbbtab[cb]]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr0++); |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
r = range_limit[y + Crrtab[cr]]; |
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS))]; |
||||
b = range_limit[y + Cbbtab[cb]]; |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
if (num_cols & 1) { |
||||
y = GETJSAMPLE(*inptr0); |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
r = range_limit[y + Crrtab[cr]]; |
||||
g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS))]; |
||||
b = range_limit[y + Cbbtab[cb]]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
ycc_rgb565D_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int y, cb, cr; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
register int * Crrtab = cconvert->Cr_r_tab; |
||||
register int * Cbbtab = cconvert->Cb_b_tab; |
||||
register JLONG * Crgtab = cconvert->Cr_g_tab; |
||||
register JLONG * Cbgtab = cconvert->Cb_g_tab; |
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
JLONG rgb; |
||||
unsigned int r, g, b; |
||||
|
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
if (PACK_NEED_ALIGNMENT(outptr)) { |
||||
y = GETJSAMPLE(*inptr0++); |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; |
||||
g = range_limit[DITHER_565_G(y + |
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS)), d0)]; |
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
outptr += 2; |
||||
num_cols--; |
||||
} |
||||
for (col = 0; col < (num_cols >> 1); col++) { |
||||
y = GETJSAMPLE(*inptr0++); |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; |
||||
g = range_limit[DITHER_565_G(y + |
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS)), d0)]; |
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr0++); |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; |
||||
g = range_limit[DITHER_565_G(y + |
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS)), d0)]; |
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
if (num_cols & 1) { |
||||
y = GETJSAMPLE(*inptr0); |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; |
||||
g = range_limit[DITHER_565_G(y + |
||||
((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS)), d0)]; |
||||
b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
rgb_rgb565_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
JLONG rgb; |
||||
unsigned int r, g, b; |
||||
|
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
if (PACK_NEED_ALIGNMENT(outptr)) { |
||||
r = GETJSAMPLE(*inptr0++); |
||||
g = GETJSAMPLE(*inptr1++); |
||||
b = GETJSAMPLE(*inptr2++); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
outptr += 2; |
||||
num_cols--; |
||||
} |
||||
for (col = 0; col < (num_cols >> 1); col++) { |
||||
r = GETJSAMPLE(*inptr0++); |
||||
g = GETJSAMPLE(*inptr1++); |
||||
b = GETJSAMPLE(*inptr2++); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
r = GETJSAMPLE(*inptr0++); |
||||
g = GETJSAMPLE(*inptr1++); |
||||
b = GETJSAMPLE(*inptr2++); |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
if (num_cols & 1) { |
||||
r = GETJSAMPLE(*inptr0); |
||||
g = GETJSAMPLE(*inptr1); |
||||
b = GETJSAMPLE(*inptr2); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
rgb_rgb565D_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
JLONG rgb; |
||||
unsigned int r, g, b; |
||||
|
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
if (PACK_NEED_ALIGNMENT(outptr)) { |
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)]; |
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)]; |
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
outptr += 2; |
||||
num_cols--; |
||||
} |
||||
for (col = 0; col < (num_cols >> 1); col++) { |
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)]; |
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)]; |
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)]; |
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)]; |
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
if (num_cols & 1) { |
||||
r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0), d0)]; |
||||
g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1), d0)]; |
||||
b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2), d0)]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
gray_rgb565_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr, outptr; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
JLONG rgb; |
||||
unsigned int g; |
||||
|
||||
inptr = input_buf[0][input_row++]; |
||||
outptr = *output_buf++; |
||||
if (PACK_NEED_ALIGNMENT(outptr)) { |
||||
g = *inptr++; |
||||
rgb = PACK_SHORT_565(g, g, g); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
outptr += 2; |
||||
num_cols--; |
||||
} |
||||
for (col = 0; col < (num_cols >> 1); col++) { |
||||
g = *inptr++; |
||||
rgb = PACK_SHORT_565(g, g, g); |
||||
g = *inptr++; |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g)); |
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
if (num_cols & 1) { |
||||
g = *inptr; |
||||
rgb = PACK_SHORT_565(g, g, g); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
gray_rgb565D_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr, outptr; |
||||
register JDIMENSION col; |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; |
||||
|
||||
while (--num_rows >= 0) { |
||||
JLONG rgb; |
||||
unsigned int g; |
||||
|
||||
inptr = input_buf[0][input_row++]; |
||||
outptr = *output_buf++; |
||||
if (PACK_NEED_ALIGNMENT(outptr)) { |
||||
g = *inptr++; |
||||
g = range_limit[DITHER_565_R(g, d0)]; |
||||
rgb = PACK_SHORT_565(g, g, g); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
outptr += 2; |
||||
num_cols--; |
||||
} |
||||
for (col = 0; col < (num_cols >> 1); col++) { |
||||
g = *inptr++; |
||||
g = range_limit[DITHER_565_R(g, d0)]; |
||||
rgb = PACK_SHORT_565(g, g, g); |
||||
d0 = DITHER_ROTATE(d0); |
||||
|
||||
g = *inptr++; |
||||
g = range_limit[DITHER_565_R(g, d0)]; |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g)); |
||||
d0 = DITHER_ROTATE(d0); |
||||
|
||||
WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
if (num_cols & 1) { |
||||
g = *inptr; |
||||
g = range_limit[DITHER_565_R(g, d0)]; |
||||
rgb = PACK_SHORT_565(g, g, g); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,143 @@ |
||||
/*
|
||||
* jdcolext.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2009, 2011, 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains output colorspace conversion routines. |
||||
*/ |
||||
|
||||
|
||||
/* This file is included by jdcolor.c */ |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace. |
||||
* |
||||
* Note that we change from noninterleaved, one-plane-per-component format |
||||
* to interleaved-pixel format. The output buffer is therefore three times |
||||
* as wide as the input buffer. |
||||
* A starting row offset is provided only for the input buffer. The caller |
||||
* can easily adjust the passed output_buf value to accommodate any row |
||||
* offset required on that side. |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
ycc_rgb_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int y, cb, cr; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
register int * Crrtab = cconvert->Cr_r_tab; |
||||
register int * Cbbtab = cconvert->Cb_b_tab; |
||||
register JLONG * Crgtab = cconvert->Cr_g_tab; |
||||
register JLONG * Cbgtab = cconvert->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
y = GETJSAMPLE(inptr0[col]); |
||||
cb = GETJSAMPLE(inptr1[col]); |
||||
cr = GETJSAMPLE(inptr2[col]); |
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */ |
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; |
||||
outptr[RGB_GREEN] = range_limit[y + |
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS))]; |
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; |
||||
/* Set unused byte to 0xFF so it can be interpreted as an opaque */ |
||||
/* alpha channel value */ |
||||
#ifdef RGB_ALPHA |
||||
outptr[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB: just duplicate the graylevel three times. |
||||
* This is provided to support applications that don't want to cope |
||||
* with grayscale as a separate case. |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
gray_rgb_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr, outptr; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr = input_buf[0][input_row++]; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
/* We can dispense with GETJSAMPLE() here */ |
||||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; |
||||
/* Set unused byte to 0xFF so it can be interpreted as an opaque */ |
||||
/* alpha channel value */ |
||||
#ifdef RGB_ALPHA |
||||
outptr[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert RGB to extended RGB: just swap the order of source pixels |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
rgb_rgb_convert_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JSAMPROW outptr; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
/* We can dispense with GETJSAMPLE() here */ |
||||
outptr[RGB_RED] = inptr0[col]; |
||||
outptr[RGB_GREEN] = inptr1[col]; |
||||
outptr[RGB_BLUE] = inptr2[col]; |
||||
/* Set unused byte to 0xFF so it can be interpreted as an opaque */ |
||||
/* alpha channel value */ |
||||
#ifdef RGB_ALPHA |
||||
outptr[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,897 @@ |
||||
/*
|
||||
* jdcolor.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2011 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2009, 2011-2012, 2014-2015, D. R. Commander. |
||||
* Copyright (C) 2013, Linaro Limited. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains output colorspace conversion routines. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jsimd.h" |
||||
#include "jconfigint.h" |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_color_deconverter pub; /* public fields */ |
||||
|
||||
/* Private state for YCC->RGB conversion */ |
||||
int *Cr_r_tab; /* => table for Cr to R conversion */ |
||||
int *Cb_b_tab; /* => table for Cb to B conversion */ |
||||
JLONG *Cr_g_tab; /* => table for Cr to G conversion */ |
||||
JLONG *Cb_g_tab; /* => table for Cb to G conversion */ |
||||
|
||||
/* Private state for RGB->Y conversion */ |
||||
JLONG *rgb_y_tab; /* => table for RGB to Y conversion */ |
||||
} my_color_deconverter; |
||||
|
||||
typedef my_color_deconverter *my_cconvert_ptr; |
||||
|
||||
|
||||
/**************** YCbCr -> RGB conversion: most common case **************/ |
||||
/**************** RGB -> Y conversion: less common case **************/ |
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are |
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. |
||||
* The conversion equations to be implemented are therefore |
||||
* |
||||
* R = Y + 1.40200 * Cr |
||||
* G = Y - 0.34414 * Cb - 0.71414 * Cr |
||||
* B = Y + 1.77200 * Cb |
||||
* |
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B |
||||
* |
||||
* where Cb and Cr represent the incoming values less CENTERJSAMPLE. |
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) |
||||
* |
||||
* To avoid floating-point arithmetic, we represent the fractional constants |
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide |
||||
* the products by 2^16, with appropriate rounding, to get the correct answer. |
||||
* Notice that Y, being an integral input, does not contribute any fraction |
||||
* so it need not participate in the rounding. |
||||
* |
||||
* For even more speed, we avoid doing any multiplications in the inner loop |
||||
* by precalculating the constants times Cb and Cr for all possible values. |
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); |
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for |
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing |
||||
* colorspace anyway. |
||||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the |
||||
* values for the G calculation are left scaled up, since we must add them |
||||
* together before rounding. |
||||
*/ |
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
||||
#define ONE_HALF ((JLONG) 1 << (SCALEBITS-1)) |
||||
#define FIX(x) ((JLONG) ((x) * (1L<<SCALEBITS) + 0.5)) |
||||
|
||||
/* We allocate one big table for RGB->Y conversion and divide it up into
|
||||
* three parts, instead of doing three alloc_small requests. This lets us |
||||
* use a single table base address, which can be held in a register in the |
||||
* inner loops on many machines (more than can hold all three addresses, |
||||
* anyway). |
||||
*/ |
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */ |
||||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ |
||||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ |
||||
#define TABLE_SIZE (3*(MAXJSAMPLE+1)) |
||||
|
||||
|
||||
/* Include inline routines for colorspace extensions */ |
||||
|
||||
#include "jdcolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
|
||||
#define RGB_RED EXT_RGB_RED |
||||
#define RGB_GREEN EXT_RGB_GREEN |
||||
#define RGB_BLUE EXT_RGB_BLUE |
||||
#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE |
||||
#define ycc_rgb_convert_internal ycc_extrgb_convert_internal |
||||
#define gray_rgb_convert_internal gray_extrgb_convert_internal |
||||
#define rgb_rgb_convert_internal rgb_extrgb_convert_internal |
||||
#include "jdcolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef ycc_rgb_convert_internal |
||||
#undef gray_rgb_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_RGBX_RED |
||||
#define RGB_GREEN EXT_RGBX_GREEN |
||||
#define RGB_BLUE EXT_RGBX_BLUE |
||||
#define RGB_ALPHA 3 |
||||
#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE |
||||
#define ycc_rgb_convert_internal ycc_extrgbx_convert_internal |
||||
#define gray_rgb_convert_internal gray_extrgbx_convert_internal |
||||
#define rgb_rgb_convert_internal rgb_extrgbx_convert_internal |
||||
#include "jdcolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef ycc_rgb_convert_internal |
||||
#undef gray_rgb_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_BGR_RED |
||||
#define RGB_GREEN EXT_BGR_GREEN |
||||
#define RGB_BLUE EXT_BGR_BLUE |
||||
#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE |
||||
#define ycc_rgb_convert_internal ycc_extbgr_convert_internal |
||||
#define gray_rgb_convert_internal gray_extbgr_convert_internal |
||||
#define rgb_rgb_convert_internal rgb_extbgr_convert_internal |
||||
#include "jdcolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef ycc_rgb_convert_internal |
||||
#undef gray_rgb_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_BGRX_RED |
||||
#define RGB_GREEN EXT_BGRX_GREEN |
||||
#define RGB_BLUE EXT_BGRX_BLUE |
||||
#define RGB_ALPHA 3 |
||||
#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE |
||||
#define ycc_rgb_convert_internal ycc_extbgrx_convert_internal |
||||
#define gray_rgb_convert_internal gray_extbgrx_convert_internal |
||||
#define rgb_rgb_convert_internal rgb_extbgrx_convert_internal |
||||
#include "jdcolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef ycc_rgb_convert_internal |
||||
#undef gray_rgb_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_XBGR_RED |
||||
#define RGB_GREEN EXT_XBGR_GREEN |
||||
#define RGB_BLUE EXT_XBGR_BLUE |
||||
#define RGB_ALPHA 0 |
||||
#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE |
||||
#define ycc_rgb_convert_internal ycc_extxbgr_convert_internal |
||||
#define gray_rgb_convert_internal gray_extxbgr_convert_internal |
||||
#define rgb_rgb_convert_internal rgb_extxbgr_convert_internal |
||||
#include "jdcolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef ycc_rgb_convert_internal |
||||
#undef gray_rgb_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
#define RGB_RED EXT_XRGB_RED |
||||
#define RGB_GREEN EXT_XRGB_GREEN |
||||
#define RGB_BLUE EXT_XRGB_BLUE |
||||
#define RGB_ALPHA 0 |
||||
#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE |
||||
#define ycc_rgb_convert_internal ycc_extxrgb_convert_internal |
||||
#define gray_rgb_convert_internal gray_extxrgb_convert_internal |
||||
#define rgb_rgb_convert_internal rgb_extxrgb_convert_internal |
||||
#include "jdcolext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef ycc_rgb_convert_internal |
||||
#undef gray_rgb_convert_internal |
||||
#undef rgb_rgb_convert_internal |
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
build_ycc_rgb_table (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
int i; |
||||
JLONG x; |
||||
SHIFT_TEMPS |
||||
|
||||
cconvert->Cr_r_tab = (int *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(int)); |
||||
cconvert->Cb_b_tab = (int *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(int)); |
||||
cconvert->Cr_g_tab = (JLONG *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(JLONG)); |
||||
cconvert->Cb_g_tab = (JLONG *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(JLONG)); |
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
||||
/* Cr=>R value is nearest int to 1.40200 * x */ |
||||
cconvert->Cr_r_tab[i] = (int) |
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); |
||||
/* Cb=>B value is nearest int to 1.77200 * x */ |
||||
cconvert->Cb_b_tab[i] = (int) |
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); |
||||
/* Cr=>G value is scaled-up -0.71414 * x */ |
||||
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x; |
||||
/* Cb=>G value is scaled-up -0.34414 * x */ |
||||
/* We also add in ONE_HALF so that need not do it in inner loop */ |
||||
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
ycc_rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
switch (cinfo->out_color_space) { |
||||
case JCS_EXT_RGB: |
||||
ycc_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
ycc_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
ycc_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
ycc_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
ycc_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
ycc_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
default: |
||||
ycc_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/**************** Cases other than YCbCr -> RGB **************/ |
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->grayscale colorspace conversion. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
build_rgb_y_table (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
JLONG *rgb_y_tab; |
||||
JLONG i; |
||||
|
||||
/* Allocate and fill in the conversion tables. */ |
||||
cconvert->rgb_y_tab = rgb_y_tab = (JLONG *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(TABLE_SIZE * sizeof(JLONG))); |
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) { |
||||
rgb_y_tab[i+R_Y_OFF] = FIX(0.29900) * i; |
||||
rgb_y_tab[i+G_Y_OFF] = FIX(0.58700) * i; |
||||
rgb_y_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert RGB to grayscale. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_gray_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int r, g, b; |
||||
register JLONG *ctab = cconvert->rgb_y_tab; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
r = GETJSAMPLE(inptr0[col]); |
||||
g = GETJSAMPLE(inptr1[col]); |
||||
b = GETJSAMPLE(inptr2[col]); |
||||
/* Y */ |
||||
outptr[col] = (JSAMPLE) |
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
||||
>> SCALEBITS); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Color conversion for no colorspace change: just copy the data, |
||||
* converting from separate-planes to interleaved representation. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
null_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
register JSAMPROW inptr, inptr0, inptr1, inptr2, inptr3, outptr; |
||||
register JDIMENSION col; |
||||
register int num_components = cinfo->num_components; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
int ci; |
||||
|
||||
if (num_components == 3) { |
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
*outptr++ = inptr0[col]; |
||||
*outptr++ = inptr1[col]; |
||||
*outptr++ = inptr2[col]; |
||||
} |
||||
} |
||||
} else if (num_components == 4) { |
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
inptr3 = input_buf[3][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
*outptr++ = inptr0[col]; |
||||
*outptr++ = inptr1[col]; |
||||
*outptr++ = inptr2[col]; |
||||
*outptr++ = inptr3[col]; |
||||
} |
||||
} |
||||
} else { |
||||
while (--num_rows >= 0) { |
||||
for (ci = 0; ci < num_components; ci++) { |
||||
inptr = input_buf[ci][input_row]; |
||||
outptr = *output_buf; |
||||
for (col = 0; col < num_cols; col++) { |
||||
outptr[ci] = inptr[col]; |
||||
outptr += num_components; |
||||
} |
||||
} |
||||
output_buf++; |
||||
input_row++; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Color conversion for grayscale: just copy the data. |
||||
* This also works for YCbCr -> grayscale conversion, in which |
||||
* we just copy the Y (luminance) component and ignore chrominance. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
grayscale_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0, |
||||
num_rows, cinfo->output_width); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
gray_rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
switch (cinfo->out_color_space) { |
||||
case JCS_EXT_RGB: |
||||
gray_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
gray_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
gray_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
gray_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
gray_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
gray_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
default: |
||||
gray_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Convert plain RGB to extended RGB |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
rgb_rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
switch (cinfo->out_color_space) { |
||||
case JCS_EXT_RGB: |
||||
rgb_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
rgb_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
rgb_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
rgb_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
rgb_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
rgb_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
default: |
||||
rgb_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, |
||||
num_rows); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Adobe-style YCCK->CMYK conversion. |
||||
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same |
||||
* conversion as above, while passing K (black) unchanged. |
||||
* We assume build_ycc_rgb_table has been called. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
ycck_cmyk_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
||||
register int y, cb, cr; |
||||
register JSAMPROW outptr; |
||||
register JSAMPROW inptr0, inptr1, inptr2, inptr3; |
||||
register JDIMENSION col; |
||||
JDIMENSION num_cols = cinfo->output_width; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE *range_limit = cinfo->sample_range_limit; |
||||
register int *Crrtab = cconvert->Cr_r_tab; |
||||
register int *Cbbtab = cconvert->Cb_b_tab; |
||||
register JLONG *Crgtab = cconvert->Cr_g_tab; |
||||
register JLONG *Cbgtab = cconvert->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
while (--num_rows >= 0) { |
||||
inptr0 = input_buf[0][input_row]; |
||||
inptr1 = input_buf[1][input_row]; |
||||
inptr2 = input_buf[2][input_row]; |
||||
inptr3 = input_buf[3][input_row]; |
||||
input_row++; |
||||
outptr = *output_buf++; |
||||
for (col = 0; col < num_cols; col++) { |
||||
y = GETJSAMPLE(inptr0[col]); |
||||
cb = GETJSAMPLE(inptr1[col]); |
||||
cr = GETJSAMPLE(inptr2[col]); |
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */ |
||||
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ |
||||
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ |
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
||||
SCALEBITS)))]; |
||||
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ |
||||
/* K passes through unchanged */ |
||||
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ |
||||
outptr += 4; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* RGB565 conversion |
||||
*/ |
||||
|
||||
#define PACK_SHORT_565_LE(r, g, b) ((((r) << 8) & 0xF800) | \ |
||||
(((g) << 3) & 0x7E0) | ((b) >> 3)) |
||||
#define PACK_SHORT_565_BE(r, g, b) (((r) & 0xF8) | ((g) >> 5) | \ |
||||
(((g) << 11) & 0xE000) | \
|
||||
(((b) << 5) & 0x1F00)) |
||||
|
||||
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l) |
||||
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r) |
||||
|
||||
#define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3) |
||||
|
||||
#define WRITE_TWO_ALIGNED_PIXELS(addr, pixels) ((*(int *)(addr)) = pixels) |
||||
|
||||
#define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF)) |
||||
#define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1)) |
||||
#define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF)) |
||||
|
||||
|
||||
/* Declarations for ordered dithering
|
||||
* |
||||
* We use a 4x4 ordered dither array packed into 32 bits. This array is |
||||
* sufficent for dithering RGB888 to RGB565. |
||||
*/ |
||||
|
||||
#define DITHER_MASK 0x3 |
||||
#define DITHER_ROTATE(x) ((((x) & 0xFF) << 24) | (((x) >> 8) & 0x00FFFFFF)) |
||||
static const JLONG dither_matrix[4] = { |
||||
0x0008020A, |
||||
0x0C040E06, |
||||
0x030B0109, |
||||
0x0F070D05 |
||||
}; |
||||
|
||||
|
||||
static INLINE boolean is_big_endian(void) |
||||
{ |
||||
int test_value = 1; |
||||
if (*(char *)&test_value != 1) |
||||
return TRUE; |
||||
return FALSE; |
||||
} |
||||
|
||||
|
||||
/* Include inline routines for RGB565 conversion */ |
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_LE |
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE |
||||
#define ycc_rgb565_convert_internal ycc_rgb565_convert_le |
||||
#define ycc_rgb565D_convert_internal ycc_rgb565D_convert_le |
||||
#define rgb_rgb565_convert_internal rgb_rgb565_convert_le |
||||
#define rgb_rgb565D_convert_internal rgb_rgb565D_convert_le |
||||
#define gray_rgb565_convert_internal gray_rgb565_convert_le |
||||
#define gray_rgb565D_convert_internal gray_rgb565D_convert_le |
||||
#include "jdcol565.c" |
||||
#undef PACK_SHORT_565 |
||||
#undef PACK_TWO_PIXELS |
||||
#undef ycc_rgb565_convert_internal |
||||
#undef ycc_rgb565D_convert_internal |
||||
#undef rgb_rgb565_convert_internal |
||||
#undef rgb_rgb565D_convert_internal |
||||
#undef gray_rgb565_convert_internal |
||||
#undef gray_rgb565D_convert_internal |
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_BE |
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE |
||||
#define ycc_rgb565_convert_internal ycc_rgb565_convert_be |
||||
#define ycc_rgb565D_convert_internal ycc_rgb565D_convert_be |
||||
#define rgb_rgb565_convert_internal rgb_rgb565_convert_be |
||||
#define rgb_rgb565D_convert_internal rgb_rgb565D_convert_be |
||||
#define gray_rgb565_convert_internal gray_rgb565_convert_be |
||||
#define gray_rgb565D_convert_internal gray_rgb565D_convert_be |
||||
#include "jdcol565.c" |
||||
#undef PACK_SHORT_565 |
||||
#undef PACK_TWO_PIXELS |
||||
#undef ycc_rgb565_convert_internal |
||||
#undef ycc_rgb565D_convert_internal |
||||
#undef rgb_rgb565_convert_internal |
||||
#undef rgb_rgb565D_convert_internal |
||||
#undef gray_rgb565_convert_internal |
||||
#undef gray_rgb565D_convert_internal |
||||
|
||||
|
||||
METHODDEF(void) |
||||
ycc_rgb565_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
if (is_big_endian()) |
||||
ycc_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
else |
||||
ycc_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
ycc_rgb565D_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
if (is_big_endian()) |
||||
ycc_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
else |
||||
ycc_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
rgb_rgb565_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
if (is_big_endian()) |
||||
rgb_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
else |
||||
rgb_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
rgb_rgb565D_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
if (is_big_endian()) |
||||
rgb_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
else |
||||
rgb_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
gray_rgb565_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
if (is_big_endian()) |
||||
gray_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
else |
||||
gray_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
gray_rgb565D_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
if (is_big_endian()) |
||||
gray_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
else |
||||
gray_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_dcolor (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work needed */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for output colorspace conversion. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_color_deconverter (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cconvert_ptr cconvert; |
||||
int ci; |
||||
|
||||
cconvert = (my_cconvert_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_color_deconverter)); |
||||
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert; |
||||
cconvert->pub.start_pass = start_pass_dcolor; |
||||
|
||||
/* Make sure num_components agrees with jpeg_color_space */ |
||||
switch (cinfo->jpeg_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
if (cinfo->num_components != 1) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
case JCS_YCbCr: |
||||
if (cinfo->num_components != 3) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
case JCS_YCCK: |
||||
if (cinfo->num_components != 4) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
break; |
||||
|
||||
default: /* JCS_UNKNOWN can be anything */ |
||||
if (cinfo->num_components < 1) |
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
||||
break; |
||||
} |
||||
|
||||
/* Set out_color_components and conversion method based on requested space.
|
||||
* Also clear the component_needed flags for any unused components, |
||||
* so that earlier pipeline stages can avoid useless computation. |
||||
*/ |
||||
|
||||
switch (cinfo->out_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
cinfo->out_color_components = 1; |
||||
if (cinfo->jpeg_color_space == JCS_GRAYSCALE || |
||||
cinfo->jpeg_color_space == JCS_YCbCr) { |
||||
cconvert->pub.color_convert = grayscale_convert; |
||||
/* For color->grayscale conversion, only the Y (0) component is needed */ |
||||
for (ci = 1; ci < cinfo->num_components; ci++) |
||||
cinfo->comp_info[ci].component_needed = FALSE; |
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) { |
||||
cconvert->pub.color_convert = rgb_gray_convert; |
||||
build_rgb_y_table(cinfo); |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
case JCS_RGB: |
||||
case JCS_EXT_RGB: |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_BGR: |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_RGBA: |
||||
case JCS_EXT_BGRA: |
||||
case JCS_EXT_ABGR: |
||||
case JCS_EXT_ARGB: |
||||
cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space]; |
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) { |
||||
if (jsimd_can_ycc_rgb()) |
||||
cconvert->pub.color_convert = jsimd_ycc_rgb_convert; |
||||
else { |
||||
cconvert->pub.color_convert = ycc_rgb_convert; |
||||
build_ycc_rgb_table(cinfo); |
||||
} |
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { |
||||
cconvert->pub.color_convert = gray_rgb_convert; |
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) { |
||||
if (rgb_red[cinfo->out_color_space] == 0 && |
||||
rgb_green[cinfo->out_color_space] == 1 && |
||||
rgb_blue[cinfo->out_color_space] == 2 && |
||||
rgb_pixelsize[cinfo->out_color_space] == 3) |
||||
cconvert->pub.color_convert = null_convert; |
||||
else |
||||
cconvert->pub.color_convert = rgb_rgb_convert; |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
case JCS_RGB565: |
||||
cinfo->out_color_components = 3; |
||||
if (cinfo->dither_mode == JDITHER_NONE) { |
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) { |
||||
if (jsimd_can_ycc_rgb565()) |
||||
cconvert->pub.color_convert = jsimd_ycc_rgb565_convert; |
||||
else { |
||||
cconvert->pub.color_convert = ycc_rgb565_convert; |
||||
build_ycc_rgb_table(cinfo); |
||||
} |
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { |
||||
cconvert->pub.color_convert = gray_rgb565_convert; |
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) { |
||||
cconvert->pub.color_convert = rgb_rgb565_convert; |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} else { |
||||
/* only ordered dithering is supported */ |
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) { |
||||
cconvert->pub.color_convert = ycc_rgb565D_convert; |
||||
build_ycc_rgb_table(cinfo); |
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { |
||||
cconvert->pub.color_convert = gray_rgb565D_convert; |
||||
} else if (cinfo->jpeg_color_space == JCS_RGB) { |
||||
cconvert->pub.color_convert = rgb_rgb565D_convert; |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
} |
||||
break; |
||||
|
||||
case JCS_CMYK: |
||||
cinfo->out_color_components = 4; |
||||
if (cinfo->jpeg_color_space == JCS_YCCK) { |
||||
cconvert->pub.color_convert = ycck_cmyk_convert; |
||||
build_ycc_rgb_table(cinfo); |
||||
} else if (cinfo->jpeg_color_space == JCS_CMYK) { |
||||
cconvert->pub.color_convert = null_convert; |
||||
} else |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
|
||||
default: |
||||
/* Permit null conversion to same output space */ |
||||
if (cinfo->out_color_space == cinfo->jpeg_color_space) { |
||||
cinfo->out_color_components = cinfo->num_components; |
||||
cconvert->pub.color_convert = null_convert; |
||||
} else /* unsupported non-null conversion */ |
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
||||
break; |
||||
} |
||||
|
||||
if (cinfo->quantize_colors) |
||||
cinfo->output_components = 1; /* single colormapped output component */ |
||||
else |
||||
cinfo->output_components = cinfo->out_color_components; |
||||
} |
@ -0,0 +1,208 @@ |
||||
/*
|
||||
* jdct.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This include file contains common declarations for the forward and |
||||
* inverse DCT modules. These declarations are private to the DCT managers |
||||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. |
||||
* The individual DCT algorithms are kept in separate files to ease |
||||
* machine-dependent tuning (e.g., assembly coding). |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* A forward DCT routine is given a pointer to a work area of type DCTELEM[]; |
||||
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int |
||||
* for 8-bit samples, JLONG for 12-bit samples. (NOTE: Floating-point DCT |
||||
* implementations use an array of type FAST_FLOAT, instead.) |
||||
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). |
||||
* The DCT outputs are returned scaled up by a factor of 8; they therefore |
||||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This |
||||
* convention improves accuracy in integer implementations and saves some |
||||
* work in floating-point ones. |
||||
* Quantization of the output coefficients is done by jcdctmgr.c. This |
||||
* step requires an unsigned type and also one with twice the bits. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#ifndef WITH_SIMD |
||||
typedef int DCTELEM; /* 16 or 32 bits is fine */ |
||||
typedef unsigned int UDCTELEM; |
||||
typedef unsigned long long UDCTELEM2; |
||||
#else |
||||
typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */ |
||||
typedef unsigned short UDCTELEM; |
||||
typedef unsigned int UDCTELEM2; |
||||
#endif |
||||
#else |
||||
typedef JLONG DCTELEM; /* must have 32 bits */ |
||||
typedef unsigned long long UDCTELEM2; |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer |
||||
* to an output sample array. The routine must dequantize the input data as |
||||
* well as perform the IDCT; for dequantization, it uses the multiplier table |
||||
* pointed to by compptr->dct_table. The output data is to be placed into the |
||||
* sample array starting at a specified column. (Any row offset needed will |
||||
* be applied to the array pointer before it is passed to the IDCT code.) |
||||
* Note that the number of samples emitted by the IDCT routine is |
||||
* DCT_scaled_size * DCT_scaled_size. |
||||
*/ |
||||
|
||||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */ |
||||
|
||||
/*
|
||||
* Each IDCT routine has its own ideas about the best dct_table element type. |
||||
*/ |
||||
|
||||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ |
||||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ |
||||
#else |
||||
typedef JLONG IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ |
||||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ |
||||
#endif |
||||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ |
||||
|
||||
|
||||
/*
|
||||
* Each IDCT routine is responsible for range-limiting its results and |
||||
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could |
||||
* be quite far out of range if the input data is corrupt, so a bulletproof |
||||
* range-limiting step is required. We use a mask-and-table-lookup method |
||||
* to do the combined operations quickly. See the comments with |
||||
* prepare_range_limit_table (in jdmaster.c) for more info. |
||||
*/ |
||||
|
||||
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) |
||||
|
||||
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ |
||||
|
||||
|
||||
/* Extern declarations for the forward and inverse DCT routines. */ |
||||
|
||||
EXTERN(void) jpeg_fdct_islow (DCTELEM *data); |
||||
EXTERN(void) jpeg_fdct_ifast (DCTELEM *data); |
||||
EXTERN(void) jpeg_fdct_float (FAST_FLOAT *data); |
||||
|
||||
EXTERN(void) jpeg_idct_islow |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_ifast |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_float |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_7x7 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_6x6 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_5x5 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_4x4 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_3x3 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_2x2 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_1x1 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_9x9 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_10x10 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_11x11 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_12x12 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_13x13 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_14x14 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_15x15 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
EXTERN(void) jpeg_idct_16x16 |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); |
||||
|
||||
|
||||
/*
|
||||
* Macros for handling fixed-point arithmetic; these are used by many |
||||
* but not all of the DCT/IDCT modules. |
||||
* |
||||
* All values are expected to be of type JLONG. |
||||
* Fractional constants are scaled left by CONST_BITS bits. |
||||
* CONST_BITS is defined within each module using these macros, |
||||
* and may differ from one module to the next. |
||||
*/ |
||||
|
||||
#define ONE ((JLONG) 1) |
||||
#define CONST_SCALE (ONE << CONST_BITS) |
||||
|
||||
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time, |
||||
* thus causing a lot of useless floating-point operations at run time. |
||||
*/ |
||||
|
||||
#define FIX(x) ((JLONG) ((x) * CONST_SCALE + 0.5)) |
||||
|
||||
/* Descale and correctly round a JLONG value that's scaled by N bits.
|
||||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
||||
* the fudge factor is correct for either sign of X. |
||||
*/ |
||||
|
||||
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) |
||||
|
||||
/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
|
||||
* This macro is used only when the two inputs will actually be no more than |
||||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a |
||||
* full 32x32 multiply. This provides a useful speedup on many machines. |
||||
* Unfortunately there is no way to specify a 16x16->32 multiply portably |
||||
* in C, but some C compilers will do the right thing if you provide the |
||||
* correct combination of casts. |
||||
*/ |
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) |
||||
#endif |
||||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((JLONG) (const))) |
||||
#endif |
||||
|
||||
#ifndef MULTIPLY16C16 /* default definition */ |
||||
#define MULTIPLY16C16(var,const) ((var) * (const)) |
||||
#endif |
||||
|
||||
/* Same except both inputs are variables. */ |
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
||||
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) |
||||
#endif |
||||
|
||||
#ifndef MULTIPLY16V16 /* default definition */ |
||||
#define MULTIPLY16V16(var1,var2) ((var1) * (var2)) |
||||
#endif |
@ -0,0 +1,352 @@ |
||||
/*
|
||||
* jddctmgr.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* Modified 2002-2010 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2010, 2015, D. R. Commander. |
||||
* Copyright (C) 2013, MIPS Technologies, Inc., California. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the inverse-DCT management logic. |
||||
* This code selects a particular IDCT implementation to be used, |
||||
* and it performs related housekeeping chores. No code in this file |
||||
* is executed per IDCT step, only during output pass setup. |
||||
* |
||||
* Note that the IDCT routines are responsible for performing coefficient |
||||
* dequantization as well as the IDCT proper. This module sets up the |
||||
* dequantization multiplier table needed by the IDCT routine. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
#include "jsimddct.h" |
||||
#include "jpegcomp.h" |
||||
|
||||
|
||||
/*
|
||||
* The decompressor input side (jdinput.c) saves away the appropriate |
||||
* quantization table for each component at the start of the first scan |
||||
* involving that component. (This is necessary in order to correctly |
||||
* decode files that reuse Q-table slots.) |
||||
* When we are ready to make an output pass, the saved Q-table is converted |
||||
* to a multiplier table that will actually be used by the IDCT routine. |
||||
* The multiplier table contents are IDCT-method-dependent. To support |
||||
* application changes in IDCT method between scans, we can remake the |
||||
* multiplier tables if necessary. |
||||
* In buffered-image mode, the first output pass may occur before any data |
||||
* has been seen for some components, and thus before their Q-tables have |
||||
* been saved away. To handle this case, multiplier tables are preset |
||||
* to zeroes; the result of the IDCT will be a neutral gray level. |
||||
*/ |
||||
|
||||
|
||||
/* Private subobject for this module */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_inverse_dct pub; /* public fields */ |
||||
|
||||
/* This array contains the IDCT method code that each multiplier table
|
||||
* is currently set up for, or -1 if it's not yet set up. |
||||
* The actual multiplier tables are pointed to by dct_table in the |
||||
* per-component comp_info structures. |
||||
*/ |
||||
int cur_method[MAX_COMPONENTS]; |
||||
} my_idct_controller; |
||||
|
||||
typedef my_idct_controller *my_idct_ptr; |
||||
|
||||
|
||||
/* Allocated multiplier tables: big enough for any supported variant */ |
||||
|
||||
typedef union { |
||||
ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
||||
#endif |
||||
} multiplier_table; |
||||
|
||||
|
||||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested. |
||||
*/ |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
#define PROVIDE_ISLOW_TABLES |
||||
#else |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
#define PROVIDE_ISLOW_TABLES |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Prepare for an output pass. |
||||
* Here we select the proper IDCT routine for each component and build |
||||
* a matching multiplier table. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
my_idct_ptr idct = (my_idct_ptr) cinfo->idct; |
||||
int ci, i; |
||||
jpeg_component_info *compptr; |
||||
int method = 0; |
||||
inverse_DCT_method_ptr method_ptr = NULL; |
||||
JQUANT_TBL *qtbl; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Select the proper IDCT routine for this component's scaling */ |
||||
switch (compptr->_DCT_scaled_size) { |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
case 1: |
||||
method_ptr = jpeg_idct_1x1; |
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
||||
break; |
||||
case 2: |
||||
if (jsimd_can_idct_2x2()) |
||||
method_ptr = jsimd_idct_2x2; |
||||
else |
||||
method_ptr = jpeg_idct_2x2; |
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
||||
break; |
||||
case 3: |
||||
method_ptr = jpeg_idct_3x3; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 4: |
||||
if (jsimd_can_idct_4x4()) |
||||
method_ptr = jsimd_idct_4x4; |
||||
else |
||||
method_ptr = jpeg_idct_4x4; |
||||
method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
||||
break; |
||||
case 5: |
||||
method_ptr = jpeg_idct_5x5; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 6: |
||||
#if defined(__mips__) |
||||
if (jsimd_can_idct_6x6()) |
||||
method_ptr = jsimd_idct_6x6; |
||||
else |
||||
#endif |
||||
method_ptr = jpeg_idct_6x6; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 7: |
||||
method_ptr = jpeg_idct_7x7; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
#endif |
||||
case DCTSIZE: |
||||
switch (cinfo->dct_method) { |
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
case JDCT_ISLOW: |
||||
if (jsimd_can_idct_islow()) |
||||
method_ptr = jsimd_idct_islow; |
||||
else |
||||
method_ptr = jpeg_idct_islow; |
||||
method = JDCT_ISLOW; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
if (jsimd_can_idct_ifast()) |
||||
method_ptr = jsimd_idct_ifast; |
||||
else |
||||
method_ptr = jpeg_idct_ifast; |
||||
method = JDCT_IFAST; |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
if (jsimd_can_idct_float()) |
||||
method_ptr = jsimd_idct_float; |
||||
else |
||||
method_ptr = jpeg_idct_float; |
||||
method = JDCT_FLOAT; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
break; |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
case 9: |
||||
method_ptr = jpeg_idct_9x9; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 10: |
||||
method_ptr = jpeg_idct_10x10; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 11: |
||||
method_ptr = jpeg_idct_11x11; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 12: |
||||
#if defined(__mips__) |
||||
if (jsimd_can_idct_12x12()) |
||||
method_ptr = jsimd_idct_12x12; |
||||
else |
||||
#endif |
||||
method_ptr = jpeg_idct_12x12; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 13: |
||||
method_ptr = jpeg_idct_13x13; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 14: |
||||
method_ptr = jpeg_idct_14x14; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 15: |
||||
method_ptr = jpeg_idct_15x15; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
case 16: |
||||
method_ptr = jpeg_idct_16x16; |
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size); |
||||
break; |
||||
} |
||||
idct->pub.inverse_DCT[ci] = method_ptr; |
||||
/* Create multiplier table from quant table.
|
||||
* However, we can skip this if the component is uninteresting |
||||
* or if we already built the table. Also, if no quant table |
||||
* has yet been saved for the component, we leave the |
||||
* multiplier table all-zero; we'll be reading zeroes from the |
||||
* coefficient controller's buffer anyway. |
||||
*/ |
||||
if (! compptr->component_needed || idct->cur_method[ci] == method) |
||||
continue; |
||||
qtbl = compptr->quant_table; |
||||
if (qtbl == NULL) /* happens if no data yet for component */ |
||||
continue; |
||||
idct->cur_method[ci] = method; |
||||
switch (method) { |
||||
#ifdef PROVIDE_ISLOW_TABLES |
||||
case JDCT_ISLOW: |
||||
{ |
||||
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||
* coefficients, but are stored as ints to ensure access efficiency. |
||||
*/ |
||||
ISLOW_MULT_TYPE *ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; |
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
case JDCT_IFAST: |
||||
{ |
||||
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
* For integer operation, the multiplier table is to be scaled by |
||||
* IFAST_SCALE_BITS. |
||||
*/ |
||||
IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; |
||||
#define CONST_BITS 14 |
||||
static const INT16 aanscales[DCTSIZE2] = { |
||||
/* precomputed values scaled up by 14 bits */ |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
||||
}; |
||||
SHIFT_TEMPS |
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) { |
||||
ifmtbl[i] = (IFAST_MULT_TYPE) |
||||
DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], |
||||
(JLONG) aanscales[i]), |
||||
CONST_BITS-IFAST_SCALE_BITS); |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
case JDCT_FLOAT: |
||||
{ |
||||
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
||||
* scalefactor[0] = 1 |
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
||||
*/ |
||||
FLOAT_MULT_TYPE *fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; |
||||
int row, col; |
||||
static const double aanscalefactor[DCTSIZE] = { |
||||
1.0, 1.387039845, 1.306562965, 1.175875602, |
||||
1.0, 0.785694958, 0.541196100, 0.275899379 |
||||
}; |
||||
|
||||
i = 0; |
||||
for (row = 0; row < DCTSIZE; row++) { |
||||
for (col = 0; col < DCTSIZE; col++) { |
||||
fmtbl[i] = (FLOAT_MULT_TYPE) |
||||
((double) qtbl->quantval[i] * |
||||
aanscalefactor[row] * aanscalefactor[col]); |
||||
i++; |
||||
} |
||||
} |
||||
} |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize IDCT manager. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_inverse_dct (j_decompress_ptr cinfo) |
||||
{ |
||||
my_idct_ptr idct; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
idct = (my_idct_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_idct_controller)); |
||||
cinfo->idct = (struct jpeg_inverse_dct *) idct; |
||||
idct->pub.start_pass = start_pass; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Allocate and pre-zero a multiplier table for each component */ |
||||
compptr->dct_table = |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(multiplier_table)); |
||||
MEMZERO(compptr->dct_table, sizeof(multiplier_table)); |
||||
/* Mark multiplier table not yet set up for any method */ |
||||
idct->cur_method[ci] = -1; |
||||
} |
||||
} |
@ -0,0 +1,822 @@ |
||||
/*
|
||||
* jdhuff.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2009-2011, 2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains Huffman entropy decoding routines. |
||||
* |
||||
* Much of the complexity here has to do with supporting input suspension. |
||||
* If the data source module demands suspension, we want to be able to back |
||||
* up to the start of the current MCU. To do this, we copy state variables |
||||
* into local working storage, and update them back to the permanent |
||||
* storage only upon successful completion of an MCU. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
||||
#include "jpegcomp.h" |
||||
#include "jstdhuff.c" |
||||
|
||||
|
||||
/*
|
||||
* Expanded entropy decoder object for Huffman decoding. |
||||
* |
||||
* The savable_state subrecord contains fields that change within an MCU, |
||||
* but must not be updated permanently until we complete the MCU. |
||||
*/ |
||||
|
||||
typedef struct { |
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
||||
} savable_state; |
||||
|
||||
/* This macro is to work around compilers with missing or broken
|
||||
* structure assignment. You'll need to fix this code if you have |
||||
* such a compiler and you change MAX_COMPS_IN_SCAN. |
||||
*/ |
||||
|
||||
#ifndef NO_STRUCT_ASSIGN |
||||
#define ASSIGN_STATE(dest,src) ((dest) = (src)) |
||||
#else |
||||
#if MAX_COMPS_IN_SCAN == 4 |
||||
#define ASSIGN_STATE(dest,src) \ |
||||
((dest).last_dc_val[0] = (src).last_dc_val[0], \
|
||||
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
||||
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
||||
(dest).last_dc_val[3] = (src).last_dc_val[3]) |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
typedef struct { |
||||
struct jpeg_entropy_decoder pub; /* public fields */ |
||||
|
||||
/* These fields are loaded into local variables at start of each MCU.
|
||||
* In case of suspension, we exit WITHOUT updating them. |
||||
*/ |
||||
bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
||||
savable_state saved; /* Other state at start of MCU */ |
||||
|
||||
/* These fields are NOT loaded into local working state. */ |
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */ |
||||
d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; |
||||
d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; |
||||
|
||||
/* Precalculated info set up by start_pass for use in decode_mcu: */ |
||||
|
||||
/* Pointers to derived tables to be used for each block within an MCU */ |
||||
d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
||||
d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
||||
/* Whether we care about the DC and AC coefficient values for each block */ |
||||
boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
||||
boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
||||
} huff_entropy_decoder; |
||||
|
||||
typedef huff_entropy_decoder *huff_entropy_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_huff_decoder (j_decompress_ptr cinfo) |
||||
{ |
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
||||
int ci, blkn, dctbl, actbl; |
||||
d_derived_tbl **pdtbl; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning because |
||||
* there are some baseline files out there with all zeroes in these bytes. |
||||
*/ |
||||
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
||||
cinfo->Ah != 0 || cinfo->Al != 0) |
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
dctbl = compptr->dc_tbl_no; |
||||
actbl = compptr->ac_tbl_no; |
||||
/* Compute derived values for Huffman tables */ |
||||
/* We may do this more than once for a table, but it's not expensive */ |
||||
pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl; |
||||
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl); |
||||
pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl; |
||||
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl); |
||||
/* Initialize DC predictions to 0 */ |
||||
entropy->saved.last_dc_val[ci] = 0; |
||||
} |
||||
|
||||
/* Precalculate decoding info for each block in an MCU of this scan */ |
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Precalculate which table to use for each block */ |
||||
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
||||
entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
||||
/* Decide whether we really care about the coefficient values */ |
||||
if (compptr->component_needed) { |
||||
entropy->dc_needed[blkn] = TRUE; |
||||
/* we don't need the ACs if producing a 1/8th-size image */ |
||||
entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1); |
||||
} else { |
||||
entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
||||
} |
||||
} |
||||
|
||||
/* Initialize bitread state variables */ |
||||
entropy->bitstate.bits_left = 0; |
||||
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
||||
entropy->pub.insufficient_data = FALSE; |
||||
|
||||
/* Initialize restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Compute the derived values for a Huffman table. |
||||
* This routine also performs some validation checks on the table. |
||||
* |
||||
* Note this is also used by jdphuff.c. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
||||
d_derived_tbl **pdtbl) |
||||
{ |
||||
JHUFF_TBL *htbl; |
||||
d_derived_tbl *dtbl; |
||||
int p, i, l, si, numsymbols; |
||||
int lookbits, ctr; |
||||
char huffsize[257]; |
||||
unsigned int huffcode[257]; |
||||
unsigned int code; |
||||
|
||||
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
||||
* paralleling the order of the symbols themselves in htbl->huffval[]. |
||||
*/ |
||||
|
||||
/* Find the input Huffman table */ |
||||
if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
||||
htbl = |
||||
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
||||
if (htbl == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
||||
|
||||
/* Allocate a workspace if we haven't already done so. */ |
||||
if (*pdtbl == NULL) |
||||
*pdtbl = (d_derived_tbl *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(d_derived_tbl)); |
||||
dtbl = *pdtbl; |
||||
dtbl->pub = htbl; /* fill in back link */ |
||||
|
||||
/* Figure C.1: make table of Huffman code length for each symbol */ |
||||
|
||||
p = 0; |
||||
for (l = 1; l <= 16; l++) { |
||||
i = (int) htbl->bits[l]; |
||||
if (i < 0 || p + i > 256) /* protect against table overrun */ |
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
||||
while (i--) |
||||
huffsize[p++] = (char) l; |
||||
} |
||||
huffsize[p] = 0; |
||||
numsymbols = p; |
||||
|
||||
/* Figure C.2: generate the codes themselves */ |
||||
/* We also validate that the counts represent a legal Huffman code tree. */ |
||||
|
||||
code = 0; |
||||
si = huffsize[0]; |
||||
p = 0; |
||||
while (huffsize[p]) { |
||||
while (((int) huffsize[p]) == si) { |
||||
huffcode[p++] = code; |
||||
code++; |
||||
} |
||||
/* code is now 1 more than the last code used for codelength si; but
|
||||
* it must still fit in si bits, since no code is allowed to be all ones. |
||||
*/ |
||||
if (((JLONG) code) >= (((JLONG) 1) << si)) |
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
||||
code <<= 1; |
||||
si++; |
||||
} |
||||
|
||||
/* Figure F.15: generate decoding tables for bit-sequential decoding */ |
||||
|
||||
p = 0; |
||||
for (l = 1; l <= 16; l++) { |
||||
if (htbl->bits[l]) { |
||||
/* valoffset[l] = huffval[] index of 1st symbol of code length l,
|
||||
* minus the minimum code of length l |
||||
*/ |
||||
dtbl->valoffset[l] = (JLONG) p - (JLONG) huffcode[p]; |
||||
p += htbl->bits[l]; |
||||
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
||||
} else { |
||||
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
||||
} |
||||
} |
||||
dtbl->valoffset[17] = 0; |
||||
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
||||
|
||||
/* Compute lookahead tables to speed up decoding.
|
||||
* First we set all the table entries to 0, indicating "too long"; |
||||
* then we iterate through the Huffman codes that are short enough and |
||||
* fill in all the entries that correspond to bit sequences starting |
||||
* with that code. |
||||
*/ |
||||
|
||||
for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) |
||||
dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; |
||||
|
||||
p = 0; |
||||
for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
||||
for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
||||
/* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
||||
/* Generate left-justified code followed by all possible bit sequences */ |
||||
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
||||
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
||||
dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; |
||||
lookbits++; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/* Validate symbols as being reasonable.
|
||||
* For AC tables, we make no check, but accept all byte values 0..255. |
||||
* For DC tables, we require the symbols to be in range 0..15. |
||||
* (Tighter bounds could be applied depending on the data depth and mode, |
||||
* but this is sufficient to ensure safe decoding.) |
||||
*/ |
||||
if (isDC) { |
||||
for (i = 0; i < numsymbols; i++) { |
||||
int sym = htbl->huffval[i]; |
||||
if (sym < 0 || sym > 15) |
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Out-of-line code for bit fetching (shared with jdphuff.c). |
||||
* See jdhuff.h for info about usage. |
||||
* Note: current values of get_buffer and bits_left are passed as parameters, |
||||
* but are returned in the corresponding fields of the state struct. |
||||
* |
||||
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
||||
* of get_buffer to be used. (On machines with wider words, an even larger |
||||
* buffer could be used.) However, on some machines 32-bit shifts are |
||||
* quite slow and take time proportional to the number of places shifted. |
||||
* (This is true with most PC compilers, for instance.) In this case it may |
||||
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
||||
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
||||
*/ |
||||
|
||||
#ifdef SLOW_SHIFT_32 |
||||
#define MIN_GET_BITS 15 /* minimum allowable value */ |
||||
#else |
||||
#define MIN_GET_BITS (BIT_BUF_SIZE-7) |
||||
#endif |
||||
|
||||
|
||||
GLOBAL(boolean) |
||||
jpeg_fill_bit_buffer (bitread_working_state *state, |
||||
register bit_buf_type get_buffer, register int bits_left, |
||||
int nbits) |
||||
/* Load up the bit buffer to a depth of at least nbits */ |
||||
{ |
||||
/* Copy heavily used state fields into locals (hopefully registers) */ |
||||
register const JOCTET *next_input_byte = state->next_input_byte; |
||||
register size_t bytes_in_buffer = state->bytes_in_buffer; |
||||
j_decompress_ptr cinfo = state->cinfo; |
||||
|
||||
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
||||
/* (It is assumed that no request will be for more than that many bits.) */ |
||||
/* We fail to do so only if we hit a marker or are forced to suspend. */ |
||||
|
||||
if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
||||
while (bits_left < MIN_GET_BITS) { |
||||
register int c; |
||||
|
||||
/* Attempt to read a byte */ |
||||
if (bytes_in_buffer == 0) { |
||||
if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
||||
return FALSE; |
||||
next_input_byte = cinfo->src->next_input_byte; |
||||
bytes_in_buffer = cinfo->src->bytes_in_buffer; |
||||
} |
||||
bytes_in_buffer--; |
||||
c = GETJOCTET(*next_input_byte++); |
||||
|
||||
/* If it's 0xFF, check and discard stuffed zero byte */ |
||||
if (c == 0xFF) { |
||||
/* Loop here to discard any padding FF's on terminating marker,
|
||||
* so that we can save a valid unread_marker value. NOTE: we will |
||||
* accept multiple FF's followed by a 0 as meaning a single FF data |
||||
* byte. This data pattern is not valid according to the standard. |
||||
*/ |
||||
do { |
||||
if (bytes_in_buffer == 0) { |
||||
if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
||||
return FALSE; |
||||
next_input_byte = cinfo->src->next_input_byte; |
||||
bytes_in_buffer = cinfo->src->bytes_in_buffer; |
||||
} |
||||
bytes_in_buffer--; |
||||
c = GETJOCTET(*next_input_byte++); |
||||
} while (c == 0xFF); |
||||
|
||||
if (c == 0) { |
||||
/* Found FF/00, which represents an FF data byte */ |
||||
c = 0xFF; |
||||
} else { |
||||
/* Oops, it's actually a marker indicating end of compressed data.
|
||||
* Save the marker code for later use. |
||||
* Fine point: it might appear that we should save the marker into |
||||
* bitread working state, not straight into permanent state. But |
||||
* once we have hit a marker, we cannot need to suspend within the |
||||
* current MCU, because we will read no more bytes from the data |
||||
* source. So it is OK to update permanent state right away. |
||||
*/ |
||||
cinfo->unread_marker = c; |
||||
/* See if we need to insert some fake zero bits. */ |
||||
goto no_more_bytes; |
||||
} |
||||
} |
||||
|
||||
/* OK, load c into get_buffer */ |
||||
get_buffer = (get_buffer << 8) | c; |
||||
bits_left += 8; |
||||
} /* end while */ |
||||
} else { |
||||
no_more_bytes: |
||||
/* We get here if we've read the marker that terminates the compressed
|
||||
* data segment. There should be enough bits in the buffer register |
||||
* to satisfy the request; if so, no problem. |
||||
*/ |
||||
if (nbits > bits_left) { |
||||
/* Uh-oh. Report corrupted data to user and stuff zeroes into
|
||||
* the data stream, so that we can produce some kind of image. |
||||
* We use a nonvolatile flag to ensure that only one warning message |
||||
* appears per data segment. |
||||
*/ |
||||
if (! cinfo->entropy->insufficient_data) { |
||||
WARNMS(cinfo, JWRN_HIT_MARKER); |
||||
cinfo->entropy->insufficient_data = TRUE; |
||||
} |
||||
/* Fill the buffer with zero bits */ |
||||
get_buffer <<= MIN_GET_BITS - bits_left; |
||||
bits_left = MIN_GET_BITS; |
||||
} |
||||
} |
||||
|
||||
/* Unload the local registers */ |
||||
state->next_input_byte = next_input_byte; |
||||
state->bytes_in_buffer = bytes_in_buffer; |
||||
state->get_buffer = get_buffer; |
||||
state->bits_left = bits_left; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/* Macro version of the above, which performs much better but does not
|
||||
handle markers. We have to hand off any blocks with markers to the |
||||
slower routines. */ |
||||
|
||||
#define GET_BYTE \ |
||||
{ \
|
||||
register int c0, c1; \
|
||||
c0 = GETJOCTET(*buffer++); \
|
||||
c1 = GETJOCTET(*buffer); \
|
||||
/* Pre-execute most common case */ \
|
||||
get_buffer = (get_buffer << 8) | c0; \
|
||||
bits_left += 8; \
|
||||
if (c0 == 0xFF) { \
|
||||
/* Pre-execute case of FF/00, which represents an FF data byte */ \
|
||||
buffer++; \
|
||||
if (c1 != 0) { \
|
||||
/* Oops, it's actually a marker indicating end of compressed data. */ \
|
||||
cinfo->unread_marker = c1; \
|
||||
/* Back out pre-execution and fill the buffer with zero bits */ \
|
||||
buffer -= 2; \
|
||||
get_buffer &= ~0xFF; \
|
||||
} \
|
||||
} \
|
||||
} |
||||
|
||||
#if SIZEOF_SIZE_T==8 || defined(_WIN64) |
||||
|
||||
/* Pre-fetch 48 bytes, because the holding register is 64-bit */ |
||||
#define FILL_BIT_BUFFER_FAST \ |
||||
if (bits_left <= 16) { \
|
||||
GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
|
||||
} |
||||
|
||||
#else |
||||
|
||||
/* Pre-fetch 16 bytes, because the holding register is 32-bit */ |
||||
#define FILL_BIT_BUFFER_FAST \ |
||||
if (bits_left <= 16) { \
|
||||
GET_BYTE GET_BYTE \
|
||||
} |
||||
|
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Out-of-line code for Huffman code decoding. |
||||
* See jdhuff.h for info about usage. |
||||
*/ |
||||
|
||||
GLOBAL(int) |
||||
jpeg_huff_decode (bitread_working_state *state, |
||||
register bit_buf_type get_buffer, register int bits_left, |
||||
d_derived_tbl *htbl, int min_bits) |
||||
{ |
||||
register int l = min_bits; |
||||
register JLONG code; |
||||
|
||||
/* HUFF_DECODE has determined that the code is at least min_bits */ |
||||
/* bits long, so fetch that many bits in one swoop. */ |
||||
|
||||
CHECK_BIT_BUFFER(*state, l, return -1); |
||||
code = GET_BITS(l); |
||||
|
||||
/* Collect the rest of the Huffman code one bit at a time. */ |
||||
/* This is per Figure F.16 in the JPEG spec. */ |
||||
|
||||
while (code > htbl->maxcode[l]) { |
||||
code <<= 1; |
||||
CHECK_BIT_BUFFER(*state, 1, return -1); |
||||
code |= GET_BITS(1); |
||||
l++; |
||||
} |
||||
|
||||
/* Unload the local registers */ |
||||
state->get_buffer = get_buffer; |
||||
state->bits_left = bits_left; |
||||
|
||||
/* With garbage input we may reach the sentinel value l = 17. */ |
||||
|
||||
if (l > 16) { |
||||
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
||||
return 0; /* fake a zero as the safest result */ |
||||
} |
||||
|
||||
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Figure F.12: extend sign bit. |
||||
* On some machines, a shift and add will be faster than a table lookup. |
||||
*/ |
||||
|
||||
#define AVOID_TABLES |
||||
#ifdef AVOID_TABLES |
||||
|
||||
#define NEG_1 ((unsigned int)-1) |
||||
#define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1))) |
||||
|
||||
#else |
||||
|
||||
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
||||
|
||||
static const int extend_test[16] = /* entry n is 2**(n-1) */ |
||||
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
||||
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
||||
|
||||
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
||||
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
||||
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
||||
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
||||
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
||||
|
||||
#endif /* AVOID_TABLES */ |
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder. |
||||
* Returns FALSE if must suspend. |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
process_restart (j_decompress_ptr cinfo) |
||||
{ |
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
||||
int ci; |
||||
|
||||
/* Throw away any unused bits remaining in bit buffer; */ |
||||
/* include any full bytes in next_marker's count of discarded bytes */ |
||||
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
||||
entropy->bitstate.bits_left = 0; |
||||
|
||||
/* Advance past the RSTn marker */ |
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
||||
return FALSE; |
||||
|
||||
/* Re-initialize DC predictions to 0 */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
||||
entropy->saved.last_dc_val[ci] = 0; |
||||
|
||||
/* Reset restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
|
||||
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
||||
* against a marker. In that case we will end up treating the next data |
||||
* segment as empty, and we can avoid producing bogus output pixels by |
||||
* leaving the flag set. |
||||
*/ |
||||
if (cinfo->unread_marker == 0) |
||||
entropy->pub.insufficient_data = FALSE; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
LOCAL(boolean) |
||||
decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
||||
BITREAD_STATE_VARS; |
||||
int blkn; |
||||
savable_state state; |
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
/* Load up working state */ |
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
||||
ASSIGN_STATE(state, entropy->saved); |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
||||
d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
||||
d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
||||
register int s, k, r; |
||||
|
||||
/* Decode a single block's worth of coefficients */ |
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */ |
||||
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
||||
if (s) { |
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE); |
||||
r = GET_BITS(s); |
||||
s = HUFF_EXTEND(r, s); |
||||
} |
||||
|
||||
if (entropy->dc_needed[blkn]) { |
||||
/* Convert DC difference to actual value, update last_dc_val */ |
||||
int ci = cinfo->MCU_membership[blkn]; |
||||
s += state.last_dc_val[ci]; |
||||
state.last_dc_val[ci] = s; |
||||
if (block) { |
||||
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
||||
(*block)[0] = (JCOEF) s; |
||||
} |
||||
} |
||||
|
||||
if (entropy->ac_needed[blkn] && block) { |
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */ |
||||
/* Since zeroes are skipped, output area must be cleared beforehand */ |
||||
for (k = 1; k < DCTSIZE2; k++) { |
||||
HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
||||
|
||||
r = s >> 4; |
||||
s &= 15; |
||||
|
||||
if (s) { |
||||
k += r; |
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE); |
||||
r = GET_BITS(s); |
||||
s = HUFF_EXTEND(r, s); |
||||
/* Output coefficient in natural (dezigzagged) order.
|
||||
* Note: the extra entries in jpeg_natural_order[] will save us |
||||
* if k >= DCTSIZE2, which could happen if the data is corrupted. |
||||
*/ |
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) s; |
||||
} else { |
||||
if (r != 15) |
||||
break; |
||||
k += 15; |
||||
} |
||||
} |
||||
|
||||
} else { |
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */ |
||||
/* In this path we just discard the values */ |
||||
for (k = 1; k < DCTSIZE2; k++) { |
||||
HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
||||
|
||||
r = s >> 4; |
||||
s &= 15; |
||||
|
||||
if (s) { |
||||
k += r; |
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE); |
||||
DROP_BITS(s); |
||||
} else { |
||||
if (r != 15) |
||||
break; |
||||
k += 15; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
/* Completed MCU, so update state */ |
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
||||
ASSIGN_STATE(entropy->saved, state); |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
LOCAL(boolean) |
||||
decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
||||
BITREAD_STATE_VARS; |
||||
JOCTET *buffer; |
||||
int blkn; |
||||
savable_state state; |
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
/* Load up working state */ |
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
||||
buffer = (JOCTET *) br_state.next_input_byte; |
||||
ASSIGN_STATE(state, entropy->saved); |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
||||
d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
||||
d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
||||
register int s, k, r, l; |
||||
|
||||
HUFF_DECODE_FAST(s, l, dctbl); |
||||
if (s) { |
||||
FILL_BIT_BUFFER_FAST |
||||
r = GET_BITS(s); |
||||
s = HUFF_EXTEND(r, s); |
||||
} |
||||
|
||||
if (entropy->dc_needed[blkn]) { |
||||
int ci = cinfo->MCU_membership[blkn]; |
||||
s += state.last_dc_val[ci]; |
||||
state.last_dc_val[ci] = s; |
||||
if (block) |
||||
(*block)[0] = (JCOEF) s; |
||||
} |
||||
|
||||
if (entropy->ac_needed[blkn] && block) { |
||||
|
||||
for (k = 1; k < DCTSIZE2; k++) { |
||||
HUFF_DECODE_FAST(s, l, actbl); |
||||
r = s >> 4; |
||||
s &= 15; |
||||
|
||||
if (s) { |
||||
k += r; |
||||
FILL_BIT_BUFFER_FAST |
||||
r = GET_BITS(s); |
||||
s = HUFF_EXTEND(r, s); |
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) s; |
||||
} else { |
||||
if (r != 15) break; |
||||
k += 15; |
||||
} |
||||
} |
||||
|
||||
} else { |
||||
|
||||
for (k = 1; k < DCTSIZE2; k++) { |
||||
HUFF_DECODE_FAST(s, l, actbl); |
||||
r = s >> 4; |
||||
s &= 15; |
||||
|
||||
if (s) { |
||||
k += r; |
||||
FILL_BIT_BUFFER_FAST |
||||
DROP_BITS(s); |
||||
} else { |
||||
if (r != 15) break; |
||||
k += 15; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (cinfo->unread_marker != 0) { |
||||
cinfo->unread_marker = 0; |
||||
return FALSE; |
||||
} |
||||
|
||||
br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); |
||||
br_state.next_input_byte = buffer; |
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
||||
ASSIGN_STATE(entropy->saved, state); |
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decode and return one MCU's worth of Huffman-compressed coefficients. |
||||
* The coefficients are reordered from zigzag order into natural array order, |
||||
* but are not dequantized. |
||||
* |
||||
* The i'th block of the MCU is stored into the block pointed to by |
||||
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
||||
* (Wholesale zeroing is usually a little faster than retail...) |
||||
* |
||||
* Returns FALSE if data source requested suspension. In that case no |
||||
* changes have been made to permanent state. (Exception: some output |
||||
* coefficients may already have been assigned. This is harmless for |
||||
* this module, since we'll just re-assign them on the next call.) |
||||
*/ |
||||
|
||||
#define BUFSIZE (DCTSIZE2 * 8) |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
||||
int usefast = 1; |
||||
|
||||
/* Process restart marker if needed; may have to suspend */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
if (! process_restart(cinfo)) |
||||
return FALSE; |
||||
usefast = 0; |
||||
} |
||||
|
||||
if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU |
||||
|| cinfo->unread_marker != 0) |
||||
usefast = 0; |
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment. |
||||
*/ |
||||
if (! entropy->pub.insufficient_data) { |
||||
|
||||
if (usefast) { |
||||
if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow; |
||||
} |
||||
else { |
||||
use_slow: |
||||
if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; |
||||
} |
||||
|
||||
} |
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */ |
||||
entropy->restarts_to_go--; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for Huffman entropy decoding. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_huff_decoder (j_decompress_ptr cinfo) |
||||
{ |
||||
huff_entropy_ptr entropy; |
||||
int i; |
||||
|
||||
/* Motion JPEG frames typically do not include the Huffman tables if they
|
||||
are the default tables. Thus, if the tables are not set by the time |
||||
the Huffman decoder is initialized (usually within the body of |
||||
jpeg_start_decompress()), we set them to default values. */ |
||||
std_huff_tables((j_common_ptr) cinfo); |
||||
|
||||
entropy = (huff_entropy_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(huff_entropy_decoder)); |
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
||||
entropy->pub.start_pass = start_pass_huff_decoder; |
||||
entropy->pub.decode_mcu = decode_mcu; |
||||
|
||||
/* Mark tables unallocated */ |
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
||||
} |
||||
} |
@ -0,0 +1,234 @@ |
||||
/*
|
||||
* jdhuff.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2010-2011, 2015-2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains declarations for Huffman entropy decoding routines |
||||
* that are shared between the sequential decoder (jdhuff.c) and the |
||||
* progressive decoder (jdphuff.c). No other modules need to see these. |
||||
*/ |
||||
|
||||
#include "jconfigint.h" |
||||
|
||||
|
||||
/* Derived data constructed for each Huffman table */ |
||||
|
||||
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ |
||||
|
||||
typedef struct { |
||||
/* Basic tables: (element [0] of each array is unused) */ |
||||
JLONG maxcode[18]; /* largest code of length k (-1 if none) */ |
||||
/* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ |
||||
JLONG valoffset[18]; /* huffval[] offset for codes of length k */ |
||||
/* valoffset[k] = huffval[] index of 1st symbol of code length k, less
|
||||
* the smallest code of length k; so given a code of length k, the |
||||
* corresponding symbol is huffval[code + valoffset[k]] |
||||
*/ |
||||
|
||||
/* Link to public Huffman table (needed only in jpeg_huff_decode) */ |
||||
JHUFF_TBL *pub; |
||||
|
||||
/* Lookahead table: indexed by the next HUFF_LOOKAHEAD bits of
|
||||
* the input data stream. If the next Huffman code is no more |
||||
* than HUFF_LOOKAHEAD bits long, we can obtain its length and |
||||
* the corresponding symbol directly from this tables. |
||||
* |
||||
* The lower 8 bits of each table entry contain the number of |
||||
* bits in the corresponding Huffman code, or HUFF_LOOKAHEAD + 1 |
||||
* if too long. The next 8 bits of each entry contain the |
||||
* symbol. |
||||
*/ |
||||
int lookup[1<<HUFF_LOOKAHEAD]; |
||||
} d_derived_tbl; |
||||
|
||||
/* Expand a Huffman table definition into the derived format */ |
||||
EXTERN(void) jpeg_make_d_derived_tbl |
||||
(j_decompress_ptr cinfo, boolean isDC, int tblno, |
||||
d_derived_tbl ** pdtbl); |
||||
|
||||
|
||||
/*
|
||||
* Fetching the next N bits from the input stream is a time-critical operation |
||||
* for the Huffman decoders. We implement it with a combination of inline |
||||
* macros and out-of-line subroutines. Note that N (the number of bits |
||||
* demanded at one time) never exceeds 15 for JPEG use. |
||||
* |
||||
* We read source bytes into get_buffer and dole out bits as needed. |
||||
* If get_buffer already contains enough bits, they are fetched in-line |
||||
* by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough |
||||
* bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer |
||||
* as full as possible (not just to the number of bits needed; this |
||||
* prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). |
||||
* Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. |
||||
* On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains |
||||
* at least the requested number of bits --- dummy zeroes are inserted if |
||||
* necessary. |
||||
*/ |
||||
|
||||
#if !defined(_WIN32) && !defined(SIZEOF_SIZE_T) |
||||
#error Cannot determine word size |
||||
#endif |
||||
|
||||
#if SIZEOF_SIZE_T==8 || defined(_WIN64) |
||||
|
||||
typedef size_t bit_buf_type; /* type of bit-extraction buffer */ |
||||
#define BIT_BUF_SIZE 64 /* size of buffer in bits */ |
||||
|
||||
#else |
||||
|
||||
typedef unsigned long bit_buf_type; /* type of bit-extraction buffer */ |
||||
#define BIT_BUF_SIZE 32 /* size of buffer in bits */ |
||||
|
||||
#endif |
||||
|
||||
/* If long is > 32 bits on your machine, and shifting/masking longs is
|
||||
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE |
||||
* appropriately should be a win. Unfortunately we can't define the size |
||||
* with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) |
||||
* because not all machines measure sizeof in 8-bit bytes. |
||||
*/ |
||||
|
||||
typedef struct { /* Bitreading state saved across MCUs */ |
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */ |
||||
int bits_left; /* # of unused bits in it */ |
||||
} bitread_perm_state; |
||||
|
||||
typedef struct { /* Bitreading working state within an MCU */ |
||||
/* Current data source location */ |
||||
/* We need a copy, rather than munging the original, in case of suspension */ |
||||
const JOCTET *next_input_byte; /* => next byte to read from source */ |
||||
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ |
||||
/* Bit input buffer --- note these values are kept in register variables,
|
||||
* not in this struct, inside the inner loops. |
||||
*/ |
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */ |
||||
int bits_left; /* # of unused bits in it */ |
||||
/* Pointer needed by jpeg_fill_bit_buffer. */ |
||||
j_decompress_ptr cinfo; /* back link to decompress master record */ |
||||
} bitread_working_state; |
||||
|
||||
/* Macros to declare and load/save bitread local variables. */ |
||||
#define BITREAD_STATE_VARS \ |
||||
register bit_buf_type get_buffer; \
|
||||
register int bits_left; \
|
||||
bitread_working_state br_state |
||||
|
||||
#define BITREAD_LOAD_STATE(cinfop,permstate) \ |
||||
br_state.cinfo = cinfop; \
|
||||
br_state.next_input_byte = cinfop->src->next_input_byte; \
|
||||
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
|
||||
get_buffer = permstate.get_buffer; \
|
||||
bits_left = permstate.bits_left; |
||||
|
||||
#define BITREAD_SAVE_STATE(cinfop,permstate) \ |
||||
cinfop->src->next_input_byte = br_state.next_input_byte; \
|
||||
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
|
||||
permstate.get_buffer = get_buffer; \
|
||||
permstate.bits_left = bits_left |
||||
|
||||
/*
|
||||
* These macros provide the in-line portion of bit fetching. |
||||
* Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer |
||||
* before using GET_BITS, PEEK_BITS, or DROP_BITS. |
||||
* The variables get_buffer and bits_left are assumed to be locals, |
||||
* but the state struct might not be (jpeg_huff_decode needs this). |
||||
* CHECK_BIT_BUFFER(state,n,action); |
||||
* Ensure there are N bits in get_buffer; if suspend, take action. |
||||
* val = GET_BITS(n); |
||||
* Fetch next N bits. |
||||
* val = PEEK_BITS(n); |
||||
* Fetch next N bits without removing them from the buffer. |
||||
* DROP_BITS(n); |
||||
* Discard next N bits. |
||||
* The value N should be a simple variable, not an expression, because it |
||||
* is evaluated multiple times. |
||||
*/ |
||||
|
||||
#define CHECK_BIT_BUFFER(state,nbits,action) \ |
||||
{ if (bits_left < (nbits)) { \
|
||||
if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
|
||||
{ action; } \
|
||||
get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } |
||||
|
||||
#define GET_BITS(nbits) \ |
||||
(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1)) |
||||
|
||||
#define PEEK_BITS(nbits) \ |
||||
(((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1)) |
||||
|
||||
#define DROP_BITS(nbits) \ |
||||
(bits_left -= (nbits)) |
||||
|
||||
/* Load up the bit buffer to a depth of at least nbits */ |
||||
EXTERN(boolean) jpeg_fill_bit_buffer |
||||
(bitread_working_state *state, register bit_buf_type get_buffer, |
||||
register int bits_left, int nbits); |
||||
|
||||
|
||||
/*
|
||||
* Code for extracting next Huffman-coded symbol from input bit stream. |
||||
* Again, this is time-critical and we make the main paths be macros. |
||||
* |
||||
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits |
||||
* without looping. Usually, more than 95% of the Huffman codes will be 8 |
||||
* or fewer bits long. The few overlength codes are handled with a loop, |
||||
* which need not be inline code. |
||||
* |
||||
* Notes about the HUFF_DECODE macro: |
||||
* 1. Near the end of the data segment, we may fail to get enough bits |
||||
* for a lookahead. In that case, we do it the hard way. |
||||
* 2. If the lookahead table contains no entry, the next code must be |
||||
* more than HUFF_LOOKAHEAD bits long. |
||||
* 3. jpeg_huff_decode returns -1 if forced to suspend. |
||||
*/ |
||||
|
||||
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ |
||||
{ register int nb, look; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
nb = 1; goto slowlabel; \
|
||||
} \
|
||||
} \
|
||||
look = PEEK_BITS(HUFF_LOOKAHEAD); \
|
||||
if ((nb = (htbl->lookup[look] >> HUFF_LOOKAHEAD)) <= HUFF_LOOKAHEAD) { \
|
||||
DROP_BITS(nb); \
|
||||
result = htbl->lookup[look] & ((1 << HUFF_LOOKAHEAD) - 1); \
|
||||
} else { \
|
||||
slowlabel: \
|
||||
if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
|
||||
{ failaction; } \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
} \
|
||||
} |
||||
|
||||
#define HUFF_DECODE_FAST(s,nb,htbl) \ |
||||
FILL_BIT_BUFFER_FAST; \
|
||||
s = PEEK_BITS(HUFF_LOOKAHEAD); \
|
||||
s = htbl->lookup[s]; \
|
||||
nb = s >> HUFF_LOOKAHEAD; \
|
||||
/* Pre-execute the common case of nb <= HUFF_LOOKAHEAD */ \
|
||||
DROP_BITS(nb); \
|
||||
s = s & ((1 << HUFF_LOOKAHEAD) - 1); \
|
||||
if (nb > HUFF_LOOKAHEAD) { \
|
||||
/* Equivalent of jpeg_huff_decode() */ \
|
||||
/* Don't use GET_BITS() here because we don't want to modify bits_left */ \
|
||||
s = (get_buffer >> bits_left) & ((1 << (nb)) - 1); \
|
||||
while (s > htbl->maxcode[nb]) { \
|
||||
s <<= 1; \
|
||||
s |= GET_BITS(1); \
|
||||
nb++; \
|
||||
} \
|
||||
s = htbl->pub->huffval[ (int) (s + htbl->valoffset[nb]) & 0xFF ]; \
|
||||
} |
||||
|
||||
/* Out-of-line case for Huffman code fetching */ |
||||
EXTERN(int) jpeg_huff_decode |
||||
(bitread_working_state *state, register bit_buf_type get_buffer, |
||||
register int bits_left, d_derived_tbl *htbl, int min_bits); |
@ -0,0 +1,405 @@ |
||||
/*
|
||||
* jdinput.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2010, 2016, D. R. Commander. |
||||
* Copyright (C) 2015, Google, Inc. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains input control logic for the JPEG decompressor. |
||||
* These routines are concerned with controlling the decompressor's input |
||||
* processing (marker reading and coefficient decoding). The actual input |
||||
* reading is done in jdmarker.c, jdhuff.c, and jdphuff.c. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jpegcomp.h" |
||||
|
||||
|
||||
/* Private state */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_input_controller pub; /* public fields */ |
||||
|
||||
boolean inheaders; /* TRUE until first SOS is reached */ |
||||
} my_input_controller; |
||||
|
||||
typedef my_input_controller *my_inputctl_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(int) consume_markers (j_decompress_ptr cinfo); |
||||
|
||||
|
||||
/*
|
||||
* Routines to calculate various quantities related to the size of the image. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
initial_setup (j_decompress_ptr cinfo) |
||||
/* Called once, when first SOS marker is reached */ |
||||
{ |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Make sure image isn't bigger than I can handle */ |
||||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || |
||||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) |
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); |
||||
|
||||
/* For now, precision must match compiled-in value... */ |
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE) |
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
||||
|
||||
/* Check that number of components won't exceed internal array sizes */ |
||||
if (cinfo->num_components > MAX_COMPONENTS) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
||||
MAX_COMPONENTS); |
||||
|
||||
/* Compute maximum sampling factors; check factor validity */ |
||||
cinfo->max_h_samp_factor = 1; |
||||
cinfo->max_v_samp_factor = 1; |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || |
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) |
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING); |
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, |
||||
compptr->h_samp_factor); |
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, |
||||
compptr->v_samp_factor); |
||||
} |
||||
|
||||
#if JPEG_LIB_VERSION >=80 |
||||
cinfo->block_size = DCTSIZE; |
||||
cinfo->natural_order = jpeg_natural_order; |
||||
cinfo->lim_Se = DCTSIZE2-1; |
||||
#endif |
||||
|
||||
/* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
|
||||
* In the full decompressor, this will be overridden by jdmaster.c; |
||||
* but in the transcoder, jdmaster.c is not used, so we must do it here. |
||||
*/ |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = DCTSIZE; |
||||
#else |
||||
cinfo->min_DCT_scaled_size = DCTSIZE; |
||||
#endif |
||||
|
||||
/* Compute dimensions of components */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE; |
||||
#else |
||||
compptr->DCT_scaled_size = DCTSIZE; |
||||
#endif |
||||
/* Size in DCT blocks */ |
||||
compptr->width_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, |
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE)); |
||||
compptr->height_in_blocks = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, |
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE)); |
||||
/* Set the first and last MCU columns to decompress from multi-scan images.
|
||||
* By default, decompress all of the MCU columns. |
||||
*/ |
||||
cinfo->master->first_MCU_col[ci] = 0; |
||||
cinfo->master->last_MCU_col[ci] = compptr->width_in_blocks - 1; |
||||
/* downsampled_width and downsampled_height will also be overridden by
|
||||
* jdmaster.c if we are doing full decompression. The transcoder library |
||||
* doesn't use these values, but the calling application might. |
||||
*/ |
||||
/* Size in samples */ |
||||
compptr->downsampled_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, |
||||
(long) cinfo->max_h_samp_factor); |
||||
compptr->downsampled_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, |
||||
(long) cinfo->max_v_samp_factor); |
||||
/* Mark component needed, until color conversion says otherwise */ |
||||
compptr->component_needed = TRUE; |
||||
/* Mark no quantization table yet saved for component */ |
||||
compptr->quant_table = NULL; |
||||
} |
||||
|
||||
/* Compute number of fully interleaved MCU rows. */ |
||||
cinfo->total_iMCU_rows = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height, |
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE)); |
||||
|
||||
/* Decide whether file contains multiple scans */ |
||||
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) |
||||
cinfo->inputctl->has_multiple_scans = TRUE; |
||||
else |
||||
cinfo->inputctl->has_multiple_scans = FALSE; |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
per_scan_setup (j_decompress_ptr cinfo) |
||||
/* Do computations that are needed before processing a JPEG scan */ |
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ |
||||
{ |
||||
int ci, mcublks, tmp; |
||||
jpeg_component_info *compptr; |
||||
|
||||
if (cinfo->comps_in_scan == 1) { |
||||
|
||||
/* Noninterleaved (single-component) scan */ |
||||
compptr = cinfo->cur_comp_info[0]; |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = compptr->width_in_blocks; |
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks; |
||||
|
||||
/* For noninterleaved scan, always one block per MCU */ |
||||
compptr->MCU_width = 1; |
||||
compptr->MCU_height = 1; |
||||
compptr->MCU_blocks = 1; |
||||
compptr->MCU_sample_width = compptr->_DCT_scaled_size; |
||||
compptr->last_col_width = 1; |
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row. |
||||
*/ |
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||||
if (tmp == 0) tmp = compptr->v_samp_factor; |
||||
compptr->last_row_height = tmp; |
||||
|
||||
/* Prepare array describing MCU composition */ |
||||
cinfo->blocks_in_MCU = 1; |
||||
cinfo->MCU_membership[0] = 0; |
||||
|
||||
} else { |
||||
|
||||
/* Interleaved (multi-component) scan */ |
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) |
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, |
||||
MAX_COMPS_IN_SCAN); |
||||
|
||||
/* Overall image size in MCUs */ |
||||
cinfo->MCUs_per_row = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width, |
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE)); |
||||
cinfo->MCU_rows_in_scan = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height, |
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE)); |
||||
|
||||
cinfo->blocks_in_MCU = 0; |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Sampling factors give # of blocks of component in each MCU */ |
||||
compptr->MCU_width = compptr->h_samp_factor; |
||||
compptr->MCU_height = compptr->v_samp_factor; |
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; |
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->_DCT_scaled_size; |
||||
/* Figure number of non-dummy blocks in last MCU column & row */ |
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); |
||||
if (tmp == 0) tmp = compptr->MCU_width; |
||||
compptr->last_col_width = tmp; |
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); |
||||
if (tmp == 0) tmp = compptr->MCU_height; |
||||
compptr->last_row_height = tmp; |
||||
/* Prepare array describing MCU composition */ |
||||
mcublks = compptr->MCU_blocks; |
||||
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) |
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE); |
||||
while (mcublks-- > 0) { |
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; |
||||
} |
||||
} |
||||
|
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Save away a copy of the Q-table referenced by each component present |
||||
* in the current scan, unless already saved during a prior scan. |
||||
* |
||||
* In a multiple-scan JPEG file, the encoder could assign different components |
||||
* the same Q-table slot number, but change table definitions between scans |
||||
* so that each component uses a different Q-table. (The IJG encoder is not |
||||
* currently capable of doing this, but other encoders might.) Since we want |
||||
* to be able to dequantize all the components at the end of the file, this |
||||
* means that we have to save away the table actually used for each component. |
||||
* We do this by copying the table at the start of the first scan containing |
||||
* the component. |
||||
* The JPEG spec prohibits the encoder from changing the contents of a Q-table |
||||
* slot between scans of a component using that slot. If the encoder does so |
||||
* anyway, this decoder will simply use the Q-table values that were current |
||||
* at the start of the first scan for the component. |
||||
* |
||||
* The decompressor output side looks only at the saved quant tables, |
||||
* not at the current Q-table slots. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
latch_quant_tables (j_decompress_ptr cinfo) |
||||
{ |
||||
int ci, qtblno; |
||||
jpeg_component_info *compptr; |
||||
JQUANT_TBL *qtbl; |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* No work if we already saved Q-table for this component */ |
||||
if (compptr->quant_table != NULL) |
||||
continue; |
||||
/* Make sure specified quantization table is present */ |
||||
qtblno = compptr->quant_tbl_no; |
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL) |
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
||||
/* OK, save away the quantization table */ |
||||
qtbl = (JQUANT_TBL *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(JQUANT_TBL)); |
||||
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], sizeof(JQUANT_TBL)); |
||||
compptr->quant_table = qtbl; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the input modules to read a scan of compressed data. |
||||
* The first call to this is done by jdmaster.c after initializing |
||||
* the entire decompressor (during jpeg_start_decompress). |
||||
* Subsequent calls come from consume_markers, below. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_input_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
per_scan_setup(cinfo); |
||||
latch_quant_tables(cinfo); |
||||
(*cinfo->entropy->start_pass) (cinfo); |
||||
(*cinfo->coef->start_input_pass) (cinfo); |
||||
cinfo->inputctl->consume_input = cinfo->coef->consume_data; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up after inputting a compressed-data scan. |
||||
* This is called by the coefficient controller after it's read all |
||||
* the expected data of the scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_input_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
cinfo->inputctl->consume_input = consume_markers; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Read JPEG markers before, between, or after compressed-data scans. |
||||
* Change state as necessary when a new scan is reached. |
||||
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. |
||||
* |
||||
* The consume_input method pointer points either here or to the |
||||
* coefficient controller's consume_data routine, depending on whether |
||||
* we are reading a compressed data segment or inter-segment markers. |
||||
*/ |
||||
|
||||
METHODDEF(int) |
||||
consume_markers (j_decompress_ptr cinfo) |
||||
{ |
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; |
||||
int val; |
||||
|
||||
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ |
||||
return JPEG_REACHED_EOI; |
||||
|
||||
val = (*cinfo->marker->read_markers) (cinfo); |
||||
|
||||
switch (val) { |
||||
case JPEG_REACHED_SOS: /* Found SOS */ |
||||
if (inputctl->inheaders) { /* 1st SOS */ |
||||
initial_setup(cinfo); |
||||
inputctl->inheaders = FALSE; |
||||
/* Note: start_input_pass must be called by jdmaster.c
|
||||
* before any more input can be consumed. jdapimin.c is |
||||
* responsible for enforcing this sequencing. |
||||
*/ |
||||
} else { /* 2nd or later SOS marker */ |
||||
if (! inputctl->pub.has_multiple_scans) |
||||
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ |
||||
start_input_pass(cinfo); |
||||
} |
||||
break; |
||||
case JPEG_REACHED_EOI: /* Found EOI */ |
||||
inputctl->pub.eoi_reached = TRUE; |
||||
if (inputctl->inheaders) { /* Tables-only datastream, apparently */ |
||||
if (cinfo->marker->saw_SOF) |
||||
ERREXIT(cinfo, JERR_SOF_NO_SOS); |
||||
} else { |
||||
/* Prevent infinite loop in coef ctlr's decompress_data routine
|
||||
* if user set output_scan_number larger than number of scans. |
||||
*/ |
||||
if (cinfo->output_scan_number > cinfo->input_scan_number) |
||||
cinfo->output_scan_number = cinfo->input_scan_number; |
||||
} |
||||
break; |
||||
case JPEG_SUSPENDED: |
||||
break; |
||||
} |
||||
|
||||
return val; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Reset state to begin a fresh datastream. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
reset_input_controller (j_decompress_ptr cinfo) |
||||
{ |
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; |
||||
|
||||
inputctl->pub.consume_input = consume_markers; |
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ |
||||
inputctl->pub.eoi_reached = FALSE; |
||||
inputctl->inheaders = TRUE; |
||||
/* Reset other modules */ |
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); |
||||
(*cinfo->marker->reset_marker_reader) (cinfo); |
||||
/* Reset progression state -- would be cleaner if entropy decoder did this */ |
||||
cinfo->coef_bits = NULL; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize the input controller module. |
||||
* This is called only once, when the decompression object is created. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_input_controller (j_decompress_ptr cinfo) |
||||
{ |
||||
my_inputctl_ptr inputctl; |
||||
|
||||
/* Create subobject in permanent pool */ |
||||
inputctl = (my_inputctl_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, |
||||
sizeof(my_input_controller)); |
||||
cinfo->inputctl = (struct jpeg_input_controller *) inputctl; |
||||
/* Initialize method pointers */ |
||||
inputctl->pub.consume_input = consume_markers; |
||||
inputctl->pub.reset_input_controller = reset_input_controller; |
||||
inputctl->pub.start_input_pass = start_input_pass; |
||||
inputctl->pub.finish_input_pass = finish_input_pass; |
||||
/* Initialize state: can't use reset_input_controller since we don't
|
||||
* want to try to reset other modules yet. |
||||
*/ |
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ |
||||
inputctl->pub.eoi_reached = FALSE; |
||||
inputctl->inheaders = TRUE; |
||||
} |
@ -0,0 +1,456 @@ |
||||
/*
|
||||
* jdmainct.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2010, 2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the main buffer controller for decompression. |
||||
* The main buffer lies between the JPEG decompressor proper and the |
||||
* post-processor; it holds downsampled data in the JPEG colorspace. |
||||
* |
||||
* Note that this code is bypassed in raw-data mode, since the application |
||||
* supplies the equivalent of the main buffer in that case. |
||||
*/ |
||||
|
||||
#include "jinclude.h" |
||||
#include "jdmainct.h" |
||||
|
||||
|
||||
/*
|
||||
* In the current system design, the main buffer need never be a full-image |
||||
* buffer; any full-height buffers will be found inside the coefficient or |
||||
* postprocessing controllers. Nonetheless, the main controller is not |
||||
* trivial. Its responsibility is to provide context rows for upsampling/ |
||||
* rescaling, and doing this in an efficient fashion is a bit tricky. |
||||
* |
||||
* Postprocessor input data is counted in "row groups". A row group |
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) |
||||
* sample rows of each component. (We require DCT_scaled_size values to be |
||||
* chosen such that these numbers are integers. In practice DCT_scaled_size |
||||
* values will likely be powers of two, so we actually have the stronger |
||||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) |
||||
* Upsampling will typically produce max_v_samp_factor pixel rows from each |
||||
* row group (times any additional scale factor that the upsampler is |
||||
* applying). |
||||
* |
||||
* The coefficient controller will deliver data to us one iMCU row at a time; |
||||
* each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or |
||||
* exactly min_DCT_scaled_size row groups. (This amount of data corresponds |
||||
* to one row of MCUs when the image is fully interleaved.) Note that the |
||||
* number of sample rows varies across components, but the number of row |
||||
* groups does not. Some garbage sample rows may be included in the last iMCU |
||||
* row at the bottom of the image. |
||||
* |
||||
* Depending on the vertical scaling algorithm used, the upsampler may need |
||||
* access to the sample row(s) above and below its current input row group. |
||||
* The upsampler is required to set need_context_rows TRUE at global selection |
||||
* time if so. When need_context_rows is FALSE, this controller can simply |
||||
* obtain one iMCU row at a time from the coefficient controller and dole it |
||||
* out as row groups to the postprocessor. |
||||
* |
||||
* When need_context_rows is TRUE, this controller guarantees that the buffer |
||||
* passed to postprocessing contains at least one row group's worth of samples |
||||
* above and below the row group(s) being processed. Note that the context |
||||
* rows "above" the first passed row group appear at negative row offsets in |
||||
* the passed buffer. At the top and bottom of the image, the required |
||||
* context rows are manufactured by duplicating the first or last real sample |
||||
* row; this avoids having special cases in the upsampling inner loops. |
||||
* |
||||
* The amount of context is fixed at one row group just because that's a |
||||
* convenient number for this controller to work with. The existing |
||||
* upsamplers really only need one sample row of context. An upsampler |
||||
* supporting arbitrary output rescaling might wish for more than one row |
||||
* group of context when shrinking the image; tough, we don't handle that. |
||||
* (This is justified by the assumption that downsizing will be handled mostly |
||||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at |
||||
* the upsample step needn't be much less than one.) |
||||
* |
||||
* To provide the desired context, we have to retain the last two row groups |
||||
* of one iMCU row while reading in the next iMCU row. (The last row group |
||||
* can't be processed until we have another row group for its below-context, |
||||
* and so we have to save the next-to-last group too for its above-context.) |
||||
* We could do this most simply by copying data around in our buffer, but |
||||
* that'd be very slow. We can avoid copying any data by creating a rather |
||||
* strange pointer structure. Here's how it works. We allocate a workspace |
||||
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number |
||||
* of row groups per iMCU row). We create two sets of redundant pointers to |
||||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized |
||||
* pointer lists look like this: |
||||
* M+1 M-1 |
||||
* master pointer --> 0 master pointer --> 0 |
||||
* 1 1 |
||||
* ... ... |
||||
* M-3 M-3 |
||||
* M-2 M |
||||
* M-1 M+1 |
||||
* M M-2 |
||||
* M+1 M-1 |
||||
* 0 0 |
||||
* We read alternate iMCU rows using each master pointer; thus the last two |
||||
* row groups of the previous iMCU row remain un-overwritten in the workspace. |
||||
* The pointer lists are set up so that the required context rows appear to |
||||
* be adjacent to the proper places when we pass the pointer lists to the |
||||
* upsampler. |
||||
* |
||||
* The above pictures describe the normal state of the pointer lists. |
||||
* At top and bottom of the image, we diddle the pointer lists to duplicate |
||||
* the first or last sample row as necessary (this is cheaper than copying |
||||
* sample rows around). |
||||
* |
||||
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that |
||||
* situation each iMCU row provides only one row group so the buffering logic |
||||
* must be different (eg, we must read two iMCU rows before we can emit the |
||||
* first row group). For now, we simply do not support providing context |
||||
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to |
||||
* be worth providing --- if someone wants a 1/8th-size preview, they probably |
||||
* want it quick and dirty, so a context-free upsampler is sufficient. |
||||
*/ |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(void) process_data_simple_main |
||||
(j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); |
||||
METHODDEF(void) process_data_context_main |
||||
(j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
METHODDEF(void) process_data_crank_post |
||||
(j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); |
||||
#endif |
||||
|
||||
|
||||
LOCAL(void) |
||||
alloc_funny_pointers (j_decompress_ptr cinfo) |
||||
/* Allocate space for the funny pointer lists.
|
||||
* This is done only once, not once per pass. |
||||
*/ |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
int ci, rgroup; |
||||
int M = cinfo->_min_DCT_scaled_size; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY xbuf; |
||||
|
||||
/* Get top-level space for component array pointers.
|
||||
* We alloc both arrays with one call to save a few cycles. |
||||
*/ |
||||
main_ptr->xbuffer[0] = (JSAMPIMAGE) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->num_components * 2 * sizeof(JSAMPARRAY)); |
||||
main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / |
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */ |
||||
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||
* We alloc both pointer lists with one call to save a few cycles. |
||||
*/ |
||||
xbuf = (JSAMPARRAY) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
2 * (rgroup * (M + 4)) * sizeof(JSAMPROW)); |
||||
xbuf += rgroup; /* want one row group at negative offsets */ |
||||
main_ptr->xbuffer[0][ci] = xbuf; |
||||
xbuf += rgroup * (M + 4); |
||||
main_ptr->xbuffer[1][ci] = xbuf; |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
make_funny_pointers (j_decompress_ptr cinfo) |
||||
/* Create the funny pointer lists discussed in the comments above.
|
||||
* The actual workspace is already allocated (in main_ptr->buffer), |
||||
* and the space for the pointer lists is allocated too. |
||||
* This routine just fills in the curiously ordered lists. |
||||
* This will be repeated at the beginning of each pass. |
||||
*/ |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
int ci, i, rgroup; |
||||
int M = cinfo->_min_DCT_scaled_size; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY buf, xbuf0, xbuf1; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / |
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */ |
||||
xbuf0 = main_ptr->xbuffer[0][ci]; |
||||
xbuf1 = main_ptr->xbuffer[1][ci]; |
||||
/* First copy the workspace pointers as-is */ |
||||
buf = main_ptr->buffer[ci]; |
||||
for (i = 0; i < rgroup * (M + 2); i++) { |
||||
xbuf0[i] = xbuf1[i] = buf[i]; |
||||
} |
||||
/* In the second list, put the last four row groups in swapped order */ |
||||
for (i = 0; i < rgroup * 2; i++) { |
||||
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; |
||||
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; |
||||
} |
||||
/* The wraparound pointers at top and bottom will be filled later
|
||||
* (see set_wraparound_pointers, below). Initially we want the "above" |
||||
* pointers to duplicate the first actual data line. This only needs |
||||
* to happen in xbuffer[0]. |
||||
*/ |
||||
for (i = 0; i < rgroup; i++) { |
||||
xbuf0[i - rgroup] = xbuf0[0]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
set_bottom_pointers (j_decompress_ptr cinfo) |
||||
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||
* of the image. whichptr indicates which xbuffer holds the final iMCU row. |
||||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row. |
||||
*/ |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
int ci, i, rgroup, iMCUheight, rows_left; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY xbuf; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Count sample rows in one iMCU row and in one row group */ |
||||
iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size; |
||||
rgroup = iMCUheight / cinfo->_min_DCT_scaled_size; |
||||
/* Count nondummy sample rows remaining for this component */ |
||||
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); |
||||
if (rows_left == 0) rows_left = iMCUheight; |
||||
/* Count nondummy row groups. Should get same answer for each component,
|
||||
* so we need only do it once. |
||||
*/ |
||||
if (ci == 0) { |
||||
main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); |
||||
} |
||||
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||
* last partial rowgroup and ensures at least one full rowgroup of context. |
||||
*/ |
||||
xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci]; |
||||
for (i = 0; i < rgroup * 2; i++) { |
||||
xbuf[rows_left + i] = xbuf[rows_left-1]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
|
||||
switch (pass_mode) { |
||||
case JBUF_PASS_THRU: |
||||
if (cinfo->upsample->need_context_rows) { |
||||
main_ptr->pub.process_data = process_data_context_main; |
||||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ |
||||
main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ |
||||
main_ptr->context_state = CTX_PREPARE_FOR_IMCU; |
||||
main_ptr->iMCU_row_ctr = 0; |
||||
} else { |
||||
/* Simple case with no context needed */ |
||||
main_ptr->pub.process_data = process_data_simple_main; |
||||
} |
||||
main_ptr->buffer_full = FALSE; /* Mark buffer empty */ |
||||
main_ptr->rowgroup_ctr = 0; |
||||
break; |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
case JBUF_CRANK_DEST: |
||||
/* For last pass of 2-pass quantization, just crank the postprocessor */ |
||||
main_ptr->pub.process_data = process_data_crank_post; |
||||
break; |
||||
#endif |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* This handles the simple case where no context is required. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
process_data_simple_main (j_decompress_ptr cinfo, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
JDIMENSION rowgroups_avail; |
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */ |
||||
if (! main_ptr->buffer_full) { |
||||
if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer)) |
||||
return; /* suspension forced, can do nothing more */ |
||||
main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ |
||||
} |
||||
|
||||
/* There are always min_DCT_scaled_size row groups in an iMCU row. */ |
||||
rowgroups_avail = (JDIMENSION) cinfo->_min_DCT_scaled_size; |
||||
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||
* to the postprocessor. The postprocessor has to check for bottom |
||||
* of image anyway (at row resolution), so no point in us doing it too. |
||||
*/ |
||||
|
||||
/* Feed the postprocessor */ |
||||
(*cinfo->post->post_process_data) (cinfo, main_ptr->buffer, |
||||
&main_ptr->rowgroup_ctr, rowgroups_avail, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
|
||||
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */ |
||||
if (main_ptr->rowgroup_ctr >= rowgroups_avail) { |
||||
main_ptr->buffer_full = FALSE; |
||||
main_ptr->rowgroup_ctr = 0; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* This handles the case where context rows must be provided. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
process_data_context_main (j_decompress_ptr cinfo, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */ |
||||
if (! main_ptr->buffer_full) { |
||||
if (! (*cinfo->coef->decompress_data) (cinfo, |
||||
main_ptr->xbuffer[main_ptr->whichptr])) |
||||
return; /* suspension forced, can do nothing more */ |
||||
main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ |
||||
main_ptr->iMCU_row_ctr++; /* count rows received */ |
||||
} |
||||
|
||||
/* Postprocessor typically will not swallow all the input data it is handed
|
||||
* in one call (due to filling the output buffer first). Must be prepared |
||||
* to exit and restart. This switch lets us keep track of how far we got. |
||||
* Note that each case falls through to the next on successful completion. |
||||
*/ |
||||
switch (main_ptr->context_state) { |
||||
case CTX_POSTPONED_ROW: |
||||
/* Call postprocessor using previously set pointers for postponed row */ |
||||
(*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], |
||||
&main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) |
||||
return; /* Need to suspend */ |
||||
main_ptr->context_state = CTX_PREPARE_FOR_IMCU; |
||||
if (*out_row_ctr >= out_rows_avail) |
||||
return; /* Postprocessor exactly filled output buf */ |
||||
/*FALLTHROUGH*/ |
||||
case CTX_PREPARE_FOR_IMCU: |
||||
/* Prepare to process first M-1 row groups of this iMCU row */ |
||||
main_ptr->rowgroup_ctr = 0; |
||||
main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size - 1); |
||||
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||
* the last sample row, and adjust rowgroups_avail to ignore padding rows. |
||||
*/ |
||||
if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows) |
||||
set_bottom_pointers(cinfo); |
||||
main_ptr->context_state = CTX_PROCESS_IMCU; |
||||
/*FALLTHROUGH*/ |
||||
case CTX_PROCESS_IMCU: |
||||
/* Call postprocessor using previously set pointers */ |
||||
(*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], |
||||
&main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) |
||||
return; /* Need to suspend */ |
||||
/* After the first iMCU, change wraparound pointers to normal state */ |
||||
if (main_ptr->iMCU_row_ctr == 1) |
||||
set_wraparound_pointers(cinfo); |
||||
/* Prepare to load new iMCU row using other xbuffer list */ |
||||
main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */ |
||||
main_ptr->buffer_full = FALSE; |
||||
/* Still need to process last row group of this iMCU row, */ |
||||
/* which is saved at index M+1 of the other xbuffer */ |
||||
main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 1); |
||||
main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 2); |
||||
main_ptr->context_state = CTX_POSTPONED_ROW; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data. |
||||
* Final pass of two-pass quantization: just call the postprocessor. |
||||
* Source data will be the postprocessor controller's internal buffer. |
||||
*/ |
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
|
||||
METHODDEF(void) |
||||
process_data_crank_post (j_decompress_ptr cinfo, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, |
||||
(JDIMENSION *) NULL, (JDIMENSION) 0, |
||||
output_buf, out_row_ctr, out_rows_avail); |
||||
} |
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_main_ptr main_ptr; |
||||
int ci, rgroup, ngroups; |
||||
jpeg_component_info *compptr; |
||||
|
||||
main_ptr = (my_main_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_main_controller)); |
||||
cinfo->main = (struct jpeg_d_main_controller *) main_ptr; |
||||
main_ptr->pub.start_pass = start_pass_main; |
||||
|
||||
if (need_full_buffer) /* shouldn't happen */ |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
|
||||
/* Allocate the workspace.
|
||||
* ngroups is the number of row groups we need. |
||||
*/ |
||||
if (cinfo->upsample->need_context_rows) { |
||||
if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */ |
||||
ERREXIT(cinfo, JERR_NOTIMPL); |
||||
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ |
||||
ngroups = cinfo->_min_DCT_scaled_size + 2; |
||||
} else { |
||||
ngroups = cinfo->_min_DCT_scaled_size; |
||||
} |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / |
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */ |
||||
main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
compptr->width_in_blocks * compptr->_DCT_scaled_size, |
||||
(JDIMENSION) (rgroup * ngroups)); |
||||
} |
||||
} |
@ -0,0 +1,71 @@ |
||||
/*
|
||||
* jdmainct.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jpeglib.h" |
||||
#include "jpegcomp.h" |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_d_main_controller pub; /* public fields */ |
||||
|
||||
/* Pointer to allocated workspace (M or M+2 row groups). */ |
||||
JSAMPARRAY buffer[MAX_COMPONENTS]; |
||||
|
||||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ |
||||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ |
||||
|
||||
/* Remaining fields are only used in the context case. */ |
||||
|
||||
/* These are the master pointers to the funny-order pointer lists. */ |
||||
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ |
||||
|
||||
int whichptr; /* indicates which pointer set is now in use */ |
||||
int context_state; /* process_data state machine status */ |
||||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ |
||||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ |
||||
} my_main_controller; |
||||
|
||||
typedef my_main_controller *my_main_ptr; |
||||
|
||||
|
||||
/* context_state values: */ |
||||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ |
||||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ |
||||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ |
||||
|
||||
|
||||
LOCAL(void) |
||||
set_wraparound_pointers (j_decompress_ptr cinfo) |
||||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||
* This changes the pointer list state from top-of-image to the normal state. |
||||
*/ |
||||
{ |
||||
my_main_ptr main_ptr = (my_main_ptr) cinfo->main; |
||||
int ci, i, rgroup; |
||||
int M = cinfo->_min_DCT_scaled_size; |
||||
jpeg_component_info *compptr; |
||||
JSAMPARRAY xbuf0, xbuf1; |
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / |
||||
cinfo->_min_DCT_scaled_size; /* height of a row group of component */ |
||||
xbuf0 = main_ptr->xbuffer[0][ci]; |
||||
xbuf1 = main_ptr->xbuffer[1][ci]; |
||||
for (i = 0; i < rgroup; i++) { |
||||
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; |
||||
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; |
||||
xbuf0[rgroup*(M+2) + i] = xbuf0[i]; |
||||
xbuf1[rgroup*(M+2) + i] = xbuf1[i]; |
||||
} |
||||
} |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,736 @@ |
||||
/*
|
||||
* jdmaster.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 2002-2009 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2009-2011, 2016, D. R. Commander. |
||||
* Copyright (C) 2013, Linaro Limited. |
||||
* Copyright (C) 2015, Google, Inc. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains master control logic for the JPEG decompressor. |
||||
* These routines are concerned with selecting the modules to be executed |
||||
* and with determining the number of passes and the work to be done in each |
||||
* pass. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jpegcomp.h" |
||||
#include "jdmaster.h" |
||||
#include "jsimd.h" |
||||
|
||||
|
||||
/*
|
||||
* Determine whether merged upsample/color conversion should be used. |
||||
* CRUCIAL: this must match the actual capabilities of jdmerge.c! |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
use_merged_upsample (j_decompress_ptr cinfo) |
||||
{ |
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED |
||||
/* Merging is the equivalent of plain box-filter upsampling */ |
||||
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) |
||||
return FALSE; |
||||
/* jdmerge.c only supports YCC=>RGB and YCC=>RGB565 color conversion */ |
||||
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || |
||||
(cinfo->out_color_space != JCS_RGB && |
||||
cinfo->out_color_space != JCS_RGB565 && |
||||
cinfo->out_color_space != JCS_EXT_RGB && |
||||
cinfo->out_color_space != JCS_EXT_RGBX && |
||||
cinfo->out_color_space != JCS_EXT_BGR && |
||||
cinfo->out_color_space != JCS_EXT_BGRX && |
||||
cinfo->out_color_space != JCS_EXT_XBGR && |
||||
cinfo->out_color_space != JCS_EXT_XRGB && |
||||
cinfo->out_color_space != JCS_EXT_RGBA && |
||||
cinfo->out_color_space != JCS_EXT_BGRA && |
||||
cinfo->out_color_space != JCS_EXT_ABGR && |
||||
cinfo->out_color_space != JCS_EXT_ARGB)) |
||||
return FALSE; |
||||
if ((cinfo->out_color_space == JCS_RGB565 && |
||||
cinfo->out_color_components != 3) || |
||||
(cinfo->out_color_space != JCS_RGB565 && |
||||
cinfo->out_color_components != rgb_pixelsize[cinfo->out_color_space])) |
||||
return FALSE; |
||||
/* and it only handles 2h1v or 2h2v sampling ratios */ |
||||
if (cinfo->comp_info[0].h_samp_factor != 2 || |
||||
cinfo->comp_info[1].h_samp_factor != 1 || |
||||
cinfo->comp_info[2].h_samp_factor != 1 || |
||||
cinfo->comp_info[0].v_samp_factor > 2 || |
||||
cinfo->comp_info[1].v_samp_factor != 1 || |
||||
cinfo->comp_info[2].v_samp_factor != 1) |
||||
return FALSE; |
||||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */ |
||||
if (cinfo->comp_info[0]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || |
||||
cinfo->comp_info[1]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || |
||||
cinfo->comp_info[2]._DCT_scaled_size != cinfo->_min_DCT_scaled_size) |
||||
return FALSE; |
||||
#ifdef WITH_SIMD |
||||
/* If YCbCr-to-RGB color conversion is SIMD-accelerated but merged upsampling
|
||||
isn't, then disabling merged upsampling is likely to be faster when |
||||
decompressing YCbCr JPEG images. */ |
||||
if (!jsimd_can_h2v2_merged_upsample() && !jsimd_can_h2v1_merged_upsample() && |
||||
jsimd_can_ycc_rgb() && cinfo->jpeg_color_space == JCS_YCbCr && |
||||
(cinfo->out_color_space == JCS_RGB || |
||||
(cinfo->out_color_space >= JCS_EXT_RGB && |
||||
cinfo->out_color_space <= JCS_EXT_ARGB))) |
||||
return FALSE; |
||||
#endif |
||||
/* ??? also need to test for upsample-time rescaling, when & if supported */ |
||||
return TRUE; /* by golly, it'll work... */ |
||||
#else |
||||
return FALSE; |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values. |
||||
* NOTE: this is exported for possible use by application. |
||||
* Hence it mustn't do anything that can't be done twice. |
||||
*/ |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 |
||||
GLOBAL(void) |
||||
#else |
||||
LOCAL(void) |
||||
#endif |
||||
jpeg_core_output_dimensions (j_decompress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase.
|
||||
* This function is used for transcoding and full decompression. |
||||
*/ |
||||
{ |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Compute actual output image dimensions and DCT scaling choices. */ |
||||
if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom) { |
||||
/* Provide 1/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 1; |
||||
cinfo->_min_DCT_v_scaled_size = 1; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 2) { |
||||
/* Provide 2/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 2L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 2L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 2; |
||||
cinfo->_min_DCT_v_scaled_size = 2; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 3) { |
||||
/* Provide 3/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 3L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 3L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 3; |
||||
cinfo->_min_DCT_v_scaled_size = 3; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 4) { |
||||
/* Provide 4/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 4L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 4L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 4; |
||||
cinfo->_min_DCT_v_scaled_size = 4; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 5) { |
||||
/* Provide 5/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 5L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 5L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 5; |
||||
cinfo->_min_DCT_v_scaled_size = 5; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 6) { |
||||
/* Provide 6/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 6L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 6L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 6; |
||||
cinfo->_min_DCT_v_scaled_size = 6; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 7) { |
||||
/* Provide 7/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 7L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 7L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 7; |
||||
cinfo->_min_DCT_v_scaled_size = 7; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 8) { |
||||
/* Provide 8/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 8L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 8L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 8; |
||||
cinfo->_min_DCT_v_scaled_size = 8; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 9) { |
||||
/* Provide 9/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 9L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 9L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 9; |
||||
cinfo->_min_DCT_v_scaled_size = 9; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 10) { |
||||
/* Provide 10/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 10L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 10L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 10; |
||||
cinfo->_min_DCT_v_scaled_size = 10; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 11) { |
||||
/* Provide 11/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 11L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 11L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 11; |
||||
cinfo->_min_DCT_v_scaled_size = 11; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 12) { |
||||
/* Provide 12/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 12L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 12L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 12; |
||||
cinfo->_min_DCT_v_scaled_size = 12; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 13) { |
||||
/* Provide 13/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 13L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 13L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 13; |
||||
cinfo->_min_DCT_v_scaled_size = 13; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 14) { |
||||
/* Provide 14/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 14L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 14L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 14; |
||||
cinfo->_min_DCT_v_scaled_size = 14; |
||||
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 15) { |
||||
/* Provide 15/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 15L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 15L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 15; |
||||
cinfo->_min_DCT_v_scaled_size = 15; |
||||
} else { |
||||
/* Provide 16/block_size scaling */ |
||||
cinfo->output_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * 16L, (long) DCTSIZE); |
||||
cinfo->output_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * 16L, (long) DCTSIZE); |
||||
cinfo->_min_DCT_h_scaled_size = 16; |
||||
cinfo->_min_DCT_v_scaled_size = 16; |
||||
} |
||||
|
||||
/* Recompute dimensions of components */ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
compptr->_DCT_h_scaled_size = cinfo->_min_DCT_h_scaled_size; |
||||
compptr->_DCT_v_scaled_size = cinfo->_min_DCT_v_scaled_size; |
||||
} |
||||
|
||||
#else /* !IDCT_SCALING_SUPPORTED */ |
||||
|
||||
/* Hardwire it to "no scaling" */ |
||||
cinfo->output_width = cinfo->image_width; |
||||
cinfo->output_height = cinfo->image_height; |
||||
/* jdinput.c has already initialized DCT_scaled_size,
|
||||
* and has computed unscaled downsampled_width and downsampled_height. |
||||
*/ |
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values. |
||||
* NOTE: this is exported for possible use by application. |
||||
* Hence it mustn't do anything that can't be done twice. |
||||
* Also note that it may be called before the master module is initialized! |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_calc_output_dimensions (j_decompress_ptr cinfo) |
||||
/* Do computations that are needed before master selection phase */ |
||||
{ |
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
#endif |
||||
|
||||
/* Prevent application from calling me at wrong times */ |
||||
if (cinfo->global_state != DSTATE_READY) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
/* Compute core output image dimensions and DCT scaling choices. */ |
||||
jpeg_core_output_dimensions(cinfo); |
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale up the chroma components via IDCT scaling rather than upsampling. |
||||
* This saves time if the upsampler gets to use 1:1 scaling. |
||||
* Note this code adapts subsampling ratios which are powers of 2. |
||||
*/ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
int ssize = cinfo->_min_DCT_scaled_size; |
||||
while (ssize < DCTSIZE && |
||||
((cinfo->max_h_samp_factor * cinfo->_min_DCT_scaled_size) % |
||||
(compptr->h_samp_factor * ssize * 2) == 0) && |
||||
((cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size) % |
||||
(compptr->v_samp_factor * ssize * 2) == 0)) { |
||||
ssize = ssize * 2; |
||||
} |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = ssize; |
||||
#else |
||||
compptr->DCT_scaled_size = ssize; |
||||
#endif |
||||
} |
||||
|
||||
/* Recompute downsampled dimensions of components;
|
||||
* application needs to know these if using raw downsampled data. |
||||
*/ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Size in samples, after IDCT scaling */ |
||||
compptr->downsampled_width = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_width * |
||||
(long) (compptr->h_samp_factor * compptr->_DCT_scaled_size), |
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE)); |
||||
compptr->downsampled_height = (JDIMENSION) |
||||
jdiv_round_up((long) cinfo->image_height * |
||||
(long) (compptr->v_samp_factor * compptr->_DCT_scaled_size), |
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE)); |
||||
} |
||||
|
||||
#else /* !IDCT_SCALING_SUPPORTED */ |
||||
|
||||
/* Hardwire it to "no scaling" */ |
||||
cinfo->output_width = cinfo->image_width; |
||||
cinfo->output_height = cinfo->image_height; |
||||
/* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
|
||||
* and has computed unscaled downsampled_width and downsampled_height. |
||||
*/ |
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */ |
||||
|
||||
/* Report number of components in selected colorspace. */ |
||||
/* Probably this should be in the color conversion module... */ |
||||
switch (cinfo->out_color_space) { |
||||
case JCS_GRAYSCALE: |
||||
cinfo->out_color_components = 1; |
||||
break; |
||||
case JCS_RGB: |
||||
case JCS_EXT_RGB: |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_BGR: |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_RGBA: |
||||
case JCS_EXT_BGRA: |
||||
case JCS_EXT_ABGR: |
||||
case JCS_EXT_ARGB: |
||||
cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space]; |
||||
break; |
||||
case JCS_YCbCr: |
||||
case JCS_RGB565: |
||||
cinfo->out_color_components = 3; |
||||
break; |
||||
case JCS_CMYK: |
||||
case JCS_YCCK: |
||||
cinfo->out_color_components = 4; |
||||
break; |
||||
default: /* else must be same colorspace as in file */ |
||||
cinfo->out_color_components = cinfo->num_components; |
||||
break; |
||||
} |
||||
cinfo->output_components = (cinfo->quantize_colors ? 1 : |
||||
cinfo->out_color_components); |
||||
|
||||
/* See if upsampler will want to emit more than one row at a time */ |
||||
if (use_merged_upsample(cinfo)) |
||||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; |
||||
else |
||||
cinfo->rec_outbuf_height = 1; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Several decompression processes need to range-limit values to the range |
||||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range |
||||
* due to noise introduced by quantization, roundoff error, etc. These |
||||
* processes are inner loops and need to be as fast as possible. On most |
||||
* machines, particularly CPUs with pipelines or instruction prefetch, |
||||
* a (subscript-check-less) C table lookup |
||||
* x = sample_range_limit[x]; |
||||
* is faster than explicit tests |
||||
* if (x < 0) x = 0; |
||||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE; |
||||
* These processes all use a common table prepared by the routine below. |
||||
* |
||||
* For most steps we can mathematically guarantee that the initial value |
||||
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from |
||||
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial |
||||
* limiting step (just after the IDCT), a wildly out-of-range value is |
||||
* possible if the input data is corrupt. To avoid any chance of indexing |
||||
* off the end of memory and getting a bad-pointer trap, we perform the |
||||
* post-IDCT limiting thus: |
||||
* x = range_limit[x & MASK]; |
||||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit |
||||
* samples. Under normal circumstances this is more than enough range and |
||||
* a correct output will be generated; with bogus input data the mask will |
||||
* cause wraparound, and we will safely generate a bogus-but-in-range output. |
||||
* For the post-IDCT step, we want to convert the data from signed to unsigned |
||||
* representation by adding CENTERJSAMPLE at the same time that we limit it. |
||||
* So the post-IDCT limiting table ends up looking like this: |
||||
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, |
||||
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), |
||||
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), |
||||
* 0,1,...,CENTERJSAMPLE-1 |
||||
* Negative inputs select values from the upper half of the table after |
||||
* masking. |
||||
* |
||||
* We can save some space by overlapping the start of the post-IDCT table |
||||
* with the simpler range limiting table. The post-IDCT table begins at |
||||
* sample_range_limit + CENTERJSAMPLE. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
prepare_range_limit_table (j_decompress_ptr cinfo) |
||||
/* Allocate and fill in the sample_range_limit table */ |
||||
{ |
||||
JSAMPLE *table; |
||||
int i; |
||||
|
||||
table = (JSAMPLE *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE)); |
||||
table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ |
||||
cinfo->sample_range_limit = table; |
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */ |
||||
MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * sizeof(JSAMPLE)); |
||||
/* Main part of "simple" table: limit[x] = x */ |
||||
for (i = 0; i <= MAXJSAMPLE; i++) |
||||
table[i] = (JSAMPLE) i; |
||||
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ |
||||
/* End of simple table, rest of first half of post-IDCT table */ |
||||
for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) |
||||
table[i] = MAXJSAMPLE; |
||||
/* Second half of post-IDCT table */ |
||||
MEMZERO(table + (2 * (MAXJSAMPLE+1)), |
||||
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE)); |
||||
MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), |
||||
cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE)); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules. |
||||
* This is done once at jpeg_start_decompress time. We determine |
||||
* which modules will be used and give them appropriate initialization calls. |
||||
* We also initialize the decompressor input side to begin consuming data. |
||||
* |
||||
* Since jpeg_read_header has finished, we know what is in the SOF |
||||
* and (first) SOS markers. We also have all the application parameter |
||||
* settings. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
master_selection (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
boolean use_c_buffer; |
||||
long samplesperrow; |
||||
JDIMENSION jd_samplesperrow; |
||||
|
||||
/* Initialize dimensions and other stuff */ |
||||
jpeg_calc_output_dimensions(cinfo); |
||||
prepare_range_limit_table(cinfo); |
||||
|
||||
/* Width of an output scanline must be representable as JDIMENSION. */ |
||||
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; |
||||
jd_samplesperrow = (JDIMENSION) samplesperrow; |
||||
if ((long) jd_samplesperrow != samplesperrow) |
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
||||
|
||||
/* Initialize my private state */ |
||||
master->pass_number = 0; |
||||
master->using_merged_upsample = use_merged_upsample(cinfo); |
||||
|
||||
/* Color quantizer selection */ |
||||
master->quantizer_1pass = NULL; |
||||
master->quantizer_2pass = NULL; |
||||
/* No mode changes if not using buffered-image mode. */ |
||||
if (! cinfo->quantize_colors || ! cinfo->buffered_image) { |
||||
cinfo->enable_1pass_quant = FALSE; |
||||
cinfo->enable_external_quant = FALSE; |
||||
cinfo->enable_2pass_quant = FALSE; |
||||
} |
||||
if (cinfo->quantize_colors) { |
||||
if (cinfo->raw_data_out) |
||||
ERREXIT(cinfo, JERR_NOTIMPL); |
||||
/* 2-pass quantizer only works in 3-component color space. */ |
||||
if (cinfo->out_color_components != 3) { |
||||
cinfo->enable_1pass_quant = TRUE; |
||||
cinfo->enable_external_quant = FALSE; |
||||
cinfo->enable_2pass_quant = FALSE; |
||||
cinfo->colormap = NULL; |
||||
} else if (cinfo->colormap != NULL) { |
||||
cinfo->enable_external_quant = TRUE; |
||||
} else if (cinfo->two_pass_quantize) { |
||||
cinfo->enable_2pass_quant = TRUE; |
||||
} else { |
||||
cinfo->enable_1pass_quant = TRUE; |
||||
} |
||||
|
||||
if (cinfo->enable_1pass_quant) { |
||||
#ifdef QUANT_1PASS_SUPPORTED |
||||
jinit_1pass_quantizer(cinfo); |
||||
master->quantizer_1pass = cinfo->cquantize; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} |
||||
|
||||
/* We use the 2-pass code to map to external colormaps. */ |
||||
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
jinit_2pass_quantizer(cinfo); |
||||
master->quantizer_2pass = cinfo->cquantize; |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} |
||||
/* If both quantizers are initialized, the 2-pass one is left active;
|
||||
* this is necessary for starting with quantization to an external map. |
||||
*/ |
||||
} |
||||
|
||||
/* Post-processing: in particular, color conversion first */ |
||||
if (! cinfo->raw_data_out) { |
||||
if (master->using_merged_upsample) { |
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED |
||||
jinit_merged_upsampler(cinfo); /* does color conversion too */ |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else { |
||||
jinit_color_deconverter(cinfo); |
||||
jinit_upsampler(cinfo); |
||||
} |
||||
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); |
||||
} |
||||
/* Inverse DCT */ |
||||
jinit_inverse_dct(cinfo); |
||||
/* Entropy decoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) { |
||||
#ifdef D_ARITH_CODING_SUPPORTED |
||||
jinit_arith_decoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL); |
||||
#endif |
||||
} else { |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef D_PROGRESSIVE_SUPPORTED |
||||
jinit_phuff_decoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else |
||||
jinit_huff_decoder(cinfo); |
||||
} |
||||
|
||||
/* Initialize principal buffer controllers. */ |
||||
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; |
||||
jinit_d_coef_controller(cinfo, use_c_buffer); |
||||
|
||||
if (! cinfo->raw_data_out) |
||||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */ |
||||
(*cinfo->inputctl->start_input_pass) (cinfo); |
||||
|
||||
/* Set the first and last iMCU columns to decompress from single-scan images.
|
||||
* By default, decompress all of the iMCU columns. |
||||
*/ |
||||
cinfo->master->first_iMCU_col = 0; |
||||
cinfo->master->last_iMCU_col = cinfo->MCUs_per_row - 1; |
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
/* If jpeg_start_decompress will read the whole file, initialize
|
||||
* progress monitoring appropriately. The input step is counted |
||||
* as one pass. |
||||
*/ |
||||
if (cinfo->progress != NULL && ! cinfo->buffered_image && |
||||
cinfo->inputctl->has_multiple_scans) { |
||||
int nscans; |
||||
/* Estimate number of scans to set pass_limit. */ |
||||
if (cinfo->progressive_mode) { |
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ |
||||
nscans = 2 + 3 * cinfo->num_components; |
||||
} else { |
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */ |
||||
nscans = cinfo->num_components; |
||||
} |
||||
cinfo->progress->pass_counter = 0L; |
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; |
||||
cinfo->progress->completed_passes = 0; |
||||
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); |
||||
/* Count the input pass as done */ |
||||
master->pass_number++; |
||||
} |
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup. |
||||
* This is called at the beginning of each output pass. We determine which |
||||
* modules will be active during this pass and give them appropriate |
||||
* start_pass calls. We also set is_dummy_pass to indicate whether this |
||||
* is a "real" output pass or a dummy pass for color quantization. |
||||
* (In the latter case, jdapistd.c will crank the pass to completion.) |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
prepare_for_output_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
if (master->pub.is_dummy_pass) { |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
/* Final pass of 2-pass quantization */ |
||||
master->pub.is_dummy_pass = FALSE; |
||||
(*cinfo->cquantize->start_pass) (cinfo, FALSE); |
||||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
} else { |
||||
if (cinfo->quantize_colors && cinfo->colormap == NULL) { |
||||
/* Select new quantization method */ |
||||
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { |
||||
cinfo->cquantize = master->quantizer_2pass; |
||||
master->pub.is_dummy_pass = TRUE; |
||||
} else if (cinfo->enable_1pass_quant) { |
||||
cinfo->cquantize = master->quantizer_1pass; |
||||
} else { |
||||
ERREXIT(cinfo, JERR_MODE_CHANGE); |
||||
} |
||||
} |
||||
(*cinfo->idct->start_pass) (cinfo); |
||||
(*cinfo->coef->start_output_pass) (cinfo); |
||||
if (! cinfo->raw_data_out) { |
||||
if (! master->using_merged_upsample) |
||||
(*cinfo->cconvert->start_pass) (cinfo); |
||||
(*cinfo->upsample->start_pass) (cinfo); |
||||
if (cinfo->quantize_colors) |
||||
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); |
||||
(*cinfo->post->start_pass) (cinfo, |
||||
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
||||
} |
||||
} |
||||
|
||||
/* Set up progress monitor's pass info if present */ |
||||
if (cinfo->progress != NULL) { |
||||
cinfo->progress->completed_passes = master->pass_number; |
||||
cinfo->progress->total_passes = master->pass_number + |
||||
(master->pub.is_dummy_pass ? 2 : 1); |
||||
/* In buffered-image mode, we assume one more output pass if EOI not
|
||||
* yet reached, but no more passes if EOI has been reached. |
||||
*/ |
||||
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { |
||||
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of an output pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_output_pass (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
if (cinfo->quantize_colors) |
||||
(*cinfo->cquantize->finish_pass) (cinfo); |
||||
master->pass_number++; |
||||
} |
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED |
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_new_colormap (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
/* Prevent application from calling me at wrong times */ |
||||
if (cinfo->global_state != DSTATE_BUFIMAGE) |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
|
||||
if (cinfo->quantize_colors && cinfo->enable_external_quant && |
||||
cinfo->colormap != NULL) { |
||||
/* Select 2-pass quantizer for external colormap use */ |
||||
cinfo->cquantize = master->quantizer_2pass; |
||||
/* Notify quantizer of colormap change */ |
||||
(*cinfo->cquantize->new_color_map) (cinfo); |
||||
master->pub.is_dummy_pass = FALSE; /* just in case */ |
||||
} else |
||||
ERREXIT(cinfo, JERR_MODE_CHANGE); |
||||
} |
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize master decompression control and select active modules. |
||||
* This is performed at the start of jpeg_start_decompress. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_master_decompress (j_decompress_ptr cinfo) |
||||
{ |
||||
my_master_ptr master = (my_master_ptr) cinfo->master; |
||||
|
||||
master->pub.prepare_for_output_pass = prepare_for_output_pass; |
||||
master->pub.finish_output_pass = finish_output_pass; |
||||
|
||||
master->pub.is_dummy_pass = FALSE; |
||||
master->pub.jinit_upsampler_no_alloc = FALSE; |
||||
|
||||
master_selection(cinfo); |
||||
} |
@ -0,0 +1,28 @@ |
||||
/*
|
||||
* jdmaster.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1995, Thomas G. Lane. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the master control structure for the JPEG decompressor. |
||||
*/ |
||||
|
||||
/* Private state */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_decomp_master pub; /* public fields */ |
||||
|
||||
int pass_number; /* # of passes completed */ |
||||
|
||||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ |
||||
|
||||
/* Saved references to initialized quantizer modules,
|
||||
* in case we need to switch modes. |
||||
*/ |
||||
struct jpeg_color_quantizer *quantizer_1pass; |
||||
struct jpeg_color_quantizer *quantizer_2pass; |
||||
} my_decomp_master; |
||||
|
||||
typedef my_decomp_master *my_master_ptr; |
@ -0,0 +1,627 @@ |
||||
/*
|
||||
* jdmerge.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2009, 2011, 2014-2015, D. R. Commander. |
||||
* Copyright (C) 2013, Linaro Limited. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains code for merged upsampling/color conversion. |
||||
* |
||||
* This file combines functions from jdsample.c and jdcolor.c; |
||||
* read those files first to understand what's going on. |
||||
* |
||||
* When the chroma components are to be upsampled by simple replication |
||||
* (ie, box filtering), we can save some work in color conversion by |
||||
* calculating all the output pixels corresponding to a pair of chroma |
||||
* samples at one time. In the conversion equations |
||||
* R = Y + K1 * Cr |
||||
* G = Y + K2 * Cb + K3 * Cr |
||||
* B = Y + K4 * Cb |
||||
* only the Y term varies among the group of pixels corresponding to a pair |
||||
* of chroma samples, so the rest of the terms can be calculated just once. |
||||
* At typical sampling ratios, this eliminates half or three-quarters of the |
||||
* multiplications needed for color conversion. |
||||
* |
||||
* This file currently provides implementations for the following cases: |
||||
* YCbCr => RGB color conversion only. |
||||
* Sampling ratios of 2h1v or 2h2v. |
||||
* No scaling needed at upsample time. |
||||
* Corner-aligned (non-CCIR601) sampling alignment. |
||||
* Other special cases could be added, but in most applications these are |
||||
* the only common cases. (For uncommon cases we fall back on the more |
||||
* general code in jdsample.c and jdcolor.c.) |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jsimd.h" |
||||
#include "jconfigint.h" |
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_upsampler pub; /* public fields */ |
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */ |
||||
void (*upmethod) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); |
||||
|
||||
/* Private state for YCC->RGB conversion */ |
||||
int *Cr_r_tab; /* => table for Cr to R conversion */ |
||||
int *Cb_b_tab; /* => table for Cb to B conversion */ |
||||
JLONG *Cr_g_tab; /* => table for Cr to G conversion */ |
||||
JLONG *Cb_g_tab; /* => table for Cb to G conversion */ |
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the |
||||
* application provides just a one-row buffer; we also use the spare |
||||
* to discard the dummy last row if the image height is odd. |
||||
*/ |
||||
JSAMPROW spare_row; |
||||
boolean spare_full; /* T if spare buffer is occupied */ |
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */ |
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */ |
||||
} my_upsampler; |
||||
|
||||
typedef my_upsampler *my_upsample_ptr; |
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
||||
#define ONE_HALF ((JLONG) 1 << (SCALEBITS-1)) |
||||
#define FIX(x) ((JLONG) ((x) * (1L<<SCALEBITS) + 0.5)) |
||||
|
||||
|
||||
/* Include inline routines for colorspace extensions */ |
||||
|
||||
#include "jdmrgext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
|
||||
#define RGB_RED EXT_RGB_RED |
||||
#define RGB_GREEN EXT_RGB_GREEN |
||||
#define RGB_BLUE EXT_RGB_BLUE |
||||
#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE |
||||
#define h2v1_merged_upsample_internal extrgb_h2v1_merged_upsample_internal |
||||
#define h2v2_merged_upsample_internal extrgb_h2v2_merged_upsample_internal |
||||
#include "jdmrgext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef h2v1_merged_upsample_internal |
||||
#undef h2v2_merged_upsample_internal |
||||
|
||||
#define RGB_RED EXT_RGBX_RED |
||||
#define RGB_GREEN EXT_RGBX_GREEN |
||||
#define RGB_BLUE EXT_RGBX_BLUE |
||||
#define RGB_ALPHA 3 |
||||
#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE |
||||
#define h2v1_merged_upsample_internal extrgbx_h2v1_merged_upsample_internal |
||||
#define h2v2_merged_upsample_internal extrgbx_h2v2_merged_upsample_internal |
||||
#include "jdmrgext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef h2v1_merged_upsample_internal |
||||
#undef h2v2_merged_upsample_internal |
||||
|
||||
#define RGB_RED EXT_BGR_RED |
||||
#define RGB_GREEN EXT_BGR_GREEN |
||||
#define RGB_BLUE EXT_BGR_BLUE |
||||
#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE |
||||
#define h2v1_merged_upsample_internal extbgr_h2v1_merged_upsample_internal |
||||
#define h2v2_merged_upsample_internal extbgr_h2v2_merged_upsample_internal |
||||
#include "jdmrgext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_PIXELSIZE |
||||
#undef h2v1_merged_upsample_internal |
||||
#undef h2v2_merged_upsample_internal |
||||
|
||||
#define RGB_RED EXT_BGRX_RED |
||||
#define RGB_GREEN EXT_BGRX_GREEN |
||||
#define RGB_BLUE EXT_BGRX_BLUE |
||||
#define RGB_ALPHA 3 |
||||
#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE |
||||
#define h2v1_merged_upsample_internal extbgrx_h2v1_merged_upsample_internal |
||||
#define h2v2_merged_upsample_internal extbgrx_h2v2_merged_upsample_internal |
||||
#include "jdmrgext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef h2v1_merged_upsample_internal |
||||
#undef h2v2_merged_upsample_internal |
||||
|
||||
#define RGB_RED EXT_XBGR_RED |
||||
#define RGB_GREEN EXT_XBGR_GREEN |
||||
#define RGB_BLUE EXT_XBGR_BLUE |
||||
#define RGB_ALPHA 0 |
||||
#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE |
||||
#define h2v1_merged_upsample_internal extxbgr_h2v1_merged_upsample_internal |
||||
#define h2v2_merged_upsample_internal extxbgr_h2v2_merged_upsample_internal |
||||
#include "jdmrgext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef h2v1_merged_upsample_internal |
||||
#undef h2v2_merged_upsample_internal |
||||
|
||||
#define RGB_RED EXT_XRGB_RED |
||||
#define RGB_GREEN EXT_XRGB_GREEN |
||||
#define RGB_BLUE EXT_XRGB_BLUE |
||||
#define RGB_ALPHA 0 |
||||
#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE |
||||
#define h2v1_merged_upsample_internal extxrgb_h2v1_merged_upsample_internal |
||||
#define h2v2_merged_upsample_internal extxrgb_h2v2_merged_upsample_internal |
||||
#include "jdmrgext.c" |
||||
#undef RGB_RED |
||||
#undef RGB_GREEN |
||||
#undef RGB_BLUE |
||||
#undef RGB_ALPHA |
||||
#undef RGB_PIXELSIZE |
||||
#undef h2v1_merged_upsample_internal |
||||
#undef h2v2_merged_upsample_internal |
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion. |
||||
* This is taken directly from jdcolor.c; see that file for more info. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
build_ycc_rgb_table (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
int i; |
||||
JLONG x; |
||||
SHIFT_TEMPS |
||||
|
||||
upsample->Cr_r_tab = (int *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(int)); |
||||
upsample->Cb_b_tab = (int *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(int)); |
||||
upsample->Cr_g_tab = (JLONG *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(JLONG)); |
||||
upsample->Cb_g_tab = (JLONG *) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(MAXJSAMPLE+1) * sizeof(JLONG)); |
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
||||
/* Cr=>R value is nearest int to 1.40200 * x */ |
||||
upsample->Cr_r_tab[i] = (int) |
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); |
||||
/* Cb=>B value is nearest int to 1.77200 * x */ |
||||
upsample->Cb_b_tab[i] = (int) |
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); |
||||
/* Cr=>G value is scaled-up -0.71414 * x */ |
||||
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; |
||||
/* Cb=>G value is scaled-up -0.34414 * x */ |
||||
/* We also add in ONE_HALF so that need not do it in inner loop */ |
||||
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_merged_upsample (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
|
||||
/* Mark the spare buffer empty */ |
||||
upsample->spare_full = FALSE; |
||||
/* Initialize total-height counter for detecting bottom of image */ |
||||
upsample->rows_to_go = cinfo->output_height; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion). |
||||
* |
||||
* The control routine just handles the row buffering considerations. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
merged_2v_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
/* 2:1 vertical sampling case: may need a spare row. */ |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
JSAMPROW work_ptrs[2]; |
||||
JDIMENSION num_rows; /* number of rows returned to caller */ |
||||
|
||||
if (upsample->spare_full) { |
||||
/* If we have a spare row saved from a previous cycle, just return it. */ |
||||
JDIMENSION size = upsample->out_row_width; |
||||
if (cinfo->out_color_space == JCS_RGB565) |
||||
size = cinfo->output_width * 2; |
||||
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, |
||||
1, size); |
||||
num_rows = 1; |
||||
upsample->spare_full = FALSE; |
||||
} else { |
||||
/* Figure number of rows to return to caller. */ |
||||
num_rows = 2; |
||||
/* Not more than the distance to the end of the image. */ |
||||
if (num_rows > upsample->rows_to_go) |
||||
num_rows = upsample->rows_to_go; |
||||
/* And not more than what the client can accept: */ |
||||
out_rows_avail -= *out_row_ctr; |
||||
if (num_rows > out_rows_avail) |
||||
num_rows = out_rows_avail; |
||||
/* Create output pointer array for upsampler. */ |
||||
work_ptrs[0] = output_buf[*out_row_ctr]; |
||||
if (num_rows > 1) { |
||||
work_ptrs[1] = output_buf[*out_row_ctr + 1]; |
||||
} else { |
||||
work_ptrs[1] = upsample->spare_row; |
||||
upsample->spare_full = TRUE; |
||||
} |
||||
/* Now do the upsampling. */ |
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); |
||||
} |
||||
|
||||
/* Adjust counts */ |
||||
*out_row_ctr += num_rows; |
||||
upsample->rows_to_go -= num_rows; |
||||
/* When the buffer is emptied, declare this input row group consumed */ |
||||
if (! upsample->spare_full) |
||||
(*in_row_group_ctr)++; |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
merged_1v_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */ |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
|
||||
/* Just do the upsampling. */ |
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, |
||||
output_buf + *out_row_ctr); |
||||
/* Adjust counts */ |
||||
(*out_row_ctr)++; |
||||
(*in_row_group_ctr)++; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by the control routines to do |
||||
* the actual upsampling/conversion. One row group is processed per call. |
||||
* |
||||
* Note: since we may be writing directly into application-supplied buffers, |
||||
* we have to be honest about the output width; we can't assume the buffer |
||||
* has been rounded up to an even width. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v1_merged_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
switch (cinfo->out_color_space) { |
||||
case JCS_EXT_RGB: |
||||
extrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
extrgbx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
extbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
extbgrx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
extxbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
extxrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
default: |
||||
h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_merged_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
switch (cinfo->out_color_space) { |
||||
case JCS_EXT_RGB: |
||||
extrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_RGBX: |
||||
case JCS_EXT_RGBA: |
||||
extrgbx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_BGR: |
||||
extbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_BGRX: |
||||
case JCS_EXT_BGRA: |
||||
extbgrx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_XBGR: |
||||
case JCS_EXT_ABGR: |
||||
extxbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
case JCS_EXT_XRGB: |
||||
case JCS_EXT_ARGB: |
||||
extxrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
default: |
||||
h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* RGB565 conversion |
||||
*/ |
||||
|
||||
#define PACK_SHORT_565_LE(r, g, b) ((((r) << 8) & 0xF800) | \ |
||||
(((g) << 3) & 0x7E0) | ((b) >> 3)) |
||||
#define PACK_SHORT_565_BE(r, g, b) (((r) & 0xF8) | ((g) >> 5) | \ |
||||
(((g) << 11) & 0xE000) | \
|
||||
(((b) << 5) & 0x1F00)) |
||||
|
||||
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l) |
||||
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r) |
||||
|
||||
#define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3) |
||||
|
||||
#define WRITE_TWO_PIXELS_LE(addr, pixels) { \ |
||||
((INT16*)(addr))[0] = (INT16)(pixels); \
|
||||
((INT16*)(addr))[1] = (INT16)((pixels) >> 16); \
|
||||
} |
||||
#define WRITE_TWO_PIXELS_BE(addr, pixels) { \ |
||||
((INT16*)(addr))[1] = (INT16)(pixels); \
|
||||
((INT16*)(addr))[0] = (INT16)((pixels) >> 16); \
|
||||
} |
||||
|
||||
#define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF)) |
||||
#define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1)) |
||||
#define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF)) |
||||
|
||||
|
||||
/* Declarations for ordered dithering
|
||||
* |
||||
* We use a 4x4 ordered dither array packed into 32 bits. This array is |
||||
* sufficent for dithering RGB888 to RGB565. |
||||
*/ |
||||
|
||||
#define DITHER_MASK 0x3 |
||||
#define DITHER_ROTATE(x) ((((x) & 0xFF) << 24) | (((x) >> 8) & 0x00FFFFFF)) |
||||
static const JLONG dither_matrix[4] = { |
||||
0x0008020A, |
||||
0x0C040E06, |
||||
0x030B0109, |
||||
0x0F070D05 |
||||
}; |
||||
|
||||
|
||||
/* Include inline routines for RGB565 conversion */ |
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_LE |
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE |
||||
#define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_LE |
||||
#define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_le |
||||
#define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_le |
||||
#define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_le |
||||
#define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_le |
||||
#include "jdmrg565.c" |
||||
#undef PACK_SHORT_565 |
||||
#undef PACK_TWO_PIXELS |
||||
#undef WRITE_TWO_PIXELS |
||||
#undef h2v1_merged_upsample_565_internal |
||||
#undef h2v1_merged_upsample_565D_internal |
||||
#undef h2v2_merged_upsample_565_internal |
||||
#undef h2v2_merged_upsample_565D_internal |
||||
|
||||
#define PACK_SHORT_565 PACK_SHORT_565_BE |
||||
#define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE |
||||
#define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_BE |
||||
#define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_be |
||||
#define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_be |
||||
#define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_be |
||||
#define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_be |
||||
#include "jdmrg565.c" |
||||
#undef PACK_SHORT_565 |
||||
#undef PACK_TWO_PIXELS |
||||
#undef WRITE_TWO_PIXELS |
||||
#undef h2v1_merged_upsample_565_internal |
||||
#undef h2v1_merged_upsample_565D_internal |
||||
#undef h2v2_merged_upsample_565_internal |
||||
#undef h2v2_merged_upsample_565D_internal |
||||
|
||||
|
||||
static INLINE boolean is_big_endian(void) |
||||
{ |
||||
int test_value = 1; |
||||
if (*(char *)&test_value != 1) |
||||
return TRUE; |
||||
return FALSE; |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
h2v1_merged_upsample_565 (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
if (is_big_endian()) |
||||
h2v1_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
else |
||||
h2v1_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
h2v1_merged_upsample_565D (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
if (is_big_endian()) |
||||
h2v1_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
else |
||||
h2v1_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
h2v2_merged_upsample_565 (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
if (is_big_endian()) |
||||
h2v2_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
else |
||||
h2v2_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
h2v2_merged_upsample_565D (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
if (is_big_endian()) |
||||
h2v2_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
else |
||||
h2v2_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr, |
||||
output_buf); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for merged upsampling/color conversion. |
||||
* |
||||
* NB: this is called under the conditions determined by use_merged_upsample() |
||||
* in jdmaster.c. That routine MUST correspond to the actual capabilities |
||||
* of this module; no safety checks are made here. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_merged_upsampler (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample; |
||||
|
||||
upsample = (my_upsample_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_upsampler)); |
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample; |
||||
upsample->pub.start_pass = start_pass_merged_upsample; |
||||
upsample->pub.need_context_rows = FALSE; |
||||
|
||||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; |
||||
|
||||
if (cinfo->max_v_samp_factor == 2) { |
||||
upsample->pub.upsample = merged_2v_upsample; |
||||
if (jsimd_can_h2v2_merged_upsample()) |
||||
upsample->upmethod = jsimd_h2v2_merged_upsample; |
||||
else |
||||
upsample->upmethod = h2v2_merged_upsample; |
||||
if (cinfo->out_color_space == JCS_RGB565) { |
||||
if (cinfo->dither_mode != JDITHER_NONE) { |
||||
upsample->upmethod = h2v2_merged_upsample_565D; |
||||
} else { |
||||
upsample->upmethod = h2v2_merged_upsample_565; |
||||
} |
||||
} |
||||
/* Allocate a spare row buffer */ |
||||
upsample->spare_row = (JSAMPROW) |
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(size_t) (upsample->out_row_width * sizeof(JSAMPLE))); |
||||
} else { |
||||
upsample->pub.upsample = merged_1v_upsample; |
||||
if (jsimd_can_h2v1_merged_upsample()) |
||||
upsample->upmethod = jsimd_h2v1_merged_upsample; |
||||
else |
||||
upsample->upmethod = h2v1_merged_upsample; |
||||
if (cinfo->out_color_space == JCS_RGB565) { |
||||
if (cinfo->dither_mode != JDITHER_NONE) { |
||||
upsample->upmethod = h2v1_merged_upsample_565D; |
||||
} else { |
||||
upsample->upmethod = h2v1_merged_upsample_565; |
||||
} |
||||
} |
||||
/* No spare row needed */ |
||||
upsample->spare_row = NULL; |
||||
} |
||||
|
||||
build_ycc_rgb_table(cinfo); |
||||
} |
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */ |
@ -0,0 +1,356 @@ |
||||
/*
|
||||
* jdmrg565.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2013, Linaro Limited. |
||||
* Copyright (C) 2014-2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains code for merged upsampling/color conversion. |
||||
*/ |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
h2v1_merged_upsample_565_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr; |
||||
JSAMPROW inptr0, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
JLONG * Crgtab = upsample->Cr_g_tab; |
||||
JLONG * Cbgtab = upsample->Cb_g_tab; |
||||
unsigned int r, g, b; |
||||
JLONG rgb; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr = output_buf[0]; |
||||
|
||||
/* Loop for each pair of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
|
||||
/* Fetch 2 Y values and emit 2 pixels */ |
||||
y = GETJSAMPLE(*inptr0++); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr0++); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
|
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
y = GETJSAMPLE(*inptr0); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
h2v1_merged_upsample_565D_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr; |
||||
JSAMPROW inptr0, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
JLONG * Crgtab = upsample->Cr_g_tab; |
||||
JLONG * Cbgtab = upsample->Cb_g_tab; |
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; |
||||
unsigned int r, g, b; |
||||
JLONG rgb; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr = output_buf[0]; |
||||
|
||||
/* Loop for each pair of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
|
||||
/* Fetch 2 Y values and emit 2 pixels */ |
||||
y = GETJSAMPLE(*inptr0++); |
||||
r = range_limit[DITHER_565_R(y + cred, d0)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr0++); |
||||
r = range_limit[DITHER_565_R(y + cred, d0)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_PIXELS(outptr, rgb); |
||||
outptr += 4; |
||||
} |
||||
|
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
y = GETJSAMPLE(*inptr0); |
||||
r = range_limit[DITHER_565_R(y + cred, d0)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d0)]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr = (INT16)rgb; |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
h2v2_merged_upsample_565_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr0, outptr1; |
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
JLONG * Crgtab = upsample->Cr_g_tab; |
||||
JLONG * Cbgtab = upsample->Cb_g_tab; |
||||
unsigned int r, g, b; |
||||
JLONG rgb; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr * 2]; |
||||
inptr01 = input_buf[0][in_row_group_ctr * 2 + 1]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr0 = output_buf[0]; |
||||
outptr1 = output_buf[1]; |
||||
|
||||
/* Loop for each group of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
|
||||
/* Fetch 4 Y values and emit 4 pixels */ |
||||
y = GETJSAMPLE(*inptr00++); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr00++); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_PIXELS(outptr0, rgb); |
||||
outptr0 += 4; |
||||
|
||||
y = GETJSAMPLE(*inptr01++); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr01++); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_PIXELS(outptr1, rgb); |
||||
outptr1 += 4; |
||||
} |
||||
|
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
|
||||
y = GETJSAMPLE(*inptr00); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr0 = (INT16)rgb; |
||||
|
||||
y = GETJSAMPLE(*inptr01); |
||||
r = range_limit[y + cred]; |
||||
g = range_limit[y + cgreen]; |
||||
b = range_limit[y + cblue]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr1 = (INT16)rgb; |
||||
} |
||||
} |
||||
|
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
h2v2_merged_upsample_565D_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr0, outptr1; |
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
JLONG * Crgtab = upsample->Cr_g_tab; |
||||
JLONG * Cbgtab = upsample->Cb_g_tab; |
||||
JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; |
||||
JLONG d1 = dither_matrix[(cinfo->output_scanline+1) & DITHER_MASK]; |
||||
unsigned int r, g, b; |
||||
JLONG rgb; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2]; |
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr0 = output_buf[0]; |
||||
outptr1 = output_buf[1]; |
||||
|
||||
/* Loop for each group of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
|
||||
/* Fetch 4 Y values and emit 4 pixels */ |
||||
y = GETJSAMPLE(*inptr00++); |
||||
r = range_limit[DITHER_565_R(y + cred, d0)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr00++); |
||||
r = range_limit[DITHER_565_R(y + cred, d1)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d1)]; |
||||
d1 = DITHER_ROTATE(d1); |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_PIXELS(outptr0, rgb); |
||||
outptr0 += 4; |
||||
|
||||
y = GETJSAMPLE(*inptr01++); |
||||
r = range_limit[DITHER_565_R(y + cred, d0)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d0)]; |
||||
d0 = DITHER_ROTATE(d0); |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
|
||||
y = GETJSAMPLE(*inptr01++); |
||||
r = range_limit[DITHER_565_R(y + cred, d1)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d1)]; |
||||
d1 = DITHER_ROTATE(d1); |
||||
rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); |
||||
|
||||
WRITE_TWO_PIXELS(outptr1, rgb); |
||||
outptr1 += 4; |
||||
} |
||||
|
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
|
||||
y = GETJSAMPLE(*inptr00); |
||||
r = range_limit[DITHER_565_R(y + cred, d0)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d0)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d0)]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr0 = (INT16)rgb; |
||||
|
||||
y = GETJSAMPLE(*inptr01); |
||||
r = range_limit[DITHER_565_R(y + cred, d1)]; |
||||
g = range_limit[DITHER_565_G(y + cgreen, d1)]; |
||||
b = range_limit[DITHER_565_B(y + cblue, d1)]; |
||||
rgb = PACK_SHORT_565(r, g, b); |
||||
*(INT16*)outptr1 = (INT16)rgb; |
||||
} |
||||
} |
@ -0,0 +1,186 @@ |
||||
/*
|
||||
* jdmrgext.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2011, 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains code for merged upsampling/color conversion. |
||||
*/ |
||||
|
||||
|
||||
/* This file is included by jdmerge.c */ |
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
h2v1_merged_upsample_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr; |
||||
JSAMPROW inptr0, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
JLONG * Crgtab = upsample->Cr_g_tab; |
||||
JLONG * Cbgtab = upsample->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr = output_buf[0]; |
||||
/* Loop for each pair of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
/* Fetch 2 Y values and emit 2 pixels */ |
||||
y = GETJSAMPLE(*inptr0++); |
||||
outptr[RGB_RED] = range_limit[y + cred]; |
||||
outptr[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr0++); |
||||
outptr[RGB_RED] = range_limit[y + cred]; |
||||
outptr[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr += RGB_PIXELSIZE; |
||||
} |
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
y = GETJSAMPLE(*inptr0); |
||||
outptr[RGB_RED] = range_limit[y + cred]; |
||||
outptr[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. |
||||
*/ |
||||
|
||||
INLINE |
||||
LOCAL(void) |
||||
h2v2_merged_upsample_internal (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
register int y, cred, cgreen, cblue; |
||||
int cb, cr; |
||||
register JSAMPROW outptr0, outptr1; |
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2; |
||||
JDIMENSION col; |
||||
/* copy these pointers into registers if possible */ |
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
||||
int * Crrtab = upsample->Cr_r_tab; |
||||
int * Cbbtab = upsample->Cb_b_tab; |
||||
JLONG * Crgtab = upsample->Cr_g_tab; |
||||
JLONG * Cbgtab = upsample->Cb_g_tab; |
||||
SHIFT_TEMPS |
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2]; |
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; |
||||
inptr1 = input_buf[1][in_row_group_ctr]; |
||||
inptr2 = input_buf[2][in_row_group_ctr]; |
||||
outptr0 = output_buf[0]; |
||||
outptr1 = output_buf[1]; |
||||
/* Loop for each group of output pixels */ |
||||
for (col = cinfo->output_width >> 1; col > 0; col--) { |
||||
/* Do the chroma part of the calculation */ |
||||
cb = GETJSAMPLE(*inptr1++); |
||||
cr = GETJSAMPLE(*inptr2++); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
/* Fetch 4 Y values and emit 4 pixels */ |
||||
y = GETJSAMPLE(*inptr00++); |
||||
outptr0[RGB_RED] = range_limit[y + cred]; |
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr0[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr0[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr0 += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr00++); |
||||
outptr0[RGB_RED] = range_limit[y + cred]; |
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr0[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr0[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr0 += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr01++); |
||||
outptr1[RGB_RED] = range_limit[y + cred]; |
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr1[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr1[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr1 += RGB_PIXELSIZE; |
||||
y = GETJSAMPLE(*inptr01++); |
||||
outptr1[RGB_RED] = range_limit[y + cred]; |
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr1[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr1[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
outptr1 += RGB_PIXELSIZE; |
||||
} |
||||
/* If image width is odd, do the last output column separately */ |
||||
if (cinfo->output_width & 1) { |
||||
cb = GETJSAMPLE(*inptr1); |
||||
cr = GETJSAMPLE(*inptr2); |
||||
cred = Crrtab[cr]; |
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
||||
cblue = Cbbtab[cb]; |
||||
y = GETJSAMPLE(*inptr00); |
||||
outptr0[RGB_RED] = range_limit[y + cred]; |
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr0[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr0[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
y = GETJSAMPLE(*inptr01); |
||||
outptr1[RGB_RED] = range_limit[y + cred]; |
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
||||
outptr1[RGB_BLUE] = range_limit[y + cblue]; |
||||
#ifdef RGB_ALPHA |
||||
outptr1[RGB_ALPHA] = 0xFF; |
||||
#endif |
||||
} |
||||
} |
@ -0,0 +1,674 @@ |
||||
/*
|
||||
* jdphuff.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1995-1997, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015-2016, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains Huffman entropy decoding routines for progressive JPEG. |
||||
* |
||||
* Much of the complexity here has to do with supporting input suspension. |
||||
* If the data source module demands suspension, we want to be able to back |
||||
* up to the start of the current MCU. To do this, we copy state variables |
||||
* into local working storage, and update them back to the permanent |
||||
* storage only upon successful completion of an MCU. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdhuff.h" /* Declarations shared with jdhuff.c */ |
||||
|
||||
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED |
||||
|
||||
/*
|
||||
* Expanded entropy decoder object for progressive Huffman decoding. |
||||
* |
||||
* The savable_state subrecord contains fields that change within an MCU, |
||||
* but must not be updated permanently until we complete the MCU. |
||||
*/ |
||||
|
||||
typedef struct { |
||||
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ |
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
||||
} savable_state; |
||||
|
||||
/* This macro is to work around compilers with missing or broken
|
||||
* structure assignment. You'll need to fix this code if you have |
||||
* such a compiler and you change MAX_COMPS_IN_SCAN. |
||||
*/ |
||||
|
||||
#ifndef NO_STRUCT_ASSIGN |
||||
#define ASSIGN_STATE(dest,src) ((dest) = (src)) |
||||
#else |
||||
#if MAX_COMPS_IN_SCAN == 4 |
||||
#define ASSIGN_STATE(dest,src) \ |
||||
((dest).EOBRUN = (src).EOBRUN, \
|
||||
(dest).last_dc_val[0] = (src).last_dc_val[0], \
|
||||
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
||||
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
||||
(dest).last_dc_val[3] = (src).last_dc_val[3]) |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
typedef struct { |
||||
struct jpeg_entropy_decoder pub; /* public fields */ |
||||
|
||||
/* These fields are loaded into local variables at start of each MCU.
|
||||
* In case of suspension, we exit WITHOUT updating them. |
||||
*/ |
||||
bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
||||
savable_state saved; /* Other state at start of MCU */ |
||||
|
||||
/* These fields are NOT loaded into local working state. */ |
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */ |
||||
d_derived_tbl *derived_tbls[NUM_HUFF_TBLS]; |
||||
|
||||
d_derived_tbl *ac_derived_tbl; /* active table during an AC scan */ |
||||
} phuff_entropy_decoder; |
||||
|
||||
typedef phuff_entropy_decoder *phuff_entropy_ptr; |
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo, |
||||
JBLOCKROW *MCU_data); |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_phuff_decoder (j_decompress_ptr cinfo) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
boolean is_DC_band, bad; |
||||
int ci, coefi, tbl; |
||||
d_derived_tbl **pdtbl; |
||||
int *coef_bit_ptr; |
||||
jpeg_component_info *compptr; |
||||
|
||||
is_DC_band = (cinfo->Ss == 0); |
||||
|
||||
/* Validate scan parameters */ |
||||
bad = FALSE; |
||||
if (is_DC_band) { |
||||
if (cinfo->Se != 0) |
||||
bad = TRUE; |
||||
} else { |
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */ |
||||
if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) |
||||
bad = TRUE; |
||||
/* AC scans may have only one component */ |
||||
if (cinfo->comps_in_scan != 1) |
||||
bad = TRUE; |
||||
} |
||||
if (cinfo->Ah != 0) { |
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */ |
||||
if (cinfo->Al != cinfo->Ah-1) |
||||
bad = TRUE; |
||||
} |
||||
if (cinfo->Al > 13) /* need not check for < 0 */ |
||||
bad = TRUE; |
||||
/* Arguably the maximum Al value should be less than 13 for 8-bit precision,
|
||||
* but the spec doesn't say so, and we try to be liberal about what we |
||||
* accept. Note: large Al values could result in out-of-range DC |
||||
* coefficients during early scans, leading to bizarre displays due to |
||||
* overflows in the IDCT math. But we won't crash. |
||||
*/ |
||||
if (bad) |
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings |
||||
* not fatal errors ... not clear if this is right way to behave. |
||||
*/ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
int cindex = cinfo->cur_comp_info[ci]->component_index; |
||||
coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
||||
if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
||||
if (cinfo->Ah != expected) |
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
||||
coef_bit_ptr[coefi] = cinfo->Al; |
||||
} |
||||
} |
||||
|
||||
/* Select MCU decoding routine */ |
||||
if (cinfo->Ah == 0) { |
||||
if (is_DC_band) |
||||
entropy->pub.decode_mcu = decode_mcu_DC_first; |
||||
else |
||||
entropy->pub.decode_mcu = decode_mcu_AC_first; |
||||
} else { |
||||
if (is_DC_band) |
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine; |
||||
else |
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine; |
||||
} |
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
/* Make sure requested tables are present, and compute derived tables.
|
||||
* We may build same derived table more than once, but it's not expensive. |
||||
*/ |
||||
if (is_DC_band) { |
||||
if (cinfo->Ah == 0) { /* DC refinement needs no table */ |
||||
tbl = compptr->dc_tbl_no; |
||||
pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl; |
||||
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, pdtbl); |
||||
} |
||||
} else { |
||||
tbl = compptr->ac_tbl_no; |
||||
pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl; |
||||
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, pdtbl); |
||||
/* remember the single active table */ |
||||
entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; |
||||
} |
||||
/* Initialize DC predictions to 0 */ |
||||
entropy->saved.last_dc_val[ci] = 0; |
||||
} |
||||
|
||||
/* Initialize bitread state variables */ |
||||
entropy->bitstate.bits_left = 0; |
||||
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
||||
entropy->pub.insufficient_data = FALSE; |
||||
|
||||
/* Initialize private state variables */ |
||||
entropy->saved.EOBRUN = 0; |
||||
|
||||
/* Initialize restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Figure F.12: extend sign bit. |
||||
* On some machines, a shift and add will be faster than a table lookup. |
||||
*/ |
||||
|
||||
#define AVOID_TABLES |
||||
#ifdef AVOID_TABLES |
||||
|
||||
#define NEG_1 ((unsigned)-1) |
||||
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((NEG_1)<<(s)) + 1) : (x)) |
||||
|
||||
#else |
||||
|
||||
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
||||
|
||||
static const int extend_test[16] = /* entry n is 2**(n-1) */ |
||||
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
||||
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
||||
|
||||
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
||||
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
||||
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
||||
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
||||
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
||||
|
||||
#endif /* AVOID_TABLES */ |
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder. |
||||
* Returns FALSE if must suspend. |
||||
*/ |
||||
|
||||
LOCAL(boolean) |
||||
process_restart (j_decompress_ptr cinfo) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
int ci; |
||||
|
||||
/* Throw away any unused bits remaining in bit buffer; */ |
||||
/* include any full bytes in next_marker's count of discarded bytes */ |
||||
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
||||
entropy->bitstate.bits_left = 0; |
||||
|
||||
/* Advance past the RSTn marker */ |
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
||||
return FALSE; |
||||
|
||||
/* Re-initialize DC predictions to 0 */ |
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
||||
entropy->saved.last_dc_val[ci] = 0; |
||||
/* Re-init EOB run count, too */ |
||||
entropy->saved.EOBRUN = 0; |
||||
|
||||
/* Reset restart counter */ |
||||
entropy->restarts_to_go = cinfo->restart_interval; |
||||
|
||||
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
||||
* against a marker. In that case we will end up treating the next data |
||||
* segment as empty, and we can avoid producing bogus output pixels by |
||||
* leaving the flag set. |
||||
*/ |
||||
if (cinfo->unread_marker == 0) |
||||
entropy->pub.insufficient_data = FALSE; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Huffman MCU decoding. |
||||
* Each of these routines decodes and returns one MCU's worth of |
||||
* Huffman-compressed coefficients. |
||||
* The coefficients are reordered from zigzag order into natural array order, |
||||
* but are not dequantized. |
||||
* |
||||
* The i'th block of the MCU is stored into the block pointed to by |
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
||||
* |
||||
* We return FALSE if data source requested suspension. In that case no |
||||
* changes have been made to permanent state. (Exception: some output |
||||
* coefficients may already have been assigned. This is harmless for |
||||
* spectral selection, since we'll just re-assign them on the next call. |
||||
* Successive approximation AC refinement has to be more careful, however.) |
||||
*/ |
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
int Al = cinfo->Al; |
||||
register int s, r; |
||||
int blkn, ci; |
||||
JBLOCKROW block; |
||||
BITREAD_STATE_VARS; |
||||
savable_state state; |
||||
d_derived_tbl *tbl; |
||||
jpeg_component_info *compptr; |
||||
|
||||
/* Process restart marker if needed; may have to suspend */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
if (! process_restart(cinfo)) |
||||
return FALSE; |
||||
} |
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment. |
||||
*/ |
||||
if (! entropy->pub.insufficient_data) { |
||||
|
||||
/* Load up working state */ |
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
||||
ASSIGN_STATE(state, entropy->saved); |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
ci = cinfo->MCU_membership[blkn]; |
||||
compptr = cinfo->cur_comp_info[ci]; |
||||
tbl = entropy->derived_tbls[compptr->dc_tbl_no]; |
||||
|
||||
/* Decode a single block's worth of coefficients */ |
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */ |
||||
HUFF_DECODE(s, br_state, tbl, return FALSE, label1); |
||||
if (s) { |
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE); |
||||
r = GET_BITS(s); |
||||
s = HUFF_EXTEND(r, s); |
||||
} |
||||
|
||||
/* Convert DC difference to actual value, update last_dc_val */ |
||||
s += state.last_dc_val[ci]; |
||||
state.last_dc_val[ci] = s; |
||||
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ |
||||
(*block)[0] = (JCOEF) LEFT_SHIFT(s, Al); |
||||
} |
||||
|
||||
/* Completed MCU, so update state */ |
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
||||
ASSIGN_STATE(entropy->saved, state); |
||||
} |
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */ |
||||
entropy->restarts_to_go--; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection, |
||||
* or first pass of successive approximation). |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
int Se = cinfo->Se; |
||||
int Al = cinfo->Al; |
||||
register int s, k, r; |
||||
unsigned int EOBRUN; |
||||
JBLOCKROW block; |
||||
BITREAD_STATE_VARS; |
||||
d_derived_tbl *tbl; |
||||
|
||||
/* Process restart marker if needed; may have to suspend */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
if (! process_restart(cinfo)) |
||||
return FALSE; |
||||
} |
||||
|
||||
/* If we've run out of data, just leave the MCU set to zeroes.
|
||||
* This way, we return uniform gray for the remainder of the segment. |
||||
*/ |
||||
if (! entropy->pub.insufficient_data) { |
||||
|
||||
/* Load up working state.
|
||||
* We can avoid loading/saving bitread state if in an EOB run. |
||||
*/ |
||||
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
||||
|
||||
/* There is always only one block per MCU */ |
||||
|
||||
if (EOBRUN > 0) /* if it's a band of zeroes... */ |
||||
EOBRUN--; /* ...process it now (we do nothing) */ |
||||
else { |
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
||||
block = MCU_data[0]; |
||||
tbl = entropy->ac_derived_tbl; |
||||
|
||||
for (k = cinfo->Ss; k <= Se; k++) { |
||||
HUFF_DECODE(s, br_state, tbl, return FALSE, label2); |
||||
r = s >> 4; |
||||
s &= 15; |
||||
if (s) { |
||||
k += r; |
||||
CHECK_BIT_BUFFER(br_state, s, return FALSE); |
||||
r = GET_BITS(s); |
||||
s = HUFF_EXTEND(r, s); |
||||
/* Scale and output coefficient in natural (dezigzagged) order */ |
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) LEFT_SHIFT(s, Al); |
||||
} else { |
||||
if (r == 15) { /* ZRL */ |
||||
k += 15; /* skip 15 zeroes in band */ |
||||
} else { /* EOBr, run length is 2^r + appended bits */ |
||||
EOBRUN = 1 << r; |
||||
if (r) { /* EOBr, r > 0 */ |
||||
CHECK_BIT_BUFFER(br_state, r, return FALSE); |
||||
r = GET_BITS(r); |
||||
EOBRUN += r; |
||||
} |
||||
EOBRUN--; /* this band is processed at this moment */ |
||||
break; /* force end-of-band */ |
||||
} |
||||
} |
||||
} |
||||
|
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
||||
} |
||||
|
||||
/* Completed MCU, so update state */ |
||||
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
||||
} |
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */ |
||||
entropy->restarts_to_go--; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan. |
||||
* Note: we assume such scans can be multi-component, although the spec |
||||
* is not very clear on the point. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
||||
int blkn; |
||||
JBLOCKROW block; |
||||
BITREAD_STATE_VARS; |
||||
|
||||
/* Process restart marker if needed; may have to suspend */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
if (! process_restart(cinfo)) |
||||
return FALSE; |
||||
} |
||||
|
||||
/* Not worth the cycles to check insufficient_data here,
|
||||
* since we will not change the data anyway if we read zeroes. |
||||
*/ |
||||
|
||||
/* Load up working state */ |
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
||||
|
||||
/* Outer loop handles each block in the MCU */ |
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
||||
block = MCU_data[blkn]; |
||||
|
||||
/* Encoded data is simply the next bit of the two's-complement DC value */ |
||||
CHECK_BIT_BUFFER(br_state, 1, return FALSE); |
||||
if (GET_BITS(1)) |
||||
(*block)[0] |= p1; |
||||
/* Note: since we use |=, repeating the assignment later is safe */ |
||||
} |
||||
|
||||
/* Completed MCU, so update state */ |
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */ |
||||
entropy->restarts_to_go--; |
||||
|
||||
return TRUE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan. |
||||
*/ |
||||
|
||||
METHODDEF(boolean) |
||||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
||||
{ |
||||
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
||||
int Se = cinfo->Se; |
||||
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
||||
int m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */ |
||||
register int s, k, r; |
||||
unsigned int EOBRUN; |
||||
JBLOCKROW block; |
||||
JCOEFPTR thiscoef; |
||||
BITREAD_STATE_VARS; |
||||
d_derived_tbl *tbl; |
||||
int num_newnz; |
||||
int newnz_pos[DCTSIZE2]; |
||||
|
||||
/* Process restart marker if needed; may have to suspend */ |
||||
if (cinfo->restart_interval) { |
||||
if (entropy->restarts_to_go == 0) |
||||
if (! process_restart(cinfo)) |
||||
return FALSE; |
||||
} |
||||
|
||||
/* If we've run out of data, don't modify the MCU.
|
||||
*/ |
||||
if (! entropy->pub.insufficient_data) { |
||||
|
||||
/* Load up working state */ |
||||
BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
||||
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
||||
|
||||
/* There is always only one block per MCU */ |
||||
block = MCU_data[0]; |
||||
tbl = entropy->ac_derived_tbl; |
||||
|
||||
/* If we are forced to suspend, we must undo the assignments to any newly
|
||||
* nonzero coefficients in the block, because otherwise we'd get confused |
||||
* next time about which coefficients were already nonzero. |
||||
* But we need not undo addition of bits to already-nonzero coefficients; |
||||
* instead, we can test the current bit to see if we already did it. |
||||
*/ |
||||
num_newnz = 0; |
||||
|
||||
/* initialize coefficient loop counter to start of band */ |
||||
k = cinfo->Ss; |
||||
|
||||
if (EOBRUN == 0) { |
||||
for (; k <= Se; k++) { |
||||
HUFF_DECODE(s, br_state, tbl, goto undoit, label3); |
||||
r = s >> 4; |
||||
s &= 15; |
||||
if (s) { |
||||
if (s != 1) /* size of new coef should always be 1 */ |
||||
WARNMS(cinfo, JWRN_HUFF_BAD_CODE); |
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
||||
if (GET_BITS(1)) |
||||
s = p1; /* newly nonzero coef is positive */ |
||||
else |
||||
s = m1; /* newly nonzero coef is negative */ |
||||
} else { |
||||
if (r != 15) { |
||||
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ |
||||
if (r) { |
||||
CHECK_BIT_BUFFER(br_state, r, goto undoit); |
||||
r = GET_BITS(r); |
||||
EOBRUN += r; |
||||
} |
||||
break; /* rest of block is handled by EOB logic */ |
||||
} |
||||
/* note s = 0 for processing ZRL */ |
||||
} |
||||
/* Advance over already-nonzero coefs and r still-zero coefs,
|
||||
* appending correction bits to the nonzeroes. A correction bit is 1 |
||||
* if the absolute value of the coefficient must be increased. |
||||
*/ |
||||
do { |
||||
thiscoef = *block + jpeg_natural_order[k]; |
||||
if (*thiscoef != 0) { |
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
||||
if (GET_BITS(1)) { |
||||
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ |
||||
if (*thiscoef >= 0) |
||||
*thiscoef += p1; |
||||
else |
||||
*thiscoef += m1; |
||||
} |
||||
} |
||||
} else { |
||||
if (--r < 0) |
||||
break; /* reached target zero coefficient */ |
||||
} |
||||
k++; |
||||
} while (k <= Se); |
||||
if (s) { |
||||
int pos = jpeg_natural_order[k]; |
||||
/* Output newly nonzero coefficient */ |
||||
(*block)[pos] = (JCOEF) s; |
||||
/* Remember its position in case we have to suspend */ |
||||
newnz_pos[num_newnz++] = pos; |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (EOBRUN > 0) { |
||||
/* Scan any remaining coefficient positions after the end-of-band
|
||||
* (the last newly nonzero coefficient, if any). Append a correction |
||||
* bit to each already-nonzero coefficient. A correction bit is 1 |
||||
* if the absolute value of the coefficient must be increased. |
||||
*/ |
||||
for (; k <= Se; k++) { |
||||
thiscoef = *block + jpeg_natural_order[k]; |
||||
if (*thiscoef != 0) { |
||||
CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
||||
if (GET_BITS(1)) { |
||||
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ |
||||
if (*thiscoef >= 0) |
||||
*thiscoef += p1; |
||||
else |
||||
*thiscoef += m1; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
/* Count one block completed in EOB run */ |
||||
EOBRUN--; |
||||
} |
||||
|
||||
/* Completed MCU, so update state */ |
||||
BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
||||
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
||||
} |
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */ |
||||
entropy->restarts_to_go--; |
||||
|
||||
return TRUE; |
||||
|
||||
undoit: |
||||
/* Re-zero any output coefficients that we made newly nonzero */ |
||||
while (num_newnz > 0) |
||||
(*block)[newnz_pos[--num_newnz]] = 0; |
||||
|
||||
return FALSE; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for progressive Huffman entropy decoding. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_phuff_decoder (j_decompress_ptr cinfo) |
||||
{ |
||||
phuff_entropy_ptr entropy; |
||||
int *coef_bit_ptr; |
||||
int ci, i; |
||||
|
||||
entropy = (phuff_entropy_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(phuff_entropy_decoder)); |
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
||||
entropy->pub.start_pass = start_pass_phuff_decoder; |
||||
|
||||
/* Mark derived tables unallocated */ |
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
||||
entropy->derived_tbls[i] = NULL; |
||||
} |
||||
|
||||
/* Create progression status table */ |
||||
cinfo->coef_bits = (int (*)[DCTSIZE2]) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->num_components*DCTSIZE2*sizeof(int)); |
||||
coef_bit_ptr = & cinfo->coef_bits[0][0]; |
||||
for (ci = 0; ci < cinfo->num_components; ci++) |
||||
for (i = 0; i < DCTSIZE2; i++) |
||||
*coef_bit_ptr++ = -1; |
||||
} |
||||
|
||||
#endif /* D_PROGRESSIVE_SUPPORTED */ |
@ -0,0 +1,290 @@ |
||||
/*
|
||||
* jdpostct.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains the decompression postprocessing controller. |
||||
* This controller manages the upsampling, color conversion, and color |
||||
* quantization/reduction steps; specifically, it controls the buffering |
||||
* between upsample/color conversion and color quantization/reduction. |
||||
* |
||||
* If no color quantization/reduction is required, then this module has no |
||||
* work to do, and it just hands off to the upsample/color conversion code. |
||||
* An integrated upsample/convert/quantize process would replace this module |
||||
* entirely. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Private buffer controller object */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_d_post_controller pub; /* public fields */ |
||||
|
||||
/* Color quantization source buffer: this holds output data from
|
||||
* the upsample/color conversion step to be passed to the quantizer. |
||||
* For two-pass color quantization, we need a full-image buffer; |
||||
* for one-pass operation, a strip buffer is sufficient. |
||||
*/ |
||||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */ |
||||
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */ |
||||
JDIMENSION strip_height; /* buffer size in rows */ |
||||
/* for two-pass mode only: */ |
||||
JDIMENSION starting_row; /* row # of first row in current strip */ |
||||
JDIMENSION next_row; /* index of next row to fill/empty in strip */ |
||||
} my_post_controller; |
||||
|
||||
typedef my_post_controller *my_post_ptr; |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
METHODDEF(void) post_process_1pass |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail); |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
METHODDEF(void) post_process_prepass |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail); |
||||
METHODDEF(void) post_process_2pass |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail); |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
|
||||
switch (pass_mode) { |
||||
case JBUF_PASS_THRU: |
||||
if (cinfo->quantize_colors) { |
||||
/* Single-pass processing with color quantization. */ |
||||
post->pub.post_process_data = post_process_1pass; |
||||
/* We could be doing buffered-image output before starting a 2-pass
|
||||
* color quantization; in that case, jinit_d_post_controller did not |
||||
* allocate a strip buffer. Use the virtual-array buffer as workspace. |
||||
*/ |
||||
if (post->buffer == NULL) { |
||||
post->buffer = (*cinfo->mem->access_virt_sarray) |
||||
((j_common_ptr) cinfo, post->whole_image, |
||||
(JDIMENSION) 0, post->strip_height, TRUE); |
||||
} |
||||
} else { |
||||
/* For single-pass processing without color quantization,
|
||||
* I have no work to do; just call the upsampler directly. |
||||
*/ |
||||
post->pub.post_process_data = cinfo->upsample->upsample; |
||||
} |
||||
break; |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
case JBUF_SAVE_AND_PASS: |
||||
/* First pass of 2-pass quantization */ |
||||
if (post->whole_image == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
post->pub.post_process_data = post_process_prepass; |
||||
break; |
||||
case JBUF_CRANK_DEST: |
||||
/* Second pass of 2-pass quantization */ |
||||
if (post->whole_image == NULL) |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
post->pub.post_process_data = post_process_2pass; |
||||
break; |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
default: |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
break; |
||||
} |
||||
post->starting_row = post->next_row = 0; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the one-pass (strip buffer) case. |
||||
* This is used for color precision reduction as well as one-pass quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
post_process_1pass (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
JDIMENSION num_rows, max_rows; |
||||
|
||||
/* Fill the buffer, but not more than what we can dump out in one go. */ |
||||
/* Note we rely on the upsampler to detect bottom of image. */ |
||||
max_rows = out_rows_avail - *out_row_ctr; |
||||
if (max_rows > post->strip_height) |
||||
max_rows = post->strip_height; |
||||
num_rows = 0; |
||||
(*cinfo->upsample->upsample) (cinfo, |
||||
input_buf, in_row_group_ctr, in_row_groups_avail, |
||||
post->buffer, &num_rows, max_rows); |
||||
/* Quantize and emit data. */ |
||||
(*cinfo->cquantize->color_quantize) (cinfo, |
||||
post->buffer, output_buf + *out_row_ctr, (int) num_rows); |
||||
*out_row_ctr += num_rows; |
||||
} |
||||
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
|
||||
/*
|
||||
* Process some data in the first pass of 2-pass quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
post_process_prepass (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
JDIMENSION old_next_row, num_rows; |
||||
|
||||
/* Reposition virtual buffer if at start of strip. */ |
||||
if (post->next_row == 0) { |
||||
post->buffer = (*cinfo->mem->access_virt_sarray) |
||||
((j_common_ptr) cinfo, post->whole_image, |
||||
post->starting_row, post->strip_height, TRUE); |
||||
} |
||||
|
||||
/* Upsample some data (up to a strip height's worth). */ |
||||
old_next_row = post->next_row; |
||||
(*cinfo->upsample->upsample) (cinfo, |
||||
input_buf, in_row_group_ctr, in_row_groups_avail, |
||||
post->buffer, &post->next_row, post->strip_height); |
||||
|
||||
/* Allow quantizer to scan new data. No data is emitted, */ |
||||
/* but we advance out_row_ctr so outer loop can tell when we're done. */ |
||||
if (post->next_row > old_next_row) { |
||||
num_rows = post->next_row - old_next_row; |
||||
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, |
||||
(JSAMPARRAY) NULL, (int) num_rows); |
||||
*out_row_ctr += num_rows; |
||||
} |
||||
|
||||
/* Advance if we filled the strip. */ |
||||
if (post->next_row >= post->strip_height) { |
||||
post->starting_row += post->strip_height; |
||||
post->next_row = 0; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Process some data in the second pass of 2-pass quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
post_process_2pass (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_post_ptr post = (my_post_ptr) cinfo->post; |
||||
JDIMENSION num_rows, max_rows; |
||||
|
||||
/* Reposition virtual buffer if at start of strip. */ |
||||
if (post->next_row == 0) { |
||||
post->buffer = (*cinfo->mem->access_virt_sarray) |
||||
((j_common_ptr) cinfo, post->whole_image, |
||||
post->starting_row, post->strip_height, FALSE); |
||||
} |
||||
|
||||
/* Determine number of rows to emit. */ |
||||
num_rows = post->strip_height - post->next_row; /* available in strip */ |
||||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ |
||||
if (num_rows > max_rows) |
||||
num_rows = max_rows; |
||||
/* We have to check bottom of image here, can't depend on upsampler. */ |
||||
max_rows = cinfo->output_height - post->starting_row; |
||||
if (num_rows > max_rows) |
||||
num_rows = max_rows; |
||||
|
||||
/* Quantize and emit data. */ |
||||
(*cinfo->cquantize->color_quantize) (cinfo, |
||||
post->buffer + post->next_row, output_buf + *out_row_ctr, |
||||
(int) num_rows); |
||||
*out_row_ctr += num_rows; |
||||
|
||||
/* Advance if we filled the strip. */ |
||||
post->next_row += num_rows; |
||||
if (post->next_row >= post->strip_height) { |
||||
post->starting_row += post->strip_height; |
||||
post->next_row = 0; |
||||
} |
||||
} |
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
|
||||
|
||||
/*
|
||||
* Initialize postprocessing controller. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
||||
{ |
||||
my_post_ptr post; |
||||
|
||||
post = (my_post_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_post_controller)); |
||||
cinfo->post = (struct jpeg_d_post_controller *) post; |
||||
post->pub.start_pass = start_pass_dpost; |
||||
post->whole_image = NULL; /* flag for no virtual arrays */ |
||||
post->buffer = NULL; /* flag for no strip buffer */ |
||||
|
||||
/* Create the quantization buffer, if needed */ |
||||
if (cinfo->quantize_colors) { |
||||
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||
* an efficient number of rows for upsampling to return. |
||||
* (In the presence of output rescaling, we might want to be smarter?) |
||||
*/ |
||||
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; |
||||
if (need_full_buffer) { |
||||
/* Two-pass color quantization: need full-image storage. */ |
||||
/* We round up the number of rows to a multiple of the strip height. */ |
||||
#ifdef QUANT_2PASS_SUPPORTED |
||||
post->whole_image = (*cinfo->mem->request_virt_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
||||
cinfo->output_width * cinfo->out_color_components, |
||||
(JDIMENSION) jround_up((long) cinfo->output_height, |
||||
(long) post->strip_height), |
||||
post->strip_height); |
||||
#else |
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||||
#endif /* QUANT_2PASS_SUPPORTED */ |
||||
} else { |
||||
/* One-pass color quantization: just make a strip buffer. */ |
||||
post->buffer = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
cinfo->output_width * cinfo->out_color_components, |
||||
post->strip_height); |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,517 @@ |
||||
/*
|
||||
* jdsample.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2010, 2015-2016, D. R. Commander. |
||||
* Copyright (C) 2014, MIPS Technologies, Inc., California. |
||||
* Copyright (C) 2015, Google, Inc. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains upsampling routines. |
||||
* |
||||
* Upsampling input data is counted in "row groups". A row group |
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) |
||||
* sample rows of each component. Upsampling will normally produce |
||||
* max_v_samp_factor pixel rows from each row group (but this could vary |
||||
* if the upsampler is applying a scale factor of its own). |
||||
* |
||||
* An excellent reference for image resampling is |
||||
* Digital Image Warping, George Wolberg, 1990. |
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
||||
*/ |
||||
|
||||
#include "jinclude.h" |
||||
#include "jdsample.h" |
||||
#include "jsimd.h" |
||||
#include "jpegcomp.h" |
||||
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_upsample (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
|
||||
/* Mark the conversion buffer empty */ |
||||
upsample->next_row_out = cinfo->max_v_samp_factor; |
||||
/* Initialize total-height counter for detecting bottom of image */ |
||||
upsample->rows_to_go = cinfo->output_height; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion). |
||||
* |
||||
* In this version we upsample each component independently. |
||||
* We upsample one row group into the conversion buffer, then apply |
||||
* color conversion a row at a time. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
sep_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
JDIMENSION num_rows; |
||||
|
||||
/* Fill the conversion buffer, if it's empty */ |
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) { |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||
* to color_buf[ci], so that fullsize_upsample can change it. |
||||
*/ |
||||
(*upsample->methods[ci]) (cinfo, compptr, |
||||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), |
||||
upsample->color_buf + ci); |
||||
} |
||||
upsample->next_row_out = 0; |
||||
} |
||||
|
||||
/* Color-convert and emit rows */ |
||||
|
||||
/* How many we have in the buffer: */ |
||||
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); |
||||
/* Not more than the distance to the end of the image. Need this test
|
||||
* in case the image height is not a multiple of max_v_samp_factor: |
||||
*/ |
||||
if (num_rows > upsample->rows_to_go) |
||||
num_rows = upsample->rows_to_go; |
||||
/* And not more than what the client can accept: */ |
||||
out_rows_avail -= *out_row_ctr; |
||||
if (num_rows > out_rows_avail) |
||||
num_rows = out_rows_avail; |
||||
|
||||
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, |
||||
(JDIMENSION) upsample->next_row_out, |
||||
output_buf + *out_row_ctr, |
||||
(int) num_rows); |
||||
|
||||
/* Adjust counts */ |
||||
*out_row_ctr += num_rows; |
||||
upsample->rows_to_go -= num_rows; |
||||
upsample->next_row_out += num_rows; |
||||
/* When the buffer is emptied, declare this input row group consumed */ |
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) |
||||
(*in_row_group_ctr)++; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by sep_upsample to upsample pixel values |
||||
* of a single component. One row group is processed per call. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* For full-size components, we just make color_buf[ci] point at the |
||||
* input buffer, and thus avoid copying any data. Note that this is |
||||
* safe only because sep_upsample doesn't declare the input row group |
||||
* "consumed" until we are done color converting and emitting it. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
*output_data_ptr = input_data; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* This is a no-op version used for "uninteresting" components. |
||||
* These components will not be referenced by color conversion. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
*output_data_ptr = NULL; /* safety check */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* This version handles any integral sampling ratios. |
||||
* This is not used for typical JPEG files, so it need not be fast. |
||||
* Nor, for that matter, is it particularly accurate: the algorithm is |
||||
* simple replication of the input pixel onto the corresponding output |
||||
* pixels. The hi-falutin sampling literature refers to this as a |
||||
* "box filter". A box filter tends to introduce visible artifacts, |
||||
* so if you are actually going to use 3:1 or 4:1 sampling ratios |
||||
* you would be well advised to improve this code. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
int_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
||||
JSAMPARRAY output_data = *output_data_ptr; |
||||
register JSAMPROW inptr, outptr; |
||||
register JSAMPLE invalue; |
||||
register int h; |
||||
JSAMPROW outend; |
||||
int h_expand, v_expand; |
||||
int inrow, outrow; |
||||
|
||||
h_expand = upsample->h_expand[compptr->component_index]; |
||||
v_expand = upsample->v_expand[compptr->component_index]; |
||||
|
||||
inrow = outrow = 0; |
||||
while (outrow < cinfo->max_v_samp_factor) { |
||||
/* Generate one output row with proper horizontal expansion */ |
||||
inptr = input_data[inrow]; |
||||
outptr = output_data[outrow]; |
||||
outend = outptr + cinfo->output_width; |
||||
while (outptr < outend) { |
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
||||
for (h = h_expand; h > 0; h--) { |
||||
*outptr++ = invalue; |
||||
} |
||||
} |
||||
/* Generate any additional output rows by duplicating the first one */ |
||||
if (v_expand > 1) { |
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
||||
v_expand-1, cinfo->output_width); |
||||
} |
||||
inrow++; |
||||
outrow += v_expand; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical. |
||||
* It's still a box filter. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
JSAMPARRAY output_data = *output_data_ptr; |
||||
register JSAMPROW inptr, outptr; |
||||
register JSAMPLE invalue; |
||||
JSAMPROW outend; |
||||
int inrow; |
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
||||
inptr = input_data[inrow]; |
||||
outptr = output_data[inrow]; |
||||
outend = outptr + cinfo->output_width; |
||||
while (outptr < outend) { |
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
||||
*outptr++ = invalue; |
||||
*outptr++ = invalue; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical. |
||||
* It's still a box filter. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
JSAMPARRAY output_data = *output_data_ptr; |
||||
register JSAMPROW inptr, outptr; |
||||
register JSAMPLE invalue; |
||||
JSAMPROW outend; |
||||
int inrow, outrow; |
||||
|
||||
inrow = outrow = 0; |
||||
while (outrow < cinfo->max_v_samp_factor) { |
||||
inptr = input_data[inrow]; |
||||
outptr = output_data[outrow]; |
||||
outend = outptr + cinfo->output_width; |
||||
while (outptr < outend) { |
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
||||
*outptr++ = invalue; |
||||
*outptr++ = invalue; |
||||
} |
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
||||
1, cinfo->output_width); |
||||
inrow++; |
||||
outrow += 2; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. |
||||
* |
||||
* The upsampling algorithm is linear interpolation between pixel centers, |
||||
* also known as a "triangle filter". This is a good compromise between |
||||
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4 |
||||
* of the way between input pixel centers. |
||||
* |
||||
* A note about the "bias" calculations: when rounding fractional values to |
||||
* integer, we do not want to always round 0.5 up to the next integer. |
||||
* If we did that, we'd introduce a noticeable bias towards larger values. |
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at |
||||
* alternate pixel locations (a simple ordered dither pattern). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
JSAMPARRAY output_data = *output_data_ptr; |
||||
register JSAMPROW inptr, outptr; |
||||
register int invalue; |
||||
register JDIMENSION colctr; |
||||
int inrow; |
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
||||
inptr = input_data[inrow]; |
||||
outptr = output_data[inrow]; |
||||
/* Special case for first column */ |
||||
invalue = GETJSAMPLE(*inptr++); |
||||
*outptr++ = (JSAMPLE) invalue; |
||||
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); |
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */ |
||||
invalue = GETJSAMPLE(*inptr++) * 3; |
||||
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); |
||||
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); |
||||
} |
||||
|
||||
/* Special case for last column */ |
||||
invalue = GETJSAMPLE(*inptr); |
||||
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); |
||||
*outptr++ = (JSAMPLE) invalue; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for 1:1 horizontal and 2:1 vertical (4:4:0 subsampling). |
||||
* |
||||
* This is a less common case, but it can be encountered when losslessly |
||||
* rotating/transposing a JPEG file that uses 4:2:2 chroma subsampling. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h1v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
JSAMPARRAY output_data = *output_data_ptr; |
||||
JSAMPROW inptr0, inptr1, outptr; |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
int thiscolsum; |
||||
#else |
||||
JLONG thiscolsum; |
||||
#endif |
||||
JDIMENSION colctr; |
||||
int inrow, outrow, v; |
||||
|
||||
inrow = outrow = 0; |
||||
while (outrow < cinfo->max_v_samp_factor) { |
||||
for (v = 0; v < 2; v++) { |
||||
/* inptr0 points to nearest input row, inptr1 points to next nearest */ |
||||
inptr0 = input_data[inrow]; |
||||
if (v == 0) /* next nearest is row above */ |
||||
inptr1 = input_data[inrow-1]; |
||||
else /* next nearest is row below */ |
||||
inptr1 = input_data[inrow+1]; |
||||
outptr = output_data[outrow++]; |
||||
|
||||
for(colctr = 0; colctr < compptr->downsampled_width; colctr++) { |
||||
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
||||
*outptr++ = (JSAMPLE) ((thiscolsum + 1) >> 2); |
||||
} |
||||
} |
||||
inrow++; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. |
||||
* Again a triangle filter; see comments for h2v1 case, above. |
||||
* |
||||
* It is OK for us to reference the adjacent input rows because we demanded |
||||
* context from the main buffer controller (see initialization code). |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
JSAMPARRAY output_data = *output_data_ptr; |
||||
register JSAMPROW inptr0, inptr1, outptr; |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
register int thiscolsum, lastcolsum, nextcolsum; |
||||
#else |
||||
register JLONG thiscolsum, lastcolsum, nextcolsum; |
||||
#endif |
||||
register JDIMENSION colctr; |
||||
int inrow, outrow, v; |
||||
|
||||
inrow = outrow = 0; |
||||
while (outrow < cinfo->max_v_samp_factor) { |
||||
for (v = 0; v < 2; v++) { |
||||
/* inptr0 points to nearest input row, inptr1 points to next nearest */ |
||||
inptr0 = input_data[inrow]; |
||||
if (v == 0) /* next nearest is row above */ |
||||
inptr1 = input_data[inrow-1]; |
||||
else /* next nearest is row below */ |
||||
inptr1 = input_data[inrow+1]; |
||||
outptr = output_data[outrow++]; |
||||
|
||||
/* Special case for first column */ |
||||
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
||||
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); |
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ |
||||
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ |
||||
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
||||
} |
||||
|
||||
/* Special case for last column */ |
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); |
||||
} |
||||
inrow++; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for upsampling. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_upsampler (j_decompress_ptr cinfo) |
||||
{ |
||||
my_upsample_ptr upsample; |
||||
int ci; |
||||
jpeg_component_info *compptr; |
||||
boolean need_buffer, do_fancy; |
||||
int h_in_group, v_in_group, h_out_group, v_out_group; |
||||
|
||||
if (!cinfo->master->jinit_upsampler_no_alloc) { |
||||
upsample = (my_upsample_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_upsampler)); |
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample; |
||||
upsample->pub.start_pass = start_pass_upsample; |
||||
upsample->pub.upsample = sep_upsample; |
||||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */ |
||||
} else |
||||
upsample = (my_upsample_ptr) cinfo->upsample; |
||||
|
||||
if (cinfo->CCIR601_sampling) /* this isn't supported */ |
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
||||
|
||||
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
|
||||
* so don't ask for it. |
||||
*/ |
||||
do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1; |
||||
|
||||
/* Verify we can handle the sampling factors, select per-component methods,
|
||||
* and create storage as needed. |
||||
*/ |
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||||
ci++, compptr++) { |
||||
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels. |
||||
*/ |
||||
h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) / |
||||
cinfo->_min_DCT_scaled_size; |
||||
v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / |
||||
cinfo->_min_DCT_scaled_size; |
||||
h_out_group = cinfo->max_h_samp_factor; |
||||
v_out_group = cinfo->max_v_samp_factor; |
||||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ |
||||
need_buffer = TRUE; |
||||
if (! compptr->component_needed) { |
||||
/* Don't bother to upsample an uninteresting component. */ |
||||
upsample->methods[ci] = noop_upsample; |
||||
need_buffer = FALSE; |
||||
} else if (h_in_group == h_out_group && v_in_group == v_out_group) { |
||||
/* Fullsize components can be processed without any work. */ |
||||
upsample->methods[ci] = fullsize_upsample; |
||||
need_buffer = FALSE; |
||||
} else if (h_in_group * 2 == h_out_group && |
||||
v_in_group == v_out_group) { |
||||
/* Special cases for 2h1v upsampling */ |
||||
if (do_fancy && compptr->downsampled_width > 2) { |
||||
if (jsimd_can_h2v1_fancy_upsample()) |
||||
upsample->methods[ci] = jsimd_h2v1_fancy_upsample; |
||||
else |
||||
upsample->methods[ci] = h2v1_fancy_upsample; |
||||
} else { |
||||
if (jsimd_can_h2v1_upsample()) |
||||
upsample->methods[ci] = jsimd_h2v1_upsample; |
||||
else |
||||
upsample->methods[ci] = h2v1_upsample; |
||||
} |
||||
} else if (h_in_group == h_out_group && |
||||
v_in_group * 2 == v_out_group && do_fancy) { |
||||
/* Non-fancy upsampling is handled by the generic method */ |
||||
upsample->methods[ci] = h1v2_fancy_upsample; |
||||
upsample->pub.need_context_rows = TRUE; |
||||
} else if (h_in_group * 2 == h_out_group && |
||||
v_in_group * 2 == v_out_group) { |
||||
/* Special cases for 2h2v upsampling */ |
||||
if (do_fancy && compptr->downsampled_width > 2) { |
||||
if (jsimd_can_h2v2_fancy_upsample()) |
||||
upsample->methods[ci] = jsimd_h2v2_fancy_upsample; |
||||
else |
||||
upsample->methods[ci] = h2v2_fancy_upsample; |
||||
upsample->pub.need_context_rows = TRUE; |
||||
} else { |
||||
if (jsimd_can_h2v2_upsample()) |
||||
upsample->methods[ci] = jsimd_h2v2_upsample; |
||||
else |
||||
upsample->methods[ci] = h2v2_upsample; |
||||
} |
||||
} else if ((h_out_group % h_in_group) == 0 && |
||||
(v_out_group % v_in_group) == 0) { |
||||
/* Generic integral-factors upsampling method */ |
||||
#if defined(__mips__) |
||||
if (jsimd_can_int_upsample()) |
||||
upsample->methods[ci] = jsimd_int_upsample; |
||||
else |
||||
#endif |
||||
upsample->methods[ci] = int_upsample; |
||||
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); |
||||
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); |
||||
} else |
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
||||
if (need_buffer && !cinfo->master->jinit_upsampler_no_alloc) { |
||||
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) jround_up((long) cinfo->output_width, |
||||
(long) cinfo->max_h_samp_factor), |
||||
(JDIMENSION) cinfo->max_v_samp_factor); |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,50 @@ |
||||
/*
|
||||
* jdsample.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Pointer to routine to upsample a single component */ |
||||
typedef void (*upsample1_ptr) (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, |
||||
JSAMPARRAY *output_data_ptr); |
||||
|
||||
/* Private subobject */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_upsampler pub; /* public fields */ |
||||
|
||||
/* Color conversion buffer. When using separate upsampling and color
|
||||
* conversion steps, this buffer holds one upsampled row group until it |
||||
* has been color converted and output. |
||||
* Note: we do not allocate any storage for component(s) which are full-size, |
||||
* ie do not need rescaling. The corresponding entry of color_buf[] is |
||||
* simply set to point to the input data array, thereby avoiding copying. |
||||
*/ |
||||
JSAMPARRAY color_buf[MAX_COMPONENTS]; |
||||
|
||||
/* Per-component upsampling method pointers */ |
||||
upsample1_ptr methods[MAX_COMPONENTS]; |
||||
|
||||
int next_row_out; /* counts rows emitted from color_buf */ |
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */ |
||||
|
||||
/* Height of an input row group for each component. */ |
||||
int rowgroup_height[MAX_COMPONENTS]; |
||||
|
||||
/* These arrays save pixel expansion factors so that int_expand need not
|
||||
* recompute them each time. They are unused for other upsampling methods. |
||||
*/ |
||||
UINT8 h_expand[MAX_COMPONENTS]; |
||||
UINT8 v_expand[MAX_COMPONENTS]; |
||||
} my_upsampler; |
||||
|
||||
typedef my_upsampler *my_upsample_ptr; |
@ -0,0 +1,155 @@ |
||||
/*
|
||||
* jdtrans.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1995-1997, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains library routines for transcoding decompression, |
||||
* that is, reading raw DCT coefficient arrays from an input JPEG file. |
||||
* The routines in jdapimin.c will also be needed by a transcoder. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/* Forward declarations */ |
||||
LOCAL(void) transdecode_master_selection (j_decompress_ptr cinfo); |
||||
|
||||
|
||||
/*
|
||||
* Read the coefficient arrays from a JPEG file. |
||||
* jpeg_read_header must be completed before calling this. |
||||
* |
||||
* The entire image is read into a set of virtual coefficient-block arrays, |
||||
* one per component. The return value is a pointer to the array of |
||||
* virtual-array descriptors. These can be manipulated directly via the |
||||
* JPEG memory manager, or handed off to jpeg_write_coefficients(). |
||||
* To release the memory occupied by the virtual arrays, call |
||||
* jpeg_finish_decompress() when done with the data. |
||||
* |
||||
* An alternative usage is to simply obtain access to the coefficient arrays |
||||
* during a buffered-image-mode decompression operation. This is allowed |
||||
* after any jpeg_finish_output() call. The arrays can be accessed until |
||||
* jpeg_finish_decompress() is called. (Note that any call to the library |
||||
* may reposition the arrays, so don't rely on access_virt_barray() results |
||||
* to stay valid across library calls.) |
||||
* |
||||
* Returns NULL if suspended. This case need be checked only if |
||||
* a suspending data source is used. |
||||
*/ |
||||
|
||||
GLOBAL(jvirt_barray_ptr *) |
||||
jpeg_read_coefficients (j_decompress_ptr cinfo) |
||||
{ |
||||
if (cinfo->global_state == DSTATE_READY) { |
||||
/* First call: initialize active modules */ |
||||
transdecode_master_selection(cinfo); |
||||
cinfo->global_state = DSTATE_RDCOEFS; |
||||
} |
||||
if (cinfo->global_state == DSTATE_RDCOEFS) { |
||||
/* Absorb whole file into the coef buffer */ |
||||
for (;;) { |
||||
int retcode; |
||||
/* Call progress monitor hook if present */ |
||||
if (cinfo->progress != NULL) |
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); |
||||
/* Absorb some more input */ |
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo); |
||||
if (retcode == JPEG_SUSPENDED) |
||||
return NULL; |
||||
if (retcode == JPEG_REACHED_EOI) |
||||
break; |
||||
/* Advance progress counter if appropriate */ |
||||
if (cinfo->progress != NULL && |
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { |
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { |
||||
/* startup underestimated number of scans; ratchet up one scan */ |
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; |
||||
} |
||||
} |
||||
} |
||||
/* Set state so that jpeg_finish_decompress does the right thing */ |
||||
cinfo->global_state = DSTATE_STOPPING; |
||||
} |
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access |
||||
* to the coefficients during a full buffered-image-mode decompression. |
||||
*/ |
||||
if ((cinfo->global_state == DSTATE_STOPPING || |
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { |
||||
return cinfo->coef->coef_arrays; |
||||
} |
||||
/* Oops, improper usage */ |
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
||||
return NULL; /* keep compiler happy */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules for transcoding. |
||||
* This substitutes for jdmaster.c's initialization of the full decompressor. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
transdecode_master_selection (j_decompress_ptr cinfo) |
||||
{ |
||||
/* This is effectively a buffered-image operation. */ |
||||
cinfo->buffered_image = TRUE; |
||||
|
||||
#if JPEG_LIB_VERSION >= 80 |
||||
/* Compute output image dimensions and related values. */ |
||||
jpeg_core_output_dimensions(cinfo); |
||||
#endif |
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */ |
||||
if (cinfo->arith_code) { |
||||
#ifdef D_ARITH_CODING_SUPPORTED |
||||
jinit_arith_decoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL); |
||||
#endif |
||||
} else { |
||||
if (cinfo->progressive_mode) { |
||||
#ifdef D_PROGRESSIVE_SUPPORTED |
||||
jinit_phuff_decoder(cinfo); |
||||
#else |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
#endif |
||||
} else |
||||
jinit_huff_decoder(cinfo); |
||||
} |
||||
|
||||
/* Always get a full-image coefficient buffer. */ |
||||
jinit_d_coef_controller(cinfo, TRUE); |
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */ |
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */ |
||||
(*cinfo->inputctl->start_input_pass) (cinfo); |
||||
|
||||
/* Initialize progress monitoring. */ |
||||
if (cinfo->progress != NULL) { |
||||
int nscans; |
||||
/* Estimate number of scans to set pass_limit. */ |
||||
if (cinfo->progressive_mode) { |
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ |
||||
nscans = 2 + 3 * cinfo->num_components; |
||||
} else if (cinfo->inputctl->has_multiple_scans) { |
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */ |
||||
nscans = cinfo->num_components; |
||||
} else { |
||||
nscans = 1; |
||||
} |
||||
cinfo->progress->pass_counter = 0L; |
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; |
||||
cinfo->progress->completed_passes = 0; |
||||
cinfo->progress->total_passes = 1; |
||||
} |
||||
} |
@ -0,0 +1,251 @@ |
||||
/*
|
||||
* jerror.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1998, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains simple error-reporting and trace-message routines. |
||||
* These are suitable for Unix-like systems and others where writing to |
||||
* stderr is the right thing to do. Many applications will want to replace |
||||
* some or all of these routines. |
||||
* |
||||
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile, |
||||
* you get a Windows-specific hack to display error messages in a dialog box. |
||||
* It ain't much, but it beats dropping error messages into the bit bucket, |
||||
* which is what happens to output to stderr under most Windows C compilers. |
||||
* |
||||
* These routines are used by both the compression and decompression code. |
||||
*/ |
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jversion.h" |
||||
#include "jerror.h" |
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX |
||||
#include <windows.h> |
||||
#endif |
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */ |
||||
#define EXIT_FAILURE 1 |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Create the message string table. |
||||
* We do this from the master message list in jerror.h by re-reading |
||||
* jerror.h with a suitable definition for macro JMESSAGE. |
||||
* The message table is made an external symbol just in case any applications |
||||
* want to refer to it directly. |
||||
*/ |
||||
|
||||
#define JMESSAGE(code,string) string , |
||||
|
||||
const char * const jpeg_std_message_table[] = { |
||||
#include "jerror.h" |
||||
NULL |
||||
}; |
||||
|
||||
|
||||
/*
|
||||
* Error exit handler: must not return to caller. |
||||
* |
||||
* Applications may override this if they want to get control back after |
||||
* an error. Typically one would longjmp somewhere instead of exiting. |
||||
* The setjmp buffer can be made a private field within an expanded error |
||||
* handler object. Note that the info needed to generate an error message |
||||
* is stored in the error object, so you can generate the message now or |
||||
* later, at your convenience. |
||||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort |
||||
* or jpeg_destroy) at some point. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
error_exit (j_common_ptr cinfo) |
||||
{ |
||||
/* Always display the message */ |
||||
(*cinfo->err->output_message) (cinfo); |
||||
|
||||
/* Let the memory manager delete any temp files before we die */ |
||||
jpeg_destroy(cinfo); |
||||
|
||||
exit(EXIT_FAILURE); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Actual output of an error or trace message. |
||||
* Applications may override this method to send JPEG messages somewhere |
||||
* other than stderr. |
||||
* |
||||
* On Windows, printing to stderr is generally completely useless, |
||||
* so we provide optional code to produce an error-dialog popup. |
||||
* Most Windows applications will still prefer to override this routine, |
||||
* but if they don't, it'll do something at least marginally useful. |
||||
* |
||||
* NOTE: to use the library in an environment that doesn't support the |
||||
* C stdio library, you may have to delete the call to fprintf() entirely, |
||||
* not just not use this routine. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
output_message (j_common_ptr cinfo) |
||||
{ |
||||
char buffer[JMSG_LENGTH_MAX]; |
||||
|
||||
/* Create the message */ |
||||
(*cinfo->err->format_message) (cinfo, buffer); |
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX |
||||
/* Display it in a message dialog box */ |
||||
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error", |
||||
MB_OK | MB_ICONERROR); |
||||
#else |
||||
/* Send it to stderr, adding a newline */ |
||||
fprintf(stderr, "%s\n", buffer); |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Decide whether to emit a trace or warning message. |
||||
* msg_level is one of: |
||||
* -1: recoverable corrupt-data warning, may want to abort. |
||||
* 0: important advisory messages (always display to user). |
||||
* 1: first level of tracing detail. |
||||
* 2,3,...: successively more detailed tracing messages. |
||||
* An application might override this method if it wanted to abort on warnings |
||||
* or change the policy about which messages to display. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
emit_message (j_common_ptr cinfo, int msg_level) |
||||
{ |
||||
struct jpeg_error_mgr *err = cinfo->err; |
||||
|
||||
if (msg_level < 0) { |
||||
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||
* the policy implemented here is to show only the first warning, |
||||
* unless trace_level >= 3. |
||||
*/ |
||||
if (err->num_warnings == 0 || err->trace_level >= 3) |
||||
(*err->output_message) (cinfo); |
||||
/* Always count warnings in num_warnings. */ |
||||
err->num_warnings++; |
||||
} else { |
||||
/* It's a trace message. Show it if trace_level >= msg_level. */ |
||||
if (err->trace_level >= msg_level) |
||||
(*err->output_message) (cinfo); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Format a message string for the most recent JPEG error or message. |
||||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX |
||||
* characters. Note that no '\n' character is added to the string. |
||||
* Few applications should need to override this method. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
format_message (j_common_ptr cinfo, char *buffer) |
||||
{ |
||||
struct jpeg_error_mgr *err = cinfo->err; |
||||
int msg_code = err->msg_code; |
||||
const char *msgtext = NULL; |
||||
const char *msgptr; |
||||
char ch; |
||||
boolean isstring; |
||||
|
||||
/* Look up message string in proper table */ |
||||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) { |
||||
msgtext = err->jpeg_message_table[msg_code]; |
||||
} else if (err->addon_message_table != NULL && |
||||
msg_code >= err->first_addon_message && |
||||
msg_code <= err->last_addon_message) { |
||||
msgtext = err->addon_message_table[msg_code - err->first_addon_message]; |
||||
} |
||||
|
||||
/* Defend against bogus message number */ |
||||
if (msgtext == NULL) { |
||||
err->msg_parm.i[0] = msg_code; |
||||
msgtext = err->jpeg_message_table[0]; |
||||
} |
||||
|
||||
/* Check for string parameter, as indicated by %s in the message text */ |
||||
isstring = FALSE; |
||||
msgptr = msgtext; |
||||
while ((ch = *msgptr++) != '\0') { |
||||
if (ch == '%') { |
||||
if (*msgptr == 's') isstring = TRUE; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
/* Format the message into the passed buffer */ |
||||
if (isstring) |
||||
sprintf(buffer, msgtext, err->msg_parm.s); |
||||
else |
||||
sprintf(buffer, msgtext, |
||||
err->msg_parm.i[0], err->msg_parm.i[1], |
||||
err->msg_parm.i[2], err->msg_parm.i[3], |
||||
err->msg_parm.i[4], err->msg_parm.i[5], |
||||
err->msg_parm.i[6], err->msg_parm.i[7]); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Reset error state variables at start of a new image. |
||||
* This is called during compression startup to reset trace/error |
||||
* processing to default state, without losing any application-specific |
||||
* method pointers. An application might possibly want to override |
||||
* this method if it has additional error processing state. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
reset_error_mgr (j_common_ptr cinfo) |
||||
{ |
||||
cinfo->err->num_warnings = 0; |
||||
/* trace_level is not reset since it is an application-supplied parameter */ |
||||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Fill in the standard error-handling methods in a jpeg_error_mgr object. |
||||
* Typical call is: |
||||
* struct jpeg_compress_struct cinfo; |
||||
* struct jpeg_error_mgr err; |
||||
* |
||||
* cinfo.err = jpeg_std_error(&err); |
||||
* after which the application may override some of the methods. |
||||
*/ |
||||
|
||||
GLOBAL(struct jpeg_error_mgr *) |
||||
jpeg_std_error (struct jpeg_error_mgr *err) |
||||
{ |
||||
err->error_exit = error_exit; |
||||
err->emit_message = emit_message; |
||||
err->output_message = output_message; |
||||
err->format_message = format_message; |
||||
err->reset_error_mgr = reset_error_mgr; |
||||
|
||||
err->trace_level = 0; /* default = no tracing */ |
||||
err->num_warnings = 0; /* no warnings emitted yet */ |
||||
err->msg_code = 0; /* may be useful as a flag for "no error" */ |
||||
|
||||
/* Initialize message table pointers */ |
||||
err->jpeg_message_table = jpeg_std_message_table; |
||||
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1; |
||||
|
||||
err->addon_message_table = NULL; |
||||
err->first_addon_message = 0; /* for safety */ |
||||
err->last_addon_message = 0; |
||||
|
||||
return err; |
||||
} |
@ -0,0 +1,317 @@ |
||||
/*
|
||||
* jerror.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1997, Thomas G. Lane. |
||||
* Modified 1997-2009 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2014, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file defines the error and message codes for the JPEG library. |
||||
* Edit this file to add new codes, or to translate the message strings to |
||||
* some other language. |
||||
* A set of error-reporting macros are defined too. Some applications using |
||||
* the JPEG library may wish to include this file to get the error codes |
||||
* and/or the macros. |
||||
*/ |
||||
|
||||
/*
|
||||
* To define the enum list of message codes, include this file without |
||||
* defining macro JMESSAGE. To create a message string table, include it |
||||
* again with a suitable JMESSAGE definition (see jerror.c for an example). |
||||
*/ |
||||
#ifndef JMESSAGE |
||||
#ifndef JERROR_H |
||||
/* First time through, define the enum list */ |
||||
#define JMAKE_ENUM_LIST |
||||
#else |
||||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ |
||||
#define JMESSAGE(code,string) |
||||
#endif /* JERROR_H */ |
||||
#endif /* JMESSAGE */ |
||||
|
||||
#ifdef JMAKE_ENUM_LIST |
||||
|
||||
typedef enum { |
||||
|
||||
#define JMESSAGE(code,string) code , |
||||
|
||||
#endif /* JMAKE_ENUM_LIST */ |
||||
|
||||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ |
||||
|
||||
/* For maintenance convenience, list is alphabetical by message code name */ |
||||
#if JPEG_LIB_VERSION < 70 |
||||
JMESSAGE(JERR_ARITH_NOTIMPL, |
||||
"Sorry, arithmetic coding is not implemented") |
||||
#endif |
||||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") |
||||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") |
||||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") |
||||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") |
||||
#endif |
||||
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") |
||||
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported") |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
JMESSAGE(JERR_BAD_DROP_SAMPLING, |
||||
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") |
||||
#endif |
||||
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") |
||||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") |
||||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") |
||||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") |
||||
JMESSAGE(JERR_BAD_LIB_VERSION, |
||||
"Wrong JPEG library version: library is %d, caller expects %d") |
||||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") |
||||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") |
||||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") |
||||
JMESSAGE(JERR_BAD_PROGRESSION, |
||||
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") |
||||
JMESSAGE(JERR_BAD_PROG_SCRIPT, |
||||
"Invalid progressive parameters at scan script entry %d") |
||||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") |
||||
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") |
||||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") |
||||
JMESSAGE(JERR_BAD_STRUCT_SIZE, |
||||
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") |
||||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") |
||||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") |
||||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") |
||||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") |
||||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") |
||||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") |
||||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") |
||||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") |
||||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") |
||||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") |
||||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") |
||||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed") |
||||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") |
||||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") |
||||
JMESSAGE(JERR_FILE_READ, "Input file read error") |
||||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") |
||||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") |
||||
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") |
||||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") |
||||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") |
||||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") |
||||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") |
||||
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, |
||||
"Cannot transcode due to multiple use of quantization table %d") |
||||
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") |
||||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") |
||||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet") |
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") |
||||
#endif |
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") |
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") |
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") |
||||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") |
||||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") |
||||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") |
||||
JMESSAGE(JERR_QUANT_COMPONENTS, |
||||
"Cannot quantize more than %d color components") |
||||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") |
||||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") |
||||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") |
||||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") |
||||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") |
||||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") |
||||
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") |
||||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") |
||||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") |
||||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") |
||||
JMESSAGE(JERR_TFILE_WRITE, |
||||
"Write failed on temporary file --- out of disk space?") |
||||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") |
||||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") |
||||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") |
||||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") |
||||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed") |
||||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") |
||||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT_SHORT) |
||||
JMESSAGE(JMSG_VERSION, JVERSION) |
||||
JMESSAGE(JTRC_16BIT_TABLES, |
||||
"Caution: quantization tables are too coarse for baseline JPEG") |
||||
JMESSAGE(JTRC_ADOBE, |
||||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") |
||||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") |
||||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") |
||||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") |
||||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") |
||||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") |
||||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u") |
||||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") |
||||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") |
||||
JMESSAGE(JTRC_EOI, "End Of Image") |
||||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") |
||||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") |
||||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, |
||||
"Warning: thumbnail image size does not match data length %u") |
||||
JMESSAGE(JTRC_JFIF_EXTENSION, |
||||
"JFIF extension marker: type 0x%02x, length %u") |
||||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") |
||||
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") |
||||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") |
||||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") |
||||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") |
||||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") |
||||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") |
||||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") |
||||
JMESSAGE(JTRC_RST, "RST%d") |
||||
JMESSAGE(JTRC_SMOOTH_NOTIMPL, |
||||
"Smoothing not supported with nonstandard sampling ratios") |
||||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") |
||||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") |
||||
JMESSAGE(JTRC_SOI, "Start of Image") |
||||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") |
||||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") |
||||
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") |
||||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") |
||||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") |
||||
JMESSAGE(JTRC_THUMB_JPEG, |
||||
"JFIF extension marker: JPEG-compressed thumbnail image, length %u") |
||||
JMESSAGE(JTRC_THUMB_PALETTE, |
||||
"JFIF extension marker: palette thumbnail image, length %u") |
||||
JMESSAGE(JTRC_THUMB_RGB, |
||||
"JFIF extension marker: RGB thumbnail image, length %u") |
||||
JMESSAGE(JTRC_UNKNOWN_IDS, |
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr") |
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") |
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") |
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") |
||||
#if JPEG_LIB_VERSION >= 70 |
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") |
||||
#endif |
||||
JMESSAGE(JWRN_BOGUS_PROGRESSION, |
||||
"Inconsistent progression sequence for component %d coefficient %d") |
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA, |
||||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") |
||||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") |
||||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") |
||||
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") |
||||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") |
||||
JMESSAGE(JWRN_MUST_RESYNC, |
||||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d") |
||||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") |
||||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") |
||||
#if JPEG_LIB_VERSION < 70 |
||||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") |
||||
#if defined(C_ARITH_CODING_SUPPORTED) || defined(D_ARITH_CODING_SUPPORTED) |
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") |
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") |
||||
#endif |
||||
#endif |
||||
|
||||
#ifdef JMAKE_ENUM_LIST |
||||
|
||||
JMSG_LASTMSGCODE |
||||
} J_MESSAGE_CODE; |
||||
|
||||
#undef JMAKE_ENUM_LIST |
||||
#endif /* JMAKE_ENUM_LIST */ |
||||
|
||||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ |
||||
#undef JMESSAGE |
||||
|
||||
|
||||
#ifndef JERROR_H |
||||
#define JERROR_H |
||||
|
||||
/* Macros to simplify using the error and trace message stuff */ |
||||
/* The first parameter is either type of cinfo pointer */ |
||||
|
||||
/* Fatal errors (print message and exit) */ |
||||
#define ERREXIT(cinfo,code) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT1(cinfo,code,p1) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT2(cinfo,code,p1,p2) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT3(cinfo,code,p1,p2,p3) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
#define ERREXITS(cinfo,code,str) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) |
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0) |
||||
|
||||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */ |
||||
#define WARNMS(cinfo,code) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) |
||||
#define WARNMS1(cinfo,code,p1) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) |
||||
#define WARNMS2(cinfo,code,p1,p2) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) |
||||
|
||||
/* Informational/debugging messages */ |
||||
#define TRACEMS(cinfo,lvl,code) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
#define TRACEMS1(cinfo,lvl,code,p1) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
#define TRACEMS2(cinfo,lvl,code,p1,p2) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \ |
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) |
||||
#define TRACEMSS(cinfo,lvl,code,str) \ |
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) |
||||
|
||||
#endif /* JERROR_H */ |
@ -0,0 +1,169 @@ |
||||
/*
|
||||
* jfdctflt.c |
||||
* |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* This file is part of the Independent JPEG Group's software. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains a floating-point implementation of the |
||||
* forward DCT (Discrete Cosine Transform). |
||||
* |
||||
* This implementation should be more accurate than either of the integer |
||||
* DCT implementations. However, it may not give the same results on all |
||||
* machines because of differences in roundoff behavior. Speed will depend |
||||
* on the hardware's floating point capacity. |
||||
* |
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
||||
* on each column. Direct algorithms are also available, but they are |
||||
* much more complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following |
||||
* code is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with a fixed-point |
||||
* implementation, accuracy is lost due to imprecise representation of the |
||||
* scaled quantization values. However, that problem does not arise if |
||||
* we use floating point arithmetic. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_fdct_float (FAST_FLOAT *data) |
||||
{ |
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
||||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; |
||||
FAST_FLOAT *dataptr; |
||||
int ctr; |
||||
|
||||
/* Pass 1: process rows. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[0] + dataptr[7]; |
||||
tmp7 = dataptr[0] - dataptr[7]; |
||||
tmp1 = dataptr[1] + dataptr[6]; |
||||
tmp6 = dataptr[1] - dataptr[6]; |
||||
tmp2 = dataptr[2] + dataptr[5]; |
||||
tmp5 = dataptr[2] - dataptr[5]; |
||||
tmp3 = dataptr[3] + dataptr[4]; |
||||
tmp4 = dataptr[3] - dataptr[4]; |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
||||
dataptr[4] = tmp10 - tmp11; |
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
dataptr[2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */ |
||||
dataptr[3] = z13 - z2; |
||||
dataptr[1] = z11 + z4; |
||||
dataptr[7] = z11 - z4; |
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
|
||||
/* Pass 2: process columns. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[DCTSIZE*6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
||||
dataptr[DCTSIZE*3] = z13 - z2; |
||||
dataptr[DCTSIZE*1] = z11 + z4; |
||||
dataptr[DCTSIZE*7] = z11 - z4; |
||||
|
||||
dataptr++; /* advance pointer to next column */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */ |
@ -0,0 +1,227 @@ |
||||
/*
|
||||
* jfdctfst.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains a fast, not so accurate integer implementation of the |
||||
* forward DCT (Discrete Cosine Transform). |
||||
* |
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
||||
* on each column. Direct algorithms are also available, but they are |
||||
* much more complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following |
||||
* code is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with fixed-point math, |
||||
* accuracy is lost due to imprecise representation of the scaled |
||||
* quantization values. The smaller the quantization table entry, the less |
||||
* precise the scaled value, so this implementation does worse with high- |
||||
* quality-setting files than with low-quality ones. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jfdctint.c for more details. However, we choose to descale |
||||
* (right shift) multiplication products as soon as they are formed, |
||||
* rather than carrying additional fractional bits into subsequent additions. |
||||
* This compromises accuracy slightly, but it lets us save a few shifts. |
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
||||
* everywhere except in the multiplications proper; this saves a good deal |
||||
* of work on 16-bit-int machines. |
||||
* |
||||
* Again to save a few shifts, the intermediate results between pass 1 and |
||||
* pass 2 are not upscaled, but are represented only to integral precision. |
||||
* |
||||
* A final compromise is to represent the multiplicative constants to only |
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some |
||||
* machines, and may also reduce the cost of multiplication (since there |
||||
* are fewer one-bits in the constants). |
||||
*/ |
||||
|
||||
#define CONST_BITS 8 |
||||
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time. |
||||
* To get around this we use the following pre-calculated constants. |
||||
* If you change CONST_BITS you may want to add appropriate values. |
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
||||
*/ |
||||
|
||||
#if CONST_BITS == 8 |
||||
#define FIX_0_382683433 ((JLONG) 98) /* FIX(0.382683433) */ |
||||
#define FIX_0_541196100 ((JLONG) 139) /* FIX(0.541196100) */ |
||||
#define FIX_0_707106781 ((JLONG) 181) /* FIX(0.707106781) */ |
||||
#define FIX_1_306562965 ((JLONG) 334) /* FIX(1.306562965) */ |
||||
#else |
||||
#define FIX_0_382683433 FIX(0.382683433) |
||||
#define FIX_0_541196100 FIX(0.541196100) |
||||
#define FIX_0_707106781 FIX(0.707106781) |
||||
#define FIX_1_306562965 FIX(1.306562965) |
||||
#endif |
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly |
||||
* rounded result half the time... |
||||
*/ |
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING |
||||
#undef DESCALE |
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n) |
||||
#endif |
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
|
||||
* descale to yield a DCTELEM result. |
||||
*/ |
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_fdct_ifast (DCTELEM *data) |
||||
{ |
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
DCTELEM tmp10, tmp11, tmp12, tmp13; |
||||
DCTELEM z1, z2, z3, z4, z5, z11, z13; |
||||
DCTELEM *dataptr; |
||||
int ctr; |
||||
SHIFT_TEMPS |
||||
|
||||
/* Pass 1: process rows. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[0] + dataptr[7]; |
||||
tmp7 = dataptr[0] - dataptr[7]; |
||||
tmp1 = dataptr[1] + dataptr[6]; |
||||
tmp6 = dataptr[1] - dataptr[6]; |
||||
tmp2 = dataptr[2] + dataptr[5]; |
||||
tmp5 = dataptr[2] - dataptr[5]; |
||||
tmp3 = dataptr[3] + dataptr[4]; |
||||
tmp4 = dataptr[3] - dataptr[4]; |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
||||
dataptr[4] = tmp10 - tmp11; |
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
||||
dataptr[2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */ |
||||
dataptr[3] = z13 - z2; |
||||
dataptr[1] = z11 + z4; |
||||
dataptr[7] = z11 - z4; |
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
|
||||
/* Pass 2: process columns. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */ |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
||||
dataptr[DCTSIZE*6] = tmp13 - z1; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */ |
||||
tmp11 = tmp5 + tmp6; |
||||
tmp12 = tmp6 + tmp7; |
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */ |
||||
z13 = tmp7 - z3; |
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
||||
dataptr[DCTSIZE*3] = z13 - z2; |
||||
dataptr[DCTSIZE*1] = z11 + z4; |
||||
dataptr[DCTSIZE*7] = z11 - z4; |
||||
|
||||
dataptr++; /* advance pointer to next column */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */ |
@ -0,0 +1,286 @@ |
||||
/*
|
||||
* jfdctint.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software. |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains a slow-but-accurate integer implementation of the |
||||
* forward DCT (Discrete Cosine Transform). |
||||
* |
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
||||
* on each column. Direct algorithms are also available, but they are |
||||
* much more complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on an algorithm described in |
||||
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
||||
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
||||
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
||||
* The primary algorithm described there uses 11 multiplies and 29 adds. |
||||
* We use their alternate method with 12 multiplies and 32 adds. |
||||
* The advantage of this method is that no data path contains more than one |
||||
* multiplication; this allows a very simple and accurate implementation in |
||||
* scaled fixed-point arithmetic, with a minimal number of shifts. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_ISLOW_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* The poop on this scaling stuff is as follows: |
||||
* |
||||
* Each 1-D DCT step produces outputs which are a factor of sqrt(N) |
||||
* larger than the true DCT outputs. The final outputs are therefore |
||||
* a factor of N larger than desired; since N=8 this can be cured by |
||||
* a simple right shift at the end of the algorithm. The advantage of |
||||
* this arrangement is that we save two multiplications per 1-D DCT, |
||||
* because the y0 and y4 outputs need not be divided by sqrt(N). |
||||
* In the IJG code, this factor of 8 is removed by the quantization step |
||||
* (in jcdctmgr.c), NOT in this module. |
||||
* |
||||
* We have to do addition and subtraction of the integer inputs, which |
||||
* is no problem, and multiplication by fractional constants, which is |
||||
* a problem to do in integer arithmetic. We multiply all the constants |
||||
* by CONST_SCALE and convert them to integer constants (thus retaining |
||||
* CONST_BITS bits of precision in the constants). After doing a |
||||
* multiplication we have to divide the product by CONST_SCALE, with proper |
||||
* rounding, to produce the correct output. This division can be done |
||||
* cheaply as a right shift of CONST_BITS bits. We postpone shifting |
||||
* as long as possible so that partial sums can be added together with |
||||
* full fractional precision. |
||||
* |
||||
* The outputs of the first pass are scaled up by PASS1_BITS bits so that |
||||
* they are represented to better-than-integral precision. These outputs |
||||
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
||||
* with the recommended scaling. (For 12-bit sample data, the intermediate |
||||
* array is JLONG anyway.) |
||||
* |
||||
* To avoid overflow of the 32-bit intermediate results in pass 2, we must |
||||
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
||||
* shows that the values given below are the most effective. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define CONST_BITS 13 |
||||
#define PASS1_BITS 2 |
||||
#else |
||||
#define CONST_BITS 13 |
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
||||
#endif |
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time. |
||||
* To get around this we use the following pre-calculated constants. |
||||
* If you change CONST_BITS you may want to add appropriate values. |
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
||||
*/ |
||||
|
||||
#if CONST_BITS == 13 |
||||
#define FIX_0_298631336 ((JLONG) 2446) /* FIX(0.298631336) */ |
||||
#define FIX_0_390180644 ((JLONG) 3196) /* FIX(0.390180644) */ |
||||
#define FIX_0_541196100 ((JLONG) 4433) /* FIX(0.541196100) */ |
||||
#define FIX_0_765366865 ((JLONG) 6270) /* FIX(0.765366865) */ |
||||
#define FIX_0_899976223 ((JLONG) 7373) /* FIX(0.899976223) */ |
||||
#define FIX_1_175875602 ((JLONG) 9633) /* FIX(1.175875602) */ |
||||
#define FIX_1_501321110 ((JLONG) 12299) /* FIX(1.501321110) */ |
||||
#define FIX_1_847759065 ((JLONG) 15137) /* FIX(1.847759065) */ |
||||
#define FIX_1_961570560 ((JLONG) 16069) /* FIX(1.961570560) */ |
||||
#define FIX_2_053119869 ((JLONG) 16819) /* FIX(2.053119869) */ |
||||
#define FIX_2_562915447 ((JLONG) 20995) /* FIX(2.562915447) */ |
||||
#define FIX_3_072711026 ((JLONG) 25172) /* FIX(3.072711026) */ |
||||
#else |
||||
#define FIX_0_298631336 FIX(0.298631336) |
||||
#define FIX_0_390180644 FIX(0.390180644) |
||||
#define FIX_0_541196100 FIX(0.541196100) |
||||
#define FIX_0_765366865 FIX(0.765366865) |
||||
#define FIX_0_899976223 FIX(0.899976223) |
||||
#define FIX_1_175875602 FIX(1.175875602) |
||||
#define FIX_1_501321110 FIX(1.501321110) |
||||
#define FIX_1_847759065 FIX(1.847759065) |
||||
#define FIX_1_961570560 FIX(1.961570560) |
||||
#define FIX_2_053119869 FIX(2.053119869) |
||||
#define FIX_2_562915447 FIX(2.562915447) |
||||
#define FIX_3_072711026 FIX(3.072711026) |
||||
#endif |
||||
|
||||
|
||||
/* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable |
||||
* and constant values involved are no more than 16 bits wide, so a |
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
||||
* For 12-bit samples, a full 32-bit multiplication will be needed. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
||||
#else |
||||
#define MULTIPLY(var,const) ((var) * (const)) |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_fdct_islow (DCTELEM *data) |
||||
{ |
||||
JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
JLONG tmp10, tmp11, tmp12, tmp13; |
||||
JLONG z1, z2, z3, z4, z5; |
||||
DCTELEM *dataptr; |
||||
int ctr; |
||||
SHIFT_TEMPS |
||||
|
||||
/* Pass 1: process rows. */ |
||||
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
||||
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[0] + dataptr[7]; |
||||
tmp7 = dataptr[0] - dataptr[7]; |
||||
tmp1 = dataptr[1] + dataptr[6]; |
||||
tmp6 = dataptr[1] - dataptr[6]; |
||||
tmp2 = dataptr[2] + dataptr[5]; |
||||
tmp5 = dataptr[2] - dataptr[5]; |
||||
tmp3 = dataptr[3] + dataptr[4]; |
||||
tmp4 = dataptr[3] - dataptr[4]; |
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
||||
*/ |
||||
|
||||
tmp10 = tmp0 + tmp3; |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
||||
dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
||||
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
||||
CONST_BITS-PASS1_BITS); |
||||
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
||||
CONST_BITS-PASS1_BITS); |
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16). |
||||
* i0..i3 in the paper are tmp4..tmp7 here. |
||||
*/ |
||||
|
||||
z1 = tmp4 + tmp7; |
||||
z2 = tmp5 + tmp6; |
||||
z3 = tmp4 + tmp6; |
||||
z4 = tmp5 + tmp7; |
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
||||
|
||||
z3 += z5; |
||||
z4 += z5; |
||||
|
||||
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); |
||||
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); |
||||
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); |
||||
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); |
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
|
||||
/* Pass 2: process columns.
|
||||
* We remove the PASS1_BITS scaling, but leave the results scaled up |
||||
* by an overall factor of 8. |
||||
*/ |
||||
|
||||
dataptr = data; |
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
||||
*/ |
||||
|
||||
tmp10 = tmp0 + tmp3; |
||||
tmp13 = tmp0 - tmp3; |
||||
tmp11 = tmp1 + tmp2; |
||||
tmp12 = tmp1 - tmp2; |
||||
|
||||
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); |
||||
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); |
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
||||
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
||||
CONST_BITS+PASS1_BITS); |
||||
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
||||
CONST_BITS+PASS1_BITS); |
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16). |
||||
* i0..i3 in the paper are tmp4..tmp7 here. |
||||
*/ |
||||
|
||||
z1 = tmp4 + tmp7; |
||||
z2 = tmp5 + tmp6; |
||||
z3 = tmp4 + tmp6; |
||||
z4 = tmp5 + tmp7; |
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
||||
|
||||
z3 += z5; |
||||
z4 += z5; |
||||
|
||||
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, |
||||
CONST_BITS+PASS1_BITS); |
||||
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, |
||||
CONST_BITS+PASS1_BITS); |
||||
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, |
||||
CONST_BITS+PASS1_BITS); |
||||
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, |
||||
CONST_BITS+PASS1_BITS); |
||||
|
||||
dataptr++; /* advance pointer to next column */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_ISLOW_SUPPORTED */ |
@ -0,0 +1,240 @@ |
||||
/*
|
||||
* jidctflt.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* Modified 2010 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2014, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains a floating-point implementation of the |
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
||||
* must also perform dequantization of the input coefficients. |
||||
* |
||||
* This implementation should be more accurate than either of the integer |
||||
* IDCT implementations. However, it may not give the same results on all |
||||
* machines because of differences in roundoff behavior. Speed will depend |
||||
* on the hardware's floating point capacity. |
||||
* |
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
||||
* on each row (or vice versa, but it's more convenient to emit a row at |
||||
* a time). Direct algorithms are also available, but they are much more |
||||
* complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following |
||||
* code is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with a fixed-point |
||||
* implementation, accuracy is lost due to imprecise representation of the |
||||
* scaled quantization values. However, that problem does not arise if |
||||
* we use floating point arithmetic. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a float result. |
||||
*/ |
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col) |
||||
{ |
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
||||
FAST_FLOAT z5, z10, z11, z12, z13; |
||||
JCOEFPTR inptr; |
||||
FLOAT_MULT_TYPE *quantptr; |
||||
FAST_FLOAT *wsptr; |
||||
JSAMPROW outptr; |
||||
JSAMPLE *range_limit = cinfo->sample_range_limit; |
||||
int ctr; |
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
||||
#define _0_125 ((FLOAT_MULT_TYPE)0.125) |
||||
|
||||
/* Pass 1: process columns from input, store into work array. */ |
||||
|
||||
inptr = coef_block; |
||||
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; |
||||
wsptr = workspace; |
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) { |
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this |
||||
* by short-circuiting the IDCT calculation for any column in which all |
||||
* the AC terms are zero. In that case each output is equal to the |
||||
* DC coefficient (with scale factor as needed). |
||||
* With typical images and quantization tables, half or more of the |
||||
* column DCT calculations can be simplified this way. |
||||
*/ |
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
||||
inptr[DCTSIZE*7] == 0) { |
||||
/* AC terms all zero */ |
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], |
||||
quantptr[DCTSIZE*0] * _0_125); |
||||
|
||||
wsptr[DCTSIZE*0] = dcval; |
||||
wsptr[DCTSIZE*1] = dcval; |
||||
wsptr[DCTSIZE*2] = dcval; |
||||
wsptr[DCTSIZE*3] = dcval; |
||||
wsptr[DCTSIZE*4] = dcval; |
||||
wsptr[DCTSIZE*5] = dcval; |
||||
wsptr[DCTSIZE*6] = dcval; |
||||
wsptr[DCTSIZE*7] = dcval; |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
continue; |
||||
} |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125); |
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125); |
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125); |
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125); |
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */ |
||||
tmp11 = tmp0 - tmp2; |
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
||||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */ |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125); |
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125); |
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125); |
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125); |
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */ |
||||
z10 = tmp6 - tmp5; |
||||
z11 = tmp4 + tmp7; |
||||
z12 = tmp4 - tmp7; |
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */ |
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
||||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ |
||||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */ |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 - tmp5; |
||||
|
||||
wsptr[DCTSIZE*0] = tmp0 + tmp7; |
||||
wsptr[DCTSIZE*7] = tmp0 - tmp7; |
||||
wsptr[DCTSIZE*1] = tmp1 + tmp6; |
||||
wsptr[DCTSIZE*6] = tmp1 - tmp6; |
||||
wsptr[DCTSIZE*2] = tmp2 + tmp5; |
||||
wsptr[DCTSIZE*5] = tmp2 - tmp5; |
||||
wsptr[DCTSIZE*3] = tmp3 + tmp4; |
||||
wsptr[DCTSIZE*4] = tmp3 - tmp4; |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
} |
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */ |
||||
|
||||
wsptr = workspace; |
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
||||
outptr = output_buf[ctr] + output_col; |
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so |
||||
* the simplification applies less often (typically 5% to 10% of the time). |
||||
* And testing floats for zero is relatively expensive, so we don't bother. |
||||
*/ |
||||
|
||||
/* Even part */ |
||||
|
||||
/* Apply signed->unsigned and prepare float->int conversion */ |
||||
z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5); |
||||
tmp10 = z5 + wsptr[4]; |
||||
tmp11 = z5 - wsptr[4]; |
||||
|
||||
tmp13 = wsptr[2] + wsptr[6]; |
||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
||||
|
||||
tmp0 = tmp10 + tmp13; |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
z13 = wsptr[5] + wsptr[3]; |
||||
z10 = wsptr[5] - wsptr[3]; |
||||
z11 = wsptr[1] + wsptr[7]; |
||||
z12 = wsptr[1] - wsptr[7]; |
||||
|
||||
tmp7 = z11 + z13; |
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
||||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ |
||||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 - tmp5; |
||||
|
||||
/* Final output stage: float->int conversion and range-limit */ |
||||
|
||||
outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK]; |
||||
outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK]; |
||||
outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK]; |
||||
outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK]; |
||||
outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK]; |
||||
outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK]; |
||||
outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK]; |
||||
outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK]; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */ |
@ -0,0 +1,371 @@ |
||||
/*
|
||||
* jidctfst.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains a fast, not so accurate integer implementation of the |
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
||||
* must also perform dequantization of the input coefficients. |
||||
* |
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
||||
* on each row (or vice versa, but it's more convenient to emit a row at |
||||
* a time). Direct algorithms are also available, but they are much more |
||||
* complex and seem not to be any faster when reduced to code. |
||||
* |
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
||||
* JPEG textbook (see REFERENCES section in file README.ijg). The following |
||||
* code is based directly on figure 4-8 in P&M. |
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
||||
* possible to arrange the computation so that many of the multiplies are |
||||
* simple scalings of the final outputs. These multiplies can then be |
||||
* folded into the multiplications or divisions by the JPEG quantization |
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
||||
* to be done in the DCT itself. |
||||
* The primary disadvantage of this method is that with fixed-point math, |
||||
* accuracy is lost due to imprecise representation of the scaled |
||||
* quantization values. The smaller the quantization table entry, the less |
||||
* precise the scaled value, so this implementation does worse with high- |
||||
* quality-setting files than with low-quality ones. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jidctint.c for more details. However, we choose to descale |
||||
* (right shift) multiplication products as soon as they are formed, |
||||
* rather than carrying additional fractional bits into subsequent additions. |
||||
* This compromises accuracy slightly, but it lets us save a few shifts. |
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
||||
* everywhere except in the multiplications proper; this saves a good deal |
||||
* of work on 16-bit-int machines. |
||||
* |
||||
* The dequantized coefficients are not integers because the AA&N scaling |
||||
* factors have been incorporated. We represent them scaled up by PASS1_BITS, |
||||
* so that the first and second IDCT rounds have the same input scaling. |
||||
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to |
||||
* avoid a descaling shift; this compromises accuracy rather drastically |
||||
* for small quantization table entries, but it saves a lot of shifts. |
||||
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, |
||||
* so we use a much larger scaling factor to preserve accuracy. |
||||
* |
||||
* A final compromise is to represent the multiplicative constants to only |
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some |
||||
* machines, and may also reduce the cost of multiplication (since there |
||||
* are fewer one-bits in the constants). |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define CONST_BITS 8 |
||||
#define PASS1_BITS 2 |
||||
#else |
||||
#define CONST_BITS 8 |
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
||||
#endif |
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time. |
||||
* To get around this we use the following pre-calculated constants. |
||||
* If you change CONST_BITS you may want to add appropriate values. |
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
||||
*/ |
||||
|
||||
#if CONST_BITS == 8 |
||||
#define FIX_1_082392200 ((JLONG) 277) /* FIX(1.082392200) */ |
||||
#define FIX_1_414213562 ((JLONG) 362) /* FIX(1.414213562) */ |
||||
#define FIX_1_847759065 ((JLONG) 473) /* FIX(1.847759065) */ |
||||
#define FIX_2_613125930 ((JLONG) 669) /* FIX(2.613125930) */ |
||||
#else |
||||
#define FIX_1_082392200 FIX(1.082392200) |
||||
#define FIX_1_414213562 FIX(1.414213562) |
||||
#define FIX_1_847759065 FIX(1.847759065) |
||||
#define FIX_2_613125930 FIX(2.613125930) |
||||
#endif |
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly |
||||
* rounded result half the time... |
||||
*/ |
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING |
||||
#undef DESCALE |
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n) |
||||
#endif |
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
|
||||
* descale to yield a DCTELEM result. |
||||
*/ |
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
||||
* multiplication will do. For 12-bit data, the multiplier table is |
||||
* declared JLONG, so a 32-bit multiply will be used. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) |
||||
#else |
||||
#define DEQUANTIZE(coef,quantval) \ |
||||
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) |
||||
#endif |
||||
|
||||
|
||||
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
||||
* We assume that int right shift is unsigned if JLONG right shift is. |
||||
*/ |
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
||||
#define ISHIFT_TEMPS DCTELEM ishift_temp; |
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
||||
#else |
||||
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
||||
#endif |
||||
#define IRIGHT_SHIFT(x,shft) \ |
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
||||
(ishift_temp >> (shft))) |
||||
#else |
||||
#define ISHIFT_TEMPS |
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
||||
#endif |
||||
|
||||
#ifdef USE_ACCURATE_ROUNDING |
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) |
||||
#else |
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col) |
||||
{ |
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
||||
DCTELEM tmp10, tmp11, tmp12, tmp13; |
||||
DCTELEM z5, z10, z11, z12, z13; |
||||
JCOEFPTR inptr; |
||||
IFAST_MULT_TYPE *quantptr; |
||||
int *wsptr; |
||||
JSAMPROW outptr; |
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
||||
int ctr; |
||||
int workspace[DCTSIZE2]; /* buffers data between passes */ |
||||
SHIFT_TEMPS /* for DESCALE */ |
||||
ISHIFT_TEMPS /* for IDESCALE */ |
||||
|
||||
/* Pass 1: process columns from input, store into work array. */ |
||||
|
||||
inptr = coef_block; |
||||
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; |
||||
wsptr = workspace; |
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) { |
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this |
||||
* by short-circuiting the IDCT calculation for any column in which all |
||||
* the AC terms are zero. In that case each output is equal to the |
||||
* DC coefficient (with scale factor as needed). |
||||
* With typical images and quantization tables, half or more of the |
||||
* column DCT calculations can be simplified this way. |
||||
*/ |
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
||||
inptr[DCTSIZE*7] == 0) { |
||||
/* AC terms all zero */ |
||||
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
|
||||
wsptr[DCTSIZE*0] = dcval; |
||||
wsptr[DCTSIZE*1] = dcval; |
||||
wsptr[DCTSIZE*2] = dcval; |
||||
wsptr[DCTSIZE*3] = dcval; |
||||
wsptr[DCTSIZE*4] = dcval; |
||||
wsptr[DCTSIZE*5] = dcval; |
||||
wsptr[DCTSIZE*6] = dcval; |
||||
wsptr[DCTSIZE*7] = dcval; |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
continue; |
||||
} |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */ |
||||
tmp11 = tmp0 - tmp2; |
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
||||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */ |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */ |
||||
z10 = tmp6 - tmp5; |
||||
z11 = tmp4 + tmp7; |
||||
z12 = tmp4 - tmp7; |
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */ |
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */ |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 + tmp5; |
||||
|
||||
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); |
||||
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); |
||||
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); |
||||
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); |
||||
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); |
||||
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); |
||||
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); |
||||
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); |
||||
|
||||
inptr++; /* advance pointers to next column */ |
||||
quantptr++; |
||||
wsptr++; |
||||
} |
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */ |
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */ |
||||
/* and also undo the PASS1_BITS scaling. */ |
||||
|
||||
wsptr = workspace; |
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
||||
outptr = output_buf[ctr] + output_col; |
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so |
||||
* the simplification applies less often (typically 5% to 10% of the time). |
||||
* On machines with very fast multiplication, it's possible that the |
||||
* test takes more time than it's worth. In that case this section |
||||
* may be commented out. |
||||
*/ |
||||
|
||||
#ifndef NO_ZERO_ROW_TEST |
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
||||
/* AC terms all zero */ |
||||
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
|
||||
outptr[0] = dcval; |
||||
outptr[1] = dcval; |
||||
outptr[2] = dcval; |
||||
outptr[3] = dcval; |
||||
outptr[4] = dcval; |
||||
outptr[5] = dcval; |
||||
outptr[6] = dcval; |
||||
outptr[7] = dcval; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
continue; |
||||
} |
||||
#endif |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); |
||||
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); |
||||
|
||||
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); |
||||
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) |
||||
- tmp13; |
||||
|
||||
tmp0 = tmp10 + tmp13; |
||||
tmp3 = tmp10 - tmp13; |
||||
tmp1 = tmp11 + tmp12; |
||||
tmp2 = tmp11 - tmp12; |
||||
|
||||
/* Odd part */ |
||||
|
||||
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; |
||||
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; |
||||
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; |
||||
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; |
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */ |
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */ |
||||
tmp5 = tmp11 - tmp6; |
||||
tmp4 = tmp10 + tmp5; |
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */ |
||||
|
||||
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
} |
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */ |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,403 @@ |
||||
/*
|
||||
* jidctred.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software. |
||||
* Copyright (C) 1994-1998, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains inverse-DCT routines that produce reduced-size output: |
||||
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. |
||||
* |
||||
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) |
||||
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step |
||||
* with an 8-to-4 step that produces the four averages of two adjacent outputs |
||||
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). |
||||
* These steps were derived by computing the corresponding values at the end |
||||
* of the normal LL&M code, then simplifying as much as possible. |
||||
* |
||||
* 1x1 is trivial: just take the DC coefficient divided by 8. |
||||
* |
||||
* See jidctint.c for additional comments. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jdct.h" /* Private declarations for DCT subsystem */ |
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8. |
||||
*/ |
||||
|
||||
#if DCTSIZE != 8 |
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
||||
#endif |
||||
|
||||
|
||||
/* Scaling is the same as in jidctint.c. */ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define CONST_BITS 13 |
||||
#define PASS1_BITS 2 |
||||
#else |
||||
#define CONST_BITS 13 |
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
||||
#endif |
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time. |
||||
* To get around this we use the following pre-calculated constants. |
||||
* If you change CONST_BITS you may want to add appropriate values. |
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
||||
*/ |
||||
|
||||
#if CONST_BITS == 13 |
||||
#define FIX_0_211164243 ((JLONG) 1730) /* FIX(0.211164243) */ |
||||
#define FIX_0_509795579 ((JLONG) 4176) /* FIX(0.509795579) */ |
||||
#define FIX_0_601344887 ((JLONG) 4926) /* FIX(0.601344887) */ |
||||
#define FIX_0_720959822 ((JLONG) 5906) /* FIX(0.720959822) */ |
||||
#define FIX_0_765366865 ((JLONG) 6270) /* FIX(0.765366865) */ |
||||
#define FIX_0_850430095 ((JLONG) 6967) /* FIX(0.850430095) */ |
||||
#define FIX_0_899976223 ((JLONG) 7373) /* FIX(0.899976223) */ |
||||
#define FIX_1_061594337 ((JLONG) 8697) /* FIX(1.061594337) */ |
||||
#define FIX_1_272758580 ((JLONG) 10426) /* FIX(1.272758580) */ |
||||
#define FIX_1_451774981 ((JLONG) 11893) /* FIX(1.451774981) */ |
||||
#define FIX_1_847759065 ((JLONG) 15137) /* FIX(1.847759065) */ |
||||
#define FIX_2_172734803 ((JLONG) 17799) /* FIX(2.172734803) */ |
||||
#define FIX_2_562915447 ((JLONG) 20995) /* FIX(2.562915447) */ |
||||
#define FIX_3_624509785 ((JLONG) 29692) /* FIX(3.624509785) */ |
||||
#else |
||||
#define FIX_0_211164243 FIX(0.211164243) |
||||
#define FIX_0_509795579 FIX(0.509795579) |
||||
#define FIX_0_601344887 FIX(0.601344887) |
||||
#define FIX_0_720959822 FIX(0.720959822) |
||||
#define FIX_0_765366865 FIX(0.765366865) |
||||
#define FIX_0_850430095 FIX(0.850430095) |
||||
#define FIX_0_899976223 FIX(0.899976223) |
||||
#define FIX_1_061594337 FIX(1.061594337) |
||||
#define FIX_1_272758580 FIX(1.272758580) |
||||
#define FIX_1_451774981 FIX(1.451774981) |
||||
#define FIX_1_847759065 FIX(1.847759065) |
||||
#define FIX_2_172734803 FIX(2.172734803) |
||||
#define FIX_2_562915447 FIX(2.562915447) |
||||
#define FIX_3_624509785 FIX(3.624509785) |
||||
#endif |
||||
|
||||
|
||||
/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable |
||||
* and constant values involved are no more than 16 bits wide, so a |
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
||||
* For 12-bit samples, a full 32-bit multiplication will be needed. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
||||
#else |
||||
#define MULTIPLY(var,const) ((var) * (const)) |
||||
#endif |
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce an int result. In this module, both inputs and result |
||||
* are 16 bits or less, so either int or short multiply will work. |
||||
*/ |
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients, |
||||
* producing a reduced-size 4x4 output block. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col) |
||||
{ |
||||
JLONG tmp0, tmp2, tmp10, tmp12; |
||||
JLONG z1, z2, z3, z4; |
||||
JCOEFPTR inptr; |
||||
ISLOW_MULT_TYPE *quantptr; |
||||
int *wsptr; |
||||
JSAMPROW outptr; |
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
||||
int ctr; |
||||
int workspace[DCTSIZE*4]; /* buffers data between passes */ |
||||
SHIFT_TEMPS |
||||
|
||||
/* Pass 1: process columns from input, store into work array. */ |
||||
|
||||
inptr = coef_block; |
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
||||
wsptr = workspace; |
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
||||
/* Don't bother to process column 4, because second pass won't use it */ |
||||
if (ctr == DCTSIZE-4) |
||||
continue; |
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && |
||||
inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { |
||||
/* AC terms all zero; we need not examine term 4 for 4x4 output */ |
||||
int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), |
||||
PASS1_BITS); |
||||
|
||||
wsptr[DCTSIZE*0] = dcval; |
||||
wsptr[DCTSIZE*1] = dcval; |
||||
wsptr[DCTSIZE*2] = dcval; |
||||
wsptr[DCTSIZE*3] = dcval; |
||||
|
||||
continue; |
||||
} |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1); |
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
||||
|
||||
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); |
||||
|
||||
tmp10 = tmp0 + tmp2; |
||||
tmp12 = tmp0 - tmp2; |
||||
|
||||
/* Odd part */ |
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
||||
z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
||||
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
||||
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
||||
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
||||
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
||||
|
||||
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
||||
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
||||
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
||||
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
||||
|
||||
/* Final output stage */ |
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); |
||||
wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); |
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); |
||||
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); |
||||
} |
||||
|
||||
/* Pass 2: process 4 rows from work array, store into output array. */ |
||||
|
||||
wsptr = workspace; |
||||
for (ctr = 0; ctr < 4; ctr++) { |
||||
outptr = output_buf[ctr] + output_col; |
||||
/* It's not clear whether a zero row test is worthwhile here ... */ |
||||
|
||||
#ifndef NO_ZERO_ROW_TEST |
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && |
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
||||
/* AC terms all zero */ |
||||
JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
|
||||
outptr[0] = dcval; |
||||
outptr[1] = dcval; |
||||
outptr[2] = dcval; |
||||
outptr[3] = dcval; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
continue; |
||||
} |
||||
#endif |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp0 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+1); |
||||
|
||||
tmp2 = MULTIPLY((JLONG) wsptr[2], FIX_1_847759065) |
||||
+ MULTIPLY((JLONG) wsptr[6], - FIX_0_765366865); |
||||
|
||||
tmp10 = tmp0 + tmp2; |
||||
tmp12 = tmp0 - tmp2; |
||||
|
||||
/* Odd part */ |
||||
|
||||
z1 = (JLONG) wsptr[7]; |
||||
z2 = (JLONG) wsptr[5]; |
||||
z3 = (JLONG) wsptr[3]; |
||||
z4 = (JLONG) wsptr[1]; |
||||
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
||||
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
||||
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
||||
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
||||
|
||||
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
||||
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
||||
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
||||
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
||||
|
||||
/* Final output stage */ |
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, |
||||
CONST_BITS+PASS1_BITS+3+1) |
||||
& RANGE_MASK]; |
||||
outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, |
||||
CONST_BITS+PASS1_BITS+3+1) |
||||
& RANGE_MASK]; |
||||
outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, |
||||
CONST_BITS+PASS1_BITS+3+1) |
||||
& RANGE_MASK]; |
||||
outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, |
||||
CONST_BITS+PASS1_BITS+3+1) |
||||
& RANGE_MASK]; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients, |
||||
* producing a reduced-size 2x2 output block. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col) |
||||
{ |
||||
JLONG tmp0, tmp10, z1; |
||||
JCOEFPTR inptr; |
||||
ISLOW_MULT_TYPE *quantptr; |
||||
int *wsptr; |
||||
JSAMPROW outptr; |
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
||||
int ctr; |
||||
int workspace[DCTSIZE*2]; /* buffers data between passes */ |
||||
SHIFT_TEMPS |
||||
|
||||
/* Pass 1: process columns from input, store into work array. */ |
||||
|
||||
inptr = coef_block; |
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
||||
wsptr = workspace; |
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
||||
/* Don't bother to process columns 2,4,6 */ |
||||
if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) |
||||
continue; |
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && |
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { |
||||
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ |
||||
int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), |
||||
PASS1_BITS); |
||||
|
||||
wsptr[DCTSIZE*0] = dcval; |
||||
wsptr[DCTSIZE*1] = dcval; |
||||
|
||||
continue; |
||||
} |
||||
|
||||
/* Even part */ |
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
||||
tmp10 = LEFT_SHIFT(z1, CONST_BITS+2); |
||||
|
||||
/* Odd part */ |
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
||||
tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ |
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
||||
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ |
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
||||
tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ |
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
||||
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
||||
|
||||
/* Final output stage */ |
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); |
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); |
||||
} |
||||
|
||||
/* Pass 2: process 2 rows from work array, store into output array. */ |
||||
|
||||
wsptr = workspace; |
||||
for (ctr = 0; ctr < 2; ctr++) { |
||||
outptr = output_buf[ctr] + output_col; |
||||
/* It's not clear whether a zero row test is worthwhile here ... */ |
||||
|
||||
#ifndef NO_ZERO_ROW_TEST |
||||
if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { |
||||
/* AC terms all zero */ |
||||
JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3) |
||||
& RANGE_MASK]; |
||||
|
||||
outptr[0] = dcval; |
||||
outptr[1] = dcval; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
continue; |
||||
} |
||||
#endif |
||||
|
||||
/* Even part */ |
||||
|
||||
tmp10 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+2); |
||||
|
||||
/* Odd part */ |
||||
|
||||
tmp0 = MULTIPLY((JLONG) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ |
||||
+ MULTIPLY((JLONG) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ |
||||
+ MULTIPLY((JLONG) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ |
||||
+ MULTIPLY((JLONG) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
||||
|
||||
/* Final output stage */ |
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, |
||||
CONST_BITS+PASS1_BITS+3+2) |
||||
& RANGE_MASK]; |
||||
outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, |
||||
CONST_BITS+PASS1_BITS+3+2) |
||||
& RANGE_MASK]; |
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */ |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients, |
||||
* producing a reduced-size 1x1 output block. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, JDIMENSION output_col) |
||||
{ |
||||
int dcval; |
||||
ISLOW_MULT_TYPE *quantptr; |
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
||||
SHIFT_TEMPS |
||||
|
||||
/* We hardly need an inverse DCT routine for this: just take the
|
||||
* average pixel value, which is one-eighth of the DC coefficient. |
||||
*/ |
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
||||
dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
||||
dcval = (int) DESCALE((JLONG) dcval, 3); |
||||
|
||||
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
||||
} |
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */ |
@ -0,0 +1,84 @@ |
||||
/*
|
||||
* jinclude.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1994, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code relevant |
||||
* to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file exists to provide a single place to fix any problems with |
||||
* including the wrong system include files. (Common problems are taken |
||||
* care of by the standard jconfig symbols, but on really weird systems |
||||
* you may have to edit this file.) |
||||
* |
||||
* NOTE: this file is NOT intended to be included by applications using the |
||||
* JPEG library. Most applications need only include jpeglib.h. |
||||
*/ |
||||
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */ |
||||
|
||||
#include "jconfig.h" /* auto configuration options */ |
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */ |
||||
|
||||
/*
|
||||
* We need the NULL macro and size_t typedef. |
||||
* On an ANSI-conforming system it is sufficient to include <stddef.h>. |
||||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to |
||||
* pull in <sys/types.h> as well. |
||||
* Note that the core JPEG library does not require <stdio.h>; |
||||
* only the default error handler and data source/destination modules do. |
||||
* But we must pull it in because of the references to FILE in jpeglib.h. |
||||
* You can remove those references if you want to compile without <stdio.h>. |
||||
*/ |
||||
|
||||
#ifdef HAVE_STDDEF_H |
||||
#include <stddef.h> |
||||
#endif |
||||
|
||||
#ifdef HAVE_STDLIB_H |
||||
#include <stdlib.h> |
||||
#endif |
||||
|
||||
#ifdef NEED_SYS_TYPES_H |
||||
#include <sys/types.h> |
||||
#endif |
||||
|
||||
#include <stdio.h> |
||||
|
||||
/*
|
||||
* We need memory copying and zeroing functions, plus strncpy(). |
||||
* ANSI and System V implementations declare these in <string.h>. |
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). |
||||
* Some systems may declare memset and memcpy in <memory.h>. |
||||
* |
||||
* NOTE: we assume the size parameters to these functions are of type size_t. |
||||
* Change the casts in these macros if not! |
||||
*/ |
||||
|
||||
#ifdef NEED_BSD_STRINGS |
||||
|
||||
#include <strings.h> |
||||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size)) |
||||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size)) |
||||
|
||||
#else /* not BSD, assume ANSI/SysV string lib */ |
||||
|
||||
#include <string.h> |
||||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size)) |
||||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size)) |
||||
|
||||
#endif |
||||
|
||||
/*
|
||||
* The modules that use fread() and fwrite() always invoke them through |
||||
* these macros. On some systems you may need to twiddle the argument casts. |
||||
* CAUTION: argument order is different from underlying functions! |
||||
*/ |
||||
|
||||
#define JFREAD(file,buf,sizeofbuf) \ |
||||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) |
||||
#define JFWRITE(file,buf,sizeofbuf) \ |
||||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,115 @@ |
||||
/*
|
||||
* jmemnobs.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1992-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2017, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file provides a really simple implementation of the system- |
||||
* dependent portion of the JPEG memory manager. This implementation |
||||
* assumes that no backing-store files are needed: all required space |
||||
* can be obtained from malloc(). |
||||
* This is very portable in the sense that it'll compile on almost anything, |
||||
* but you'd better have lots of main memory (or virtual memory) if you want |
||||
* to process big images. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jmemsys.h" /* import the system-dependent declarations */ |
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ |
||||
extern void *malloc (size_t size); |
||||
extern void free (void *ptr); |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library |
||||
* routines malloc() and free(). |
||||
*/ |
||||
|
||||
GLOBAL(void *) |
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) |
||||
{ |
||||
return (void *) malloc(sizeofobject); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_free_small (j_common_ptr cinfo, void *object, size_t sizeofobject) |
||||
{ |
||||
free(object); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones. |
||||
*/ |
||||
|
||||
GLOBAL(void *) |
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) |
||||
{ |
||||
return (void *) malloc(sizeofobject); |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_free_large (j_common_ptr cinfo, void *object, size_t sizeofobject) |
||||
{ |
||||
free(object); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation. |
||||
*/ |
||||
|
||||
GLOBAL(size_t) |
||||
jpeg_mem_available (j_common_ptr cinfo, size_t min_bytes_needed, |
||||
size_t max_bytes_needed, size_t already_allocated) |
||||
{ |
||||
if (cinfo->mem->max_memory_to_use) { |
||||
if (cinfo->mem->max_memory_to_use > already_allocated) |
||||
return cinfo->mem->max_memory_to_use - already_allocated; |
||||
else |
||||
return 0; |
||||
} else { |
||||
/* Here we always say, "we got all you want bud!" */ |
||||
return max_bytes_needed; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management. |
||||
* Since jpeg_mem_available always promised the moon, |
||||
* this should never be called and we can just error out. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, |
||||
long total_bytes_needed) |
||||
{ |
||||
ERREXIT(cinfo, JERR_NO_BACKING_STORE); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and |
||||
* cleanup required. Here, there isn't any. |
||||
*/ |
||||
|
||||
GLOBAL(long) |
||||
jpeg_mem_init (j_common_ptr cinfo) |
||||
{ |
||||
return 0; /* just set max_memory_to_use to 0 */ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jpeg_mem_term (j_common_ptr cinfo) |
||||
{ |
||||
/* no work */ |
||||
} |
@ -0,0 +1,178 @@ |
||||
/*
|
||||
* jmemsys.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1992-1997, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code and |
||||
* information relevant to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This include file defines the interface between the system-independent |
||||
* and system-dependent portions of the JPEG memory manager. No other |
||||
* modules need include it. (The system-independent portion is jmemmgr.c; |
||||
* there are several different versions of the system-dependent portion.) |
||||
* |
||||
* This file works as-is for the system-dependent memory managers supplied |
||||
* in the IJG distribution. You may need to modify it if you write a |
||||
* custom memory manager. If system-dependent changes are needed in |
||||
* this file, the best method is to #ifdef them based on a configuration |
||||
* symbol supplied in jconfig.h. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of |
||||
* memory. (Typically the total amount requested through jpeg_get_small is |
||||
* no more than 20K or so; this will be requested in chunks of a few K each.) |
||||
* Behavior should be the same as for the standard library functions malloc |
||||
* and free; in particular, jpeg_get_small must return NULL on failure. |
||||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the |
||||
* size of the object being freed, just in case it's needed. |
||||
*/ |
||||
|
||||
EXTERN(void *) jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject); |
||||
EXTERN(void) jpeg_free_small (j_common_ptr cinfo, void *object, |
||||
size_t sizeofobject); |
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of |
||||
* memory (up to the total free space designated by jpeg_mem_available). |
||||
* These are identical to the jpeg_get/free_small routines; but we keep them |
||||
* separate anyway, in case a different allocation strategy is desirable for |
||||
* large chunks. |
||||
*/ |
||||
|
||||
EXTERN(void *) jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject); |
||||
EXTERN(void) jpeg_free_large (j_common_ptr cinfo, void *object, |
||||
size_t sizeofobject); |
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may |
||||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that |
||||
* matter, but that case should never come into play). This macro was needed |
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines. |
||||
* On machines with flat address spaces, any large constant may be used. |
||||
* |
||||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type |
||||
* size_t and will be a multiple of sizeof(align_type). |
||||
*/ |
||||
|
||||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */ |
||||
#define MAX_ALLOC_CHUNK 1000000000L |
||||
#endif |
||||
|
||||
/*
|
||||
* This routine computes the total space still available for allocation by |
||||
* jpeg_get_large. If more space than this is needed, backing store will be |
||||
* used. NOTE: any memory already allocated must not be counted. |
||||
* |
||||
* There is a minimum space requirement, corresponding to the minimum |
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if |
||||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold |
||||
* all working storage in memory, is also passed in case it is useful. |
||||
* Finally, the total space already allocated is passed. If no better |
||||
* method is available, cinfo->mem->max_memory_to_use - already_allocated |
||||
* is often a suitable calculation. |
||||
* |
||||
* It is OK for jpeg_mem_available to underestimate the space available |
||||
* (that'll just lead to more backing-store access than is really necessary). |
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract |
||||
* a slop factor from the true available space. 5% should be enough. |
||||
* |
||||
* On machines with lots of virtual memory, any large constant may be returned. |
||||
* Conversely, zero may be returned to always use the minimum amount of memory. |
||||
*/ |
||||
|
||||
EXTERN(size_t) jpeg_mem_available (j_common_ptr cinfo, size_t min_bytes_needed, |
||||
size_t max_bytes_needed, |
||||
size_t already_allocated); |
||||
|
||||
|
||||
/*
|
||||
* This structure holds whatever state is needed to access a single |
||||
* backing-store object. The read/write/close method pointers are called |
||||
* by jmemmgr.c to manipulate the backing-store object; all other fields |
||||
* are private to the system-dependent backing store routines. |
||||
*/ |
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */ |
||||
|
||||
|
||||
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */ |
||||
|
||||
typedef unsigned short XMSH; /* type of extended-memory handles */ |
||||
typedef unsigned short EMSH; /* type of expanded-memory handles */ |
||||
|
||||
typedef union { |
||||
short file_handle; /* DOS file handle if it's a temp file */ |
||||
XMSH xms_handle; /* handle if it's a chunk of XMS */ |
||||
EMSH ems_handle; /* handle if it's a chunk of EMS */ |
||||
} handle_union; |
||||
|
||||
#endif /* USE_MSDOS_MEMMGR */ |
||||
|
||||
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */ |
||||
#include <Files.h> |
||||
#endif /* USE_MAC_MEMMGR */ |
||||
|
||||
|
||||
typedef struct backing_store_struct *backing_store_ptr; |
||||
|
||||
typedef struct backing_store_struct { |
||||
/* Methods for reading/writing/closing this backing-store object */ |
||||
void (*read_backing_store) (j_common_ptr cinfo, backing_store_ptr info, |
||||
void *buffer_address, long file_offset, |
||||
long byte_count); |
||||
void (*write_backing_store) (j_common_ptr cinfo, backing_store_ptr info, |
||||
void *buffer_address, long file_offset, |
||||
long byte_count); |
||||
void (*close_backing_store) (j_common_ptr cinfo, backing_store_ptr info); |
||||
|
||||
/* Private fields for system-dependent backing-store management */ |
||||
#ifdef USE_MSDOS_MEMMGR |
||||
/* For the MS-DOS manager (jmemdos.c), we need: */ |
||||
handle_union handle; /* reference to backing-store storage object */ |
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ |
||||
#else |
||||
#ifdef USE_MAC_MEMMGR |
||||
/* For the Mac manager (jmemmac.c), we need: */ |
||||
short temp_file; /* file reference number to temp file */ |
||||
FSSpec tempSpec; /* the FSSpec for the temp file */ |
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ |
||||
#else |
||||
/* For a typical implementation with temp files, we need: */ |
||||
FILE *temp_file; /* stdio reference to temp file */ |
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ |
||||
#endif |
||||
#endif |
||||
} backing_store_info; |
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the |
||||
* read/write/close pointers in the object. The read/write routines |
||||
* may take an error exit if the specified maximum file size is exceeded. |
||||
* (If jpeg_mem_available always returns a large value, this routine can |
||||
* just take an error exit.) |
||||
*/ |
||||
|
||||
EXTERN(void) jpeg_open_backing_store (j_common_ptr cinfo, |
||||
backing_store_ptr info, |
||||
long total_bytes_needed); |
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and |
||||
* cleanup required. jpeg_mem_init will be called before anything is |
||||
* allocated (and, therefore, nothing in cinfo is of use except the error |
||||
* manager pointer). It should return a suitable default value for |
||||
* max_memory_to_use; this may subsequently be overridden by the surrounding |
||||
* application. (Note that max_memory_to_use is only important if |
||||
* jpeg_mem_available chooses to consult it ... no one else will.) |
||||
* jpeg_mem_term may assume that all requested memory has been freed and that |
||||
* all opened backing-store objects have been closed. |
||||
*/ |
||||
|
||||
EXTERN(long) jpeg_mem_init (j_common_ptr cinfo); |
||||
EXTERN(void) jpeg_mem_term (j_common_ptr cinfo); |
@ -0,0 +1,421 @@ |
||||
/*
|
||||
* jmorecfg.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 1997-2009 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2009, 2011, 2014-2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains additional configuration options that customize the |
||||
* JPEG software for special applications or support machine-dependent |
||||
* optimizations. Most users will not need to touch this file. |
||||
*/ |
||||
|
||||
|
||||
/*
|
||||
* Maximum number of components (color channels) allowed in JPEG image. |
||||
* To meet the letter of the JPEG spec, set this to 255. However, darn |
||||
* few applications need more than 4 channels (maybe 5 for CMYK + alpha |
||||
* mask). We recommend 10 as a reasonable compromise; use 4 if you are |
||||
* really short on memory. (Each allowed component costs a hundred or so |
||||
* bytes of storage, whether actually used in an image or not.) |
||||
*/ |
||||
|
||||
#define MAX_COMPONENTS 10 /* maximum number of image components */ |
||||
|
||||
|
||||
/*
|
||||
* Basic data types. |
||||
* You may need to change these if you have a machine with unusual data |
||||
* type sizes; for example, "char" not 8 bits, "short" not 16 bits, |
||||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, |
||||
* but it had better be at least 16. |
||||
*/ |
||||
|
||||
/* Representation of a single sample (pixel element value).
|
||||
* We frequently allocate large arrays of these, so it's important to keep |
||||
* them small. But if you have memory to burn and access to char or short |
||||
* arrays is very slow on your hardware, you might want to change these. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
/* JSAMPLE should be the smallest type that will hold the values 0..255.
|
||||
* You can use a signed char by having GETJSAMPLE mask it with 0xFF. |
||||
*/ |
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR |
||||
|
||||
typedef unsigned char JSAMPLE; |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */ |
||||
|
||||
typedef char JSAMPLE; |
||||
#ifdef __CHAR_UNSIGNED__ |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
#else |
||||
#define GETJSAMPLE(value) ((int) (value) & 0xFF) |
||||
#endif /* __CHAR_UNSIGNED__ */ |
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */ |
||||
|
||||
#define MAXJSAMPLE 255 |
||||
#define CENTERJSAMPLE 128 |
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */ |
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 12 |
||||
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
|
||||
* On nearly all machines "short" will do nicely. |
||||
*/ |
||||
|
||||
typedef short JSAMPLE; |
||||
#define GETJSAMPLE(value) ((int) (value)) |
||||
|
||||
#define MAXJSAMPLE 4095 |
||||
#define CENTERJSAMPLE 2048 |
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 12 */ |
||||
|
||||
|
||||
/* Representation of a DCT frequency coefficient.
|
||||
* This should be a signed value of at least 16 bits; "short" is usually OK. |
||||
* Again, we allocate large arrays of these, but you can change to int |
||||
* if you have memory to burn and "short" is really slow. |
||||
*/ |
||||
|
||||
typedef short JCOEF; |
||||
|
||||
|
||||
/* Compressed datastreams are represented as arrays of JOCTET.
|
||||
* These must be EXACTLY 8 bits wide, at least once they are written to |
||||
* external storage. Note that when using the stdio data source/destination |
||||
* managers, this is also the data type passed to fread/fwrite. |
||||
*/ |
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR |
||||
|
||||
typedef unsigned char JOCTET; |
||||
#define GETJOCTET(value) (value) |
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */ |
||||
|
||||
typedef char JOCTET; |
||||
#ifdef __CHAR_UNSIGNED__ |
||||
#define GETJOCTET(value) (value) |
||||
#else |
||||
#define GETJOCTET(value) ((value) & 0xFF) |
||||
#endif /* __CHAR_UNSIGNED__ */ |
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */ |
||||
|
||||
|
||||
/* These typedefs are used for various table entries and so forth.
|
||||
* They must be at least as wide as specified; but making them too big |
||||
* won't cost a huge amount of memory, so we don't provide special |
||||
* extraction code like we did for JSAMPLE. (In other words, these |
||||
* typedefs live at a different point on the speed/space tradeoff curve.) |
||||
*/ |
||||
|
||||
/* UINT8 must hold at least the values 0..255. */ |
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR |
||||
typedef unsigned char UINT8; |
||||
#else /* not HAVE_UNSIGNED_CHAR */ |
||||
#ifdef __CHAR_UNSIGNED__ |
||||
typedef char UINT8; |
||||
#else /* not __CHAR_UNSIGNED__ */ |
||||
typedef short UINT8; |
||||
#endif /* __CHAR_UNSIGNED__ */ |
||||
#endif /* HAVE_UNSIGNED_CHAR */ |
||||
|
||||
/* UINT16 must hold at least the values 0..65535. */ |
||||
|
||||
#ifdef HAVE_UNSIGNED_SHORT |
||||
typedef unsigned short UINT16; |
||||
#else /* not HAVE_UNSIGNED_SHORT */ |
||||
typedef unsigned int UINT16; |
||||
#endif /* HAVE_UNSIGNED_SHORT */ |
||||
|
||||
/* INT16 must hold at least the values -32768..32767. */ |
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */ |
||||
typedef short INT16; |
||||
#endif |
||||
|
||||
/* INT32 must hold at least signed 32-bit values.
|
||||
* |
||||
* NOTE: The INT32 typedef dates back to libjpeg v5 (1994.) Integers were |
||||
* sometimes 16-bit back then (MS-DOS), which is why INT32 is typedef'd to |
||||
* long. It also wasn't common (or at least as common) in 1994 for INT32 to be |
||||
* defined by platform headers. Since then, however, INT32 is defined in |
||||
* several other common places: |
||||
* |
||||
* Xmd.h (X11 header) typedefs INT32 to int on 64-bit platforms and long on |
||||
* 32-bit platforms (i.e always a 32-bit signed type.) |
||||
* |
||||
* basetsd.h (Win32 header) typedefs INT32 to int (always a 32-bit signed type |
||||
* on modern platforms.) |
||||
* |
||||
* qglobal.h (Qt header) typedefs INT32 to int (always a 32-bit signed type on |
||||
* modern platforms.) |
||||
* |
||||
* This is a recipe for conflict, since "long" and "int" aren't always |
||||
* compatible types. Since the definition of INT32 has technically been part |
||||
* of the libjpeg API for more than 20 years, we can't remove it, but we do not |
||||
* use it internally any longer. We instead define a separate type (JLONG) |
||||
* for internal use, which ensures that internal behavior will always be the |
||||
* same regardless of any external headers that may be included. |
||||
*/ |
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */ |
||||
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */ |
||||
#ifndef _BASETSD_H /* MinGW is slightly different */ |
||||
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */ |
||||
typedef long INT32; |
||||
#endif |
||||
#endif |
||||
#endif |
||||
#endif |
||||
|
||||
/* Datatype used for image dimensions. The JPEG standard only supports
|
||||
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore |
||||
* "unsigned int" is sufficient on all machines. However, if you need to |
||||
* handle larger images and you don't mind deviating from the spec, you |
||||
* can change this datatype. (Note that changing this datatype will |
||||
* potentially require modifying the SIMD code. The x86-64 SIMD extensions, |
||||
* in particular, assume a 32-bit JDIMENSION.) |
||||
*/ |
||||
|
||||
typedef unsigned int JDIMENSION; |
||||
|
||||
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ |
||||
|
||||
|
||||
/* These macros are used in all function definitions and extern declarations.
|
||||
* You could modify them if you need to change function linkage conventions; |
||||
* in particular, you'll need to do that to make the library a Windows DLL. |
||||
* Another application is to make all functions global for use with debuggers |
||||
* or code profilers that require it. |
||||
*/ |
||||
|
||||
/* a function called through method pointers: */ |
||||
#define METHODDEF(type) static type |
||||
/* a function used only in its module: */ |
||||
#define LOCAL(type) static type |
||||
/* a function referenced thru EXTERNs: */ |
||||
#define GLOBAL(type) type |
||||
/* a reference to a GLOBAL function: */ |
||||
#define EXTERN(type) extern type |
||||
|
||||
|
||||
/* Originally, this macro was used as a way of defining function prototypes
|
||||
* for both modern compilers as well as older compilers that did not support |
||||
* prototype parameters. libjpeg-turbo has never supported these older, |
||||
* non-ANSI compilers, but the macro is still included because there is some |
||||
* software out there that uses it. |
||||
*/ |
||||
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist |
||||
|
||||
|
||||
/* libjpeg-turbo no longer supports platforms that have far symbols (MS-DOS),
|
||||
* but again, some software relies on this macro. |
||||
*/ |
||||
|
||||
#undef FAR |
||||
#define FAR |
||||
|
||||
|
||||
/*
|
||||
* On a few systems, type boolean and/or its values FALSE, TRUE may appear |
||||
* in standard header files. Or you may have conflicts with application- |
||||
* specific header files that you want to include together with these files. |
||||
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work. |
||||
*/ |
||||
|
||||
#ifndef HAVE_BOOLEAN |
||||
typedef int boolean; |
||||
#endif |
||||
#ifndef FALSE /* in case these macros already exist */ |
||||
#define FALSE 0 /* values of boolean */ |
||||
#endif |
||||
#ifndef TRUE |
||||
#define TRUE 1 |
||||
#endif |
||||
|
||||
|
||||
/*
|
||||
* The remaining options affect code selection within the JPEG library, |
||||
* but they don't need to be visible to most applications using the library. |
||||
* To minimize application namespace pollution, the symbols won't be |
||||
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. |
||||
*/ |
||||
|
||||
#ifdef JPEG_INTERNALS |
||||
#define JPEG_INTERNAL_OPTIONS |
||||
#endif |
||||
|
||||
#ifdef JPEG_INTERNAL_OPTIONS |
||||
|
||||
|
||||
/*
|
||||
* These defines indicate whether to include various optional functions. |
||||
* Undefining some of these symbols will produce a smaller but less capable |
||||
* library. Note that you can leave certain source files out of the |
||||
* compilation/linking process if you've #undef'd the corresponding symbols. |
||||
* (You may HAVE to do that if your compiler doesn't like null source files.) |
||||
*/ |
||||
|
||||
/* Capability options common to encoder and decoder: */ |
||||
|
||||
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */ |
||||
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */ |
||||
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */ |
||||
|
||||
/* Encoder capability options: */ |
||||
|
||||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ |
||||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ |
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ |
||||
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
|
||||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit |
||||
* precision, so jchuff.c normally uses entropy optimization to compute |
||||
* usable tables for higher precision. If you don't want to do optimization, |
||||
* you'll have to supply different default Huffman tables. |
||||
* The exact same statements apply for progressive JPEG: the default tables |
||||
* don't work for progressive mode. (This may get fixed, however.) |
||||
*/ |
||||
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ |
||||
|
||||
/* Decoder capability options: */ |
||||
|
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ |
||||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ |
||||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ |
||||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ |
||||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ |
||||
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ |
||||
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ |
||||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ |
||||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ |
||||
|
||||
/* more capability options later, no doubt */ |
||||
|
||||
|
||||
/*
|
||||
* The RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros are a vestigial |
||||
* feature of libjpeg. The idea was that, if an application developer needed |
||||
* to compress from/decompress to a BGR/BGRX/RGBX/XBGR/XRGB buffer, they could |
||||
* change these macros, rebuild libjpeg, and link their application statically |
||||
* with it. In reality, few people ever did this, because there were some |
||||
* severe restrictions involved (cjpeg and djpeg no longer worked properly, |
||||
* compressing/decompressing RGB JPEGs no longer worked properly, and the color |
||||
* quantizer wouldn't work with pixel sizes other than 3.) Further, since all |
||||
* of the O/S-supplied versions of libjpeg were built with the default values |
||||
* of RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE, many applications have |
||||
* come to regard these values as immutable. |
||||
* |
||||
* The libjpeg-turbo colorspace extensions provide a much cleaner way of |
||||
* compressing from/decompressing to buffers with arbitrary component orders |
||||
* and pixel sizes. Thus, we do not support changing the values of RGB_RED, |
||||
* RGB_GREEN, RGB_BLUE, or RGB_PIXELSIZE. In addition to the restrictions |
||||
* listed above, changing these values will also break the SIMD extensions and |
||||
* the regression tests. |
||||
*/ |
||||
|
||||
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */ |
||||
#define RGB_GREEN 1 /* Offset of Green */ |
||||
#define RGB_BLUE 2 /* Offset of Blue */ |
||||
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ |
||||
|
||||
#define JPEG_NUMCS 17 |
||||
|
||||
#define EXT_RGB_RED 0 |
||||
#define EXT_RGB_GREEN 1 |
||||
#define EXT_RGB_BLUE 2 |
||||
#define EXT_RGB_PIXELSIZE 3 |
||||
|
||||
#define EXT_RGBX_RED 0 |
||||
#define EXT_RGBX_GREEN 1 |
||||
#define EXT_RGBX_BLUE 2 |
||||
#define EXT_RGBX_PIXELSIZE 4 |
||||
|
||||
#define EXT_BGR_RED 2 |
||||
#define EXT_BGR_GREEN 1 |
||||
#define EXT_BGR_BLUE 0 |
||||
#define EXT_BGR_PIXELSIZE 3 |
||||
|
||||
#define EXT_BGRX_RED 2 |
||||
#define EXT_BGRX_GREEN 1 |
||||
#define EXT_BGRX_BLUE 0 |
||||
#define EXT_BGRX_PIXELSIZE 4 |
||||
|
||||
#define EXT_XBGR_RED 3 |
||||
#define EXT_XBGR_GREEN 2 |
||||
#define EXT_XBGR_BLUE 1 |
||||
#define EXT_XBGR_PIXELSIZE 4 |
||||
|
||||
#define EXT_XRGB_RED 1 |
||||
#define EXT_XRGB_GREEN 2 |
||||
#define EXT_XRGB_BLUE 3 |
||||
#define EXT_XRGB_PIXELSIZE 4 |
||||
|
||||
static const int rgb_red[JPEG_NUMCS] = { |
||||
-1, -1, RGB_RED, -1, -1, -1, EXT_RGB_RED, EXT_RGBX_RED, |
||||
EXT_BGR_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, |
||||
EXT_RGBX_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, |
||||
-1 |
||||
}; |
||||
|
||||
static const int rgb_green[JPEG_NUMCS] = { |
||||
-1, -1, RGB_GREEN, -1, -1, -1, EXT_RGB_GREEN, EXT_RGBX_GREEN, |
||||
EXT_BGR_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, |
||||
EXT_RGBX_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, |
||||
-1 |
||||
}; |
||||
|
||||
static const int rgb_blue[JPEG_NUMCS] = { |
||||
-1, -1, RGB_BLUE, -1, -1, -1, EXT_RGB_BLUE, EXT_RGBX_BLUE, |
||||
EXT_BGR_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, |
||||
EXT_RGBX_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, |
||||
-1 |
||||
}; |
||||
|
||||
static const int rgb_pixelsize[JPEG_NUMCS] = { |
||||
-1, -1, RGB_PIXELSIZE, -1, -1, -1, EXT_RGB_PIXELSIZE, EXT_RGBX_PIXELSIZE, |
||||
EXT_BGR_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, |
||||
EXT_RGBX_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, |
||||
-1 |
||||
}; |
||||
|
||||
/* Definitions for speed-related optimizations. */ |
||||
|
||||
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
|
||||
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER |
||||
* as short on such a machine. MULTIPLIER must be at least 16 bits wide. |
||||
*/ |
||||
|
||||
#ifndef MULTIPLIER |
||||
#ifndef WITH_SIMD |
||||
#define MULTIPLIER int /* type for fastest integer multiply */ |
||||
#else |
||||
#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */ |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
/* FAST_FLOAT should be either float or double, whichever is done faster
|
||||
* by your compiler. (Note that this type is only used in the floating point |
||||
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) |
||||
*/ |
||||
|
||||
#ifndef FAST_FLOAT |
||||
#define FAST_FLOAT float |
||||
#endif |
||||
|
||||
#endif /* JPEG_INTERNAL_OPTIONS */ |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,31 @@ |
||||
/*
|
||||
* jpegcomp.h |
||||
* |
||||
* Copyright (C) 2010, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* JPEG compatibility macros |
||||
* These declarations are considered internal to the JPEG library; most |
||||
* applications using the library shouldn't need to include this file. |
||||
*/ |
||||
|
||||
#if JPEG_LIB_VERSION >= 70 |
||||
#define _DCT_scaled_size DCT_h_scaled_size |
||||
#define _DCT_h_scaled_size DCT_h_scaled_size |
||||
#define _DCT_v_scaled_size DCT_v_scaled_size |
||||
#define _min_DCT_scaled_size min_DCT_h_scaled_size |
||||
#define _min_DCT_h_scaled_size min_DCT_h_scaled_size |
||||
#define _min_DCT_v_scaled_size min_DCT_v_scaled_size |
||||
#define _jpeg_width jpeg_width |
||||
#define _jpeg_height jpeg_height |
||||
#else |
||||
#define _DCT_scaled_size DCT_scaled_size |
||||
#define _DCT_h_scaled_size DCT_scaled_size |
||||
#define _DCT_v_scaled_size DCT_scaled_size |
||||
#define _min_DCT_scaled_size min_DCT_scaled_size |
||||
#define _min_DCT_h_scaled_size min_DCT_scaled_size |
||||
#define _min_DCT_v_scaled_size min_DCT_scaled_size |
||||
#define _jpeg_width image_width |
||||
#define _jpeg_height image_height |
||||
#endif |
@ -0,0 +1,368 @@ |
||||
/*
|
||||
* jpegint.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1997, Thomas G. Lane. |
||||
* Modified 1997-2009 by Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2015-2016, D. R. Commander. |
||||
* Copyright (C) 2015, Google, Inc. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file provides common declarations for the various JPEG modules. |
||||
* These declarations are considered internal to the JPEG library; most |
||||
* applications using the library shouldn't need to include this file. |
||||
*/ |
||||
|
||||
|
||||
/* Declarations for both compression & decompression */ |
||||
|
||||
typedef enum { /* Operating modes for buffer controllers */ |
||||
JBUF_PASS_THRU, /* Plain stripwise operation */ |
||||
/* Remaining modes require a full-image buffer to have been created */ |
||||
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */ |
||||
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */ |
||||
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */ |
||||
} J_BUF_MODE; |
||||
|
||||
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */ |
||||
#define CSTATE_START 100 /* after create_compress */ |
||||
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */ |
||||
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */ |
||||
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */ |
||||
#define DSTATE_START 200 /* after create_decompress */ |
||||
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */ |
||||
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */ |
||||
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/ |
||||
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */ |
||||
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */ |
||||
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */ |
||||
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */ |
||||
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */ |
||||
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */ |
||||
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */ |
||||
|
||||
|
||||
/* JLONG must hold at least signed 32-bit values. */ |
||||
typedef long JLONG; |
||||
|
||||
|
||||
/*
|
||||
* Left shift macro that handles a negative operand without causing any |
||||
* sanitizer warnings |
||||
*/ |
||||
|
||||
#define LEFT_SHIFT(a, b) ((JLONG)((unsigned long)(a) << (b))) |
||||
|
||||
|
||||
/* Declarations for compression modules */ |
||||
|
||||
/* Master control module */ |
||||
struct jpeg_comp_master { |
||||
void (*prepare_for_pass) (j_compress_ptr cinfo); |
||||
void (*pass_startup) (j_compress_ptr cinfo); |
||||
void (*finish_pass) (j_compress_ptr cinfo); |
||||
|
||||
/* State variables made visible to other modules */ |
||||
boolean call_pass_startup; /* True if pass_startup must be called */ |
||||
boolean is_last_pass; /* True during last pass */ |
||||
}; |
||||
|
||||
/* Main buffer control (downsampled-data buffer) */ |
||||
struct jpeg_c_main_controller { |
||||
void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); |
||||
void (*process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail); |
||||
}; |
||||
|
||||
/* Compression preprocessing (downsampling input buffer control) */ |
||||
struct jpeg_c_prep_controller { |
||||
void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); |
||||
void (*pre_process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, |
||||
JSAMPIMAGE output_buf, |
||||
JDIMENSION *out_row_group_ctr, |
||||
JDIMENSION out_row_groups_avail); |
||||
}; |
||||
|
||||
/* Coefficient buffer control */ |
||||
struct jpeg_c_coef_controller { |
||||
void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); |
||||
boolean (*compress_data) (j_compress_ptr cinfo, JSAMPIMAGE input_buf); |
||||
}; |
||||
|
||||
/* Colorspace conversion */ |
||||
struct jpeg_color_converter { |
||||
void (*start_pass) (j_compress_ptr cinfo); |
||||
void (*color_convert) (j_compress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPIMAGE output_buf, JDIMENSION output_row, |
||||
int num_rows); |
||||
}; |
||||
|
||||
/* Downsampling */ |
||||
struct jpeg_downsampler { |
||||
void (*start_pass) (j_compress_ptr cinfo); |
||||
void (*downsample) (j_compress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_index, JSAMPIMAGE output_buf, |
||||
JDIMENSION out_row_group_index); |
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */ |
||||
}; |
||||
|
||||
/* Forward DCT (also controls coefficient quantization) */ |
||||
struct jpeg_forward_dct { |
||||
void (*start_pass) (j_compress_ptr cinfo); |
||||
/* perhaps this should be an array??? */ |
||||
void (*forward_DCT) (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
||||
JDIMENSION start_row, JDIMENSION start_col, |
||||
JDIMENSION num_blocks); |
||||
}; |
||||
|
||||
/* Entropy encoding */ |
||||
struct jpeg_entropy_encoder { |
||||
void (*start_pass) (j_compress_ptr cinfo, boolean gather_statistics); |
||||
boolean (*encode_mcu) (j_compress_ptr cinfo, JBLOCKROW *MCU_data); |
||||
void (*finish_pass) (j_compress_ptr cinfo); |
||||
}; |
||||
|
||||
/* Marker writing */ |
||||
struct jpeg_marker_writer { |
||||
void (*write_file_header) (j_compress_ptr cinfo); |
||||
void (*write_frame_header) (j_compress_ptr cinfo); |
||||
void (*write_scan_header) (j_compress_ptr cinfo); |
||||
void (*write_file_trailer) (j_compress_ptr cinfo); |
||||
void (*write_tables_only) (j_compress_ptr cinfo); |
||||
/* These routines are exported to allow insertion of extra markers */ |
||||
/* Probably only COM and APPn markers should be written this way */ |
||||
void (*write_marker_header) (j_compress_ptr cinfo, int marker, |
||||
unsigned int datalen); |
||||
void (*write_marker_byte) (j_compress_ptr cinfo, int val); |
||||
}; |
||||
|
||||
|
||||
/* Declarations for decompression modules */ |
||||
|
||||
/* Master control module */ |
||||
struct jpeg_decomp_master { |
||||
void (*prepare_for_output_pass) (j_decompress_ptr cinfo); |
||||
void (*finish_output_pass) (j_decompress_ptr cinfo); |
||||
|
||||
/* State variables made visible to other modules */ |
||||
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */ |
||||
|
||||
/* Partial decompression variables */ |
||||
JDIMENSION first_iMCU_col; |
||||
JDIMENSION last_iMCU_col; |
||||
JDIMENSION first_MCU_col[MAX_COMPONENTS]; |
||||
JDIMENSION last_MCU_col[MAX_COMPONENTS]; |
||||
boolean jinit_upsampler_no_alloc; |
||||
}; |
||||
|
||||
/* Input control module */ |
||||
struct jpeg_input_controller { |
||||
int (*consume_input) (j_decompress_ptr cinfo); |
||||
void (*reset_input_controller) (j_decompress_ptr cinfo); |
||||
void (*start_input_pass) (j_decompress_ptr cinfo); |
||||
void (*finish_input_pass) (j_decompress_ptr cinfo); |
||||
|
||||
/* State variables made visible to other modules */ |
||||
boolean has_multiple_scans; /* True if file has multiple scans */ |
||||
boolean eoi_reached; /* True when EOI has been consumed */ |
||||
}; |
||||
|
||||
/* Main buffer control (downsampled-data buffer) */ |
||||
struct jpeg_d_main_controller { |
||||
void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode); |
||||
void (*process_data) (j_decompress_ptr cinfo, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); |
||||
}; |
||||
|
||||
/* Coefficient buffer control */ |
||||
struct jpeg_d_coef_controller { |
||||
void (*start_input_pass) (j_decompress_ptr cinfo); |
||||
int (*consume_data) (j_decompress_ptr cinfo); |
||||
void (*start_output_pass) (j_decompress_ptr cinfo); |
||||
int (*decompress_data) (j_decompress_ptr cinfo, JSAMPIMAGE output_buf); |
||||
/* Pointer to array of coefficient virtual arrays, or NULL if none */ |
||||
jvirt_barray_ptr *coef_arrays; |
||||
}; |
||||
|
||||
/* Decompression postprocessing (color quantization buffer control) */ |
||||
struct jpeg_d_post_controller { |
||||
void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode); |
||||
void (*post_process_data) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, |
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
||||
JDIMENSION out_rows_avail); |
||||
}; |
||||
|
||||
/* Marker reading & parsing */ |
||||
struct jpeg_marker_reader { |
||||
void (*reset_marker_reader) (j_decompress_ptr cinfo); |
||||
/* Read markers until SOS or EOI.
|
||||
* Returns same codes as are defined for jpeg_consume_input: |
||||
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. |
||||
*/ |
||||
int (*read_markers) (j_decompress_ptr cinfo); |
||||
/* Read a restart marker --- exported for use by entropy decoder only */ |
||||
jpeg_marker_parser_method read_restart_marker; |
||||
|
||||
/* State of marker reader --- nominally internal, but applications
|
||||
* supplying COM or APPn handlers might like to know the state. |
||||
*/ |
||||
boolean saw_SOI; /* found SOI? */ |
||||
boolean saw_SOF; /* found SOF? */ |
||||
int next_restart_num; /* next restart number expected (0-7) */ |
||||
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */ |
||||
}; |
||||
|
||||
/* Entropy decoding */ |
||||
struct jpeg_entropy_decoder { |
||||
void (*start_pass) (j_decompress_ptr cinfo); |
||||
boolean (*decode_mcu) (j_decompress_ptr cinfo, JBLOCKROW *MCU_data); |
||||
|
||||
/* This is here to share code between baseline and progressive decoders; */ |
||||
/* other modules probably should not use it */ |
||||
boolean insufficient_data; /* set TRUE after emitting warning */ |
||||
}; |
||||
|
||||
/* Inverse DCT (also performs dequantization) */ |
||||
typedef void (*inverse_DCT_method_ptr) (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, |
||||
JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
||||
|
||||
struct jpeg_inverse_dct { |
||||
void (*start_pass) (j_decompress_ptr cinfo); |
||||
/* It is useful to allow each component to have a separate IDCT method. */ |
||||
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; |
||||
}; |
||||
|
||||
/* Upsampling (note that upsampler must also call color converter) */ |
||||
struct jpeg_upsampler { |
||||
void (*start_pass) (j_decompress_ptr cinfo); |
||||
void (*upsample) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION *in_row_group_ctr, |
||||
JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, |
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); |
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */ |
||||
}; |
||||
|
||||
/* Colorspace conversion */ |
||||
struct jpeg_color_deconverter { |
||||
void (*start_pass) (j_decompress_ptr cinfo); |
||||
void (*color_convert) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION input_row, JSAMPARRAY output_buf, |
||||
int num_rows); |
||||
}; |
||||
|
||||
/* Color quantization or color precision reduction */ |
||||
struct jpeg_color_quantizer { |
||||
void (*start_pass) (j_decompress_ptr cinfo, boolean is_pre_scan); |
||||
void (*color_quantize) (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows); |
||||
void (*finish_pass) (j_decompress_ptr cinfo); |
||||
void (*new_color_map) (j_decompress_ptr cinfo); |
||||
}; |
||||
|
||||
|
||||
/* Miscellaneous useful macros */ |
||||
|
||||
#undef MAX |
||||
#define MAX(a,b) ((a) > (b) ? (a) : (b)) |
||||
#undef MIN |
||||
#define MIN(a,b) ((a) < (b) ? (a) : (b)) |
||||
|
||||
|
||||
/* We assume that right shift corresponds to signed division by 2 with
|
||||
* rounding towards minus infinity. This is correct for typical "arithmetic |
||||
* shift" instructions that shift in copies of the sign bit. But some |
||||
* C compilers implement >> with an unsigned shift. For these machines you |
||||
* must define RIGHT_SHIFT_IS_UNSIGNED. |
||||
* RIGHT_SHIFT provides a proper signed right shift of a JLONG quantity. |
||||
* It is only applied with constant shift counts. SHIFT_TEMPS must be |
||||
* included in the variables of any routine using RIGHT_SHIFT. |
||||
*/ |
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
||||
#define SHIFT_TEMPS JLONG shift_temp; |
||||
#define RIGHT_SHIFT(x,shft) \ |
||||
((shift_temp = (x)) < 0 ? \
|
||||
(shift_temp >> (shft)) | ((~((JLONG) 0)) << (32-(shft))) : \
|
||||
(shift_temp >> (shft))) |
||||
#else |
||||
#define SHIFT_TEMPS |
||||
#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) |
||||
#endif |
||||
|
||||
|
||||
/* Compression module initialization routines */ |
||||
EXTERN(void) jinit_compress_master (j_compress_ptr cinfo); |
||||
EXTERN(void) jinit_c_master_control (j_compress_ptr cinfo, |
||||
boolean transcode_only); |
||||
EXTERN(void) jinit_c_main_controller (j_compress_ptr cinfo, |
||||
boolean need_full_buffer); |
||||
EXTERN(void) jinit_c_prep_controller (j_compress_ptr cinfo, |
||||
boolean need_full_buffer); |
||||
EXTERN(void) jinit_c_coef_controller (j_compress_ptr cinfo, |
||||
boolean need_full_buffer); |
||||
EXTERN(void) jinit_color_converter (j_compress_ptr cinfo); |
||||
EXTERN(void) jinit_downsampler (j_compress_ptr cinfo); |
||||
EXTERN(void) jinit_forward_dct (j_compress_ptr cinfo); |
||||
EXTERN(void) jinit_huff_encoder (j_compress_ptr cinfo); |
||||
EXTERN(void) jinit_phuff_encoder (j_compress_ptr cinfo); |
||||
EXTERN(void) jinit_arith_encoder (j_compress_ptr cinfo); |
||||
EXTERN(void) jinit_marker_writer (j_compress_ptr cinfo); |
||||
/* Decompression module initialization routines */ |
||||
EXTERN(void) jinit_master_decompress (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_d_main_controller (j_decompress_ptr cinfo, |
||||
boolean need_full_buffer); |
||||
EXTERN(void) jinit_d_coef_controller (j_decompress_ptr cinfo, |
||||
boolean need_full_buffer); |
||||
EXTERN(void) jinit_d_post_controller (j_decompress_ptr cinfo, |
||||
boolean need_full_buffer); |
||||
EXTERN(void) jinit_input_controller (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_marker_reader (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_huff_decoder (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_phuff_decoder (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_arith_decoder (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_inverse_dct (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_upsampler (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_color_deconverter (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_1pass_quantizer (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_2pass_quantizer (j_decompress_ptr cinfo); |
||||
EXTERN(void) jinit_merged_upsampler (j_decompress_ptr cinfo); |
||||
/* Memory manager initialization */ |
||||
EXTERN(void) jinit_memory_mgr (j_common_ptr cinfo); |
||||
|
||||
/* Utility routines in jutils.c */ |
||||
EXTERN(long) jdiv_round_up (long a, long b); |
||||
EXTERN(long) jround_up (long a, long b); |
||||
EXTERN(void) jcopy_sample_rows (JSAMPARRAY input_array, int source_row, |
||||
JSAMPARRAY output_array, int dest_row, |
||||
int num_rows, JDIMENSION num_cols); |
||||
EXTERN(void) jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, |
||||
JDIMENSION num_blocks); |
||||
EXTERN(void) jzero_far (void *target, size_t bytestozero); |
||||
/* Constant tables in jutils.c */ |
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ |
||||
#endif |
||||
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ |
||||
|
||||
/* Arithmetic coding probability estimation tables in jaricom.c */ |
||||
extern const JLONG jpeg_aritab[]; |
||||
|
||||
/* Suppress undefined-structure complaints if necessary. */ |
||||
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN |
||||
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */ |
||||
struct jvirt_sarray_control { long dummy; }; |
||||
struct jvirt_barray_control { long dummy; }; |
||||
#endif |
||||
#endif /* INCOMPLETE_TYPES_BROKEN */ |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,857 @@ |
||||
/*
|
||||
* jquant1.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2009, 2015, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains 1-pass color quantization (color mapping) routines. |
||||
* These routines provide mapping to a fixed color map using equally spaced |
||||
* color values. Optional Floyd-Steinberg or ordered dithering is available. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
#ifdef QUANT_1PASS_SUPPORTED |
||||
|
||||
|
||||
/*
|
||||
* The main purpose of 1-pass quantization is to provide a fast, if not very |
||||
* high quality, colormapped output capability. A 2-pass quantizer usually |
||||
* gives better visual quality; however, for quantized grayscale output this |
||||
* quantizer is perfectly adequate. Dithering is highly recommended with this |
||||
* quantizer, though you can turn it off if you really want to. |
||||
* |
||||
* In 1-pass quantization the colormap must be chosen in advance of seeing the |
||||
* image. We use a map consisting of all combinations of Ncolors[i] color |
||||
* values for the i'th component. The Ncolors[] values are chosen so that |
||||
* their product, the total number of colors, is no more than that requested. |
||||
* (In most cases, the product will be somewhat less.) |
||||
* |
||||
* Since the colormap is orthogonal, the representative value for each color |
||||
* component can be determined without considering the other components; |
||||
* then these indexes can be combined into a colormap index by a standard |
||||
* N-dimensional-array-subscript calculation. Most of the arithmetic involved |
||||
* can be precalculated and stored in the lookup table colorindex[]. |
||||
* colorindex[i][j] maps pixel value j in component i to the nearest |
||||
* representative value (grid plane) for that component; this index is |
||||
* multiplied by the array stride for component i, so that the |
||||
* index of the colormap entry closest to a given pixel value is just |
||||
* sum( colorindex[component-number][pixel-component-value] ) |
||||
* Aside from being fast, this scheme allows for variable spacing between |
||||
* representative values with no additional lookup cost. |
||||
* |
||||
* If gamma correction has been applied in color conversion, it might be wise |
||||
* to adjust the color grid spacing so that the representative colors are |
||||
* equidistant in linear space. At this writing, gamma correction is not |
||||
* implemented by jdcolor, so nothing is done here. |
||||
*/ |
||||
|
||||
|
||||
/* Declarations for ordered dithering.
|
||||
* |
||||
* We use a standard 16x16 ordered dither array. The basic concept of ordered |
||||
* dithering is described in many references, for instance Dale Schumacher's |
||||
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
||||
* In place of Schumacher's comparisons against a "threshold" value, we add a |
||||
* "dither" value to the input pixel and then round the result to the nearest |
||||
* output value. The dither value is equivalent to (0.5 - threshold) times |
||||
* the distance between output values. For ordered dithering, we assume that |
||||
* the output colors are equally spaced; if not, results will probably be |
||||
* worse, since the dither may be too much or too little at a given point. |
||||
* |
||||
* The normal calculation would be to form pixel value + dither, range-limit |
||||
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
||||
* We can skip the separate range-limiting step by extending the colorindex |
||||
* table in both directions. |
||||
*/ |
||||
|
||||
#define ODITHER_SIZE 16 /* dimension of dither matrix */ |
||||
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
||||
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
||||
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
||||
|
||||
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
||||
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
||||
|
||||
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
||||
/* Bayer's order-4 dither array. Generated by the code given in
|
||||
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
||||
* The values in this array must range from 0 to ODITHER_CELLS-1. |
||||
*/ |
||||
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
||||
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
||||
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
||||
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
||||
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
||||
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
||||
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
||||
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
||||
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
||||
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
||||
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
||||
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
||||
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
||||
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
||||
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
||||
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
||||
}; |
||||
|
||||
|
||||
/* Declarations for Floyd-Steinberg dithering.
|
||||
* |
||||
* Errors are accumulated into the array fserrors[], at a resolution of |
||||
* 1/16th of a pixel count. The error at a given pixel is propagated |
||||
* to its not-yet-processed neighbors using the standard F-S fractions, |
||||
* ... (here) 7/16 |
||||
* 3/16 5/16 1/16 |
||||
* We work left-to-right on even rows, right-to-left on odd rows. |
||||
* |
||||
* We can get away with a single array (holding one row's worth of errors) |
||||
* by using it to store the current row's errors at pixel columns not yet |
||||
* processed, but the next row's errors at columns already processed. We |
||||
* need only a few extra variables to hold the errors immediately around the |
||||
* current column. (If we are lucky, those variables are in registers, but |
||||
* even if not, they're probably cheaper to access than array elements are.) |
||||
* |
||||
* The fserrors[] array is indexed [component#][position]. |
||||
* We provide (#columns + 2) entries per component; the extra entry at each |
||||
* end saves us from special-casing the first and last pixels. |
||||
*/ |
||||
|
||||
#if BITS_IN_JSAMPLE == 8 |
||||
typedef INT16 FSERROR; /* 16 bits should be enough */ |
||||
typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
||||
#else |
||||
typedef JLONG FSERROR; /* may need more than 16 bits */ |
||||
typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */ |
||||
#endif |
||||
|
||||
typedef FSERROR *FSERRPTR; /* pointer to error array */ |
||||
|
||||
|
||||
/* Private subobject */ |
||||
|
||||
#define MAX_Q_COMPS 4 /* max components I can handle */ |
||||
|
||||
typedef struct { |
||||
struct jpeg_color_quantizer pub; /* public fields */ |
||||
|
||||
/* Initially allocated colormap is saved here */ |
||||
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
||||
int sv_actual; /* number of entries in use */ |
||||
|
||||
JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
||||
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||
* premultiplied as described above. Since colormap indexes must fit into |
||||
* JSAMPLEs, the entries of this array will too. |
||||
*/ |
||||
boolean is_padded; /* is the colorindex padded for odither? */ |
||||
|
||||
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
||||
|
||||
/* Variables for ordered dithering */ |
||||
int row_index; /* cur row's vertical index in dither matrix */ |
||||
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
||||
|
||||
/* Variables for Floyd-Steinberg dithering */ |
||||
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
||||
boolean on_odd_row; /* flag to remember which row we are on */ |
||||
} my_cquantizer; |
||||
|
||||
typedef my_cquantizer *my_cquantize_ptr; |
||||
|
||||
|
||||
/*
|
||||
* Policy-making subroutines for create_colormap and create_colorindex. |
||||
* These routines determine the colormap to be used. The rest of the module |
||||
* only assumes that the colormap is orthogonal. |
||||
* |
||||
* * select_ncolors decides how to divvy up the available colors |
||||
* among the components. |
||||
* * output_value defines the set of representative values for a component. |
||||
* * largest_input_value defines the mapping from input values to |
||||
* representative values for a component. |
||||
* Note that the latter two routines may impose different policies for |
||||
* different components, though this is not currently done. |
||||
*/ |
||||
|
||||
|
||||
LOCAL(int) |
||||
select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
||||
/* Determine allocation of desired colors to components, */ |
||||
/* and fill in Ncolors[] array to indicate choice. */ |
||||
/* Return value is total number of colors (product of Ncolors[] values). */ |
||||
{ |
||||
int nc = cinfo->out_color_components; /* number of color components */ |
||||
int max_colors = cinfo->desired_number_of_colors; |
||||
int total_colors, iroot, i, j; |
||||
boolean changed; |
||||
long temp; |
||||
int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
||||
RGB_order[0] = rgb_green[cinfo->out_color_space]; |
||||
RGB_order[1] = rgb_red[cinfo->out_color_space]; |
||||
RGB_order[2] = rgb_blue[cinfo->out_color_space]; |
||||
|
||||
/* We can allocate at least the nc'th root of max_colors per component. */ |
||||
/* Compute floor(nc'th root of max_colors). */ |
||||
iroot = 1; |
||||
do { |
||||
iroot++; |
||||
temp = iroot; /* set temp = iroot ** nc */ |
||||
for (i = 1; i < nc; i++) |
||||
temp *= iroot; |
||||
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
||||
iroot--; /* now iroot = floor(root) */ |
||||
|
||||
/* Must have at least 2 color values per component */ |
||||
if (iroot < 2) |
||||
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
||||
|
||||
/* Initialize to iroot color values for each component */ |
||||
total_colors = 1; |
||||
for (i = 0; i < nc; i++) { |
||||
Ncolors[i] = iroot; |
||||
total_colors *= iroot; |
||||
} |
||||
/* We may be able to increment the count for one or more components without
|
||||
* exceeding max_colors, though we know not all can be incremented. |
||||
* Sometimes, the first component can be incremented more than once! |
||||
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
||||
* In RGB colorspace, try to increment G first, then R, then B. |
||||
*/ |
||||
do { |
||||
changed = FALSE; |
||||
for (i = 0; i < nc; i++) { |
||||
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
||||
/* calculate new total_colors if Ncolors[j] is incremented */ |
||||
temp = total_colors / Ncolors[j]; |
||||
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
||||
if (temp > (long) max_colors) |
||||
break; /* won't fit, done with this pass */ |
||||
Ncolors[j]++; /* OK, apply the increment */ |
||||
total_colors = (int) temp; |
||||
changed = TRUE; |
||||
} |
||||
} while (changed); |
||||
|
||||
return total_colors; |
||||
} |
||||
|
||||
|
||||
LOCAL(int) |
||||
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
||||
/* Return j'th output value, where j will range from 0 to maxj */ |
||||
/* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
||||
{ |
||||
/* We always provide values 0 and MAXJSAMPLE for each component;
|
||||
* any additional values are equally spaced between these limits. |
||||
* (Forcing the upper and lower values to the limits ensures that |
||||
* dithering can't produce a color outside the selected gamut.) |
||||
*/ |
||||
return (int) (((JLONG) j * MAXJSAMPLE + maxj/2) / maxj); |
||||
} |
||||
|
||||
|
||||
LOCAL(int) |
||||
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
||||
/* Return largest input value that should map to j'th output value */ |
||||
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
||||
{ |
||||
/* Breakpoints are halfway between values returned by output_value */ |
||||
return (int) (((JLONG) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the colormap. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_colormap (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
JSAMPARRAY colormap; /* Created colormap */ |
||||
int total_colors; /* Number of distinct output colors */ |
||||
int i,j,k, nci, blksize, blkdist, ptr, val; |
||||
|
||||
/* Select number of colors for each component */ |
||||
total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
||||
|
||||
/* Report selected color counts */ |
||||
if (cinfo->out_color_components == 3) |
||||
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
||||
total_colors, cquantize->Ncolors[0], |
||||
cquantize->Ncolors[1], cquantize->Ncolors[2]); |
||||
else |
||||
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
||||
|
||||
/* Allocate and fill in the colormap. */ |
||||
/* The colors are ordered in the map in standard row-major order, */ |
||||
/* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
||||
|
||||
colormap = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */ |
||||
/* blkdist is distance between groups of identical entries for a component */ |
||||
blkdist = total_colors; |
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
/* fill in colormap entries for i'th color component */ |
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
||||
blksize = blkdist / nci; |
||||
for (j = 0; j < nci; j++) { |
||||
/* Compute j'th output value (out of nci) for component */ |
||||
val = output_value(cinfo, i, j, nci-1); |
||||
/* Fill in all colormap entries that have this value of this component */ |
||||
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
||||
/* fill in blksize entries beginning at ptr */ |
||||
for (k = 0; k < blksize; k++) |
||||
colormap[i][ptr+k] = (JSAMPLE) val; |
||||
} |
||||
} |
||||
blkdist = blksize; /* blksize of this color is blkdist of next */ |
||||
} |
||||
|
||||
/* Save the colormap in private storage,
|
||||
* where it will survive color quantization mode changes. |
||||
*/ |
||||
cquantize->sv_colormap = colormap; |
||||
cquantize->sv_actual = total_colors; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the color index table. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_colorindex (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
JSAMPROW indexptr; |
||||
int i,j,k, nci, blksize, val, pad; |
||||
|
||||
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
||||
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
||||
* This is not necessary in the other dithering modes. However, we |
||||
* flag whether it was done in case user changes dithering mode. |
||||
*/ |
||||
if (cinfo->dither_mode == JDITHER_ORDERED) { |
||||
pad = MAXJSAMPLE*2; |
||||
cquantize->is_padded = TRUE; |
||||
} else { |
||||
pad = 0; |
||||
cquantize->is_padded = FALSE; |
||||
} |
||||
|
||||
cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
(JDIMENSION) (MAXJSAMPLE+1 + pad), |
||||
(JDIMENSION) cinfo->out_color_components); |
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */ |
||||
blksize = cquantize->sv_actual; |
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
/* fill in colorindex entries for i'th color component */ |
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
||||
blksize = blksize / nci; |
||||
|
||||
/* adjust colorindex pointers to provide padding at negative indexes. */ |
||||
if (pad) |
||||
cquantize->colorindex[i] += MAXJSAMPLE; |
||||
|
||||
/* in loop, val = index of current output value, */ |
||||
/* and k = largest j that maps to current val */ |
||||
indexptr = cquantize->colorindex[i]; |
||||
val = 0; |
||||
k = largest_input_value(cinfo, i, 0, nci-1); |
||||
for (j = 0; j <= MAXJSAMPLE; j++) { |
||||
while (j > k) /* advance val if past boundary */ |
||||
k = largest_input_value(cinfo, i, ++val, nci-1); |
||||
/* premultiply so that no multiplication needed in main processing */ |
||||
indexptr[j] = (JSAMPLE) (val * blksize); |
||||
} |
||||
/* Pad at both ends if necessary */ |
||||
if (pad) |
||||
for (j = 1; j <= MAXJSAMPLE; j++) { |
||||
indexptr[-j] = indexptr[0]; |
||||
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create an ordered-dither array for a component having ncolors |
||||
* distinct output values. |
||||
*/ |
||||
|
||||
LOCAL(ODITHER_MATRIX_PTR) |
||||
make_odither_array (j_decompress_ptr cinfo, int ncolors) |
||||
{ |
||||
ODITHER_MATRIX_PTR odither; |
||||
int j,k; |
||||
JLONG num,den; |
||||
|
||||
odither = (ODITHER_MATRIX_PTR) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(ODITHER_MATRIX)); |
||||
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
||||
* Hence the dither value for the matrix cell with fill order f |
||||
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
||||
* On 16-bit-int machine, be careful to avoid overflow. |
||||
*/ |
||||
den = 2 * ODITHER_CELLS * ((JLONG) (ncolors - 1)); |
||||
for (j = 0; j < ODITHER_SIZE; j++) { |
||||
for (k = 0; k < ODITHER_SIZE; k++) { |
||||
num = ((JLONG) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
||||
* MAXJSAMPLE; |
||||
/* Ensure round towards zero despite C's lack of consistency
|
||||
* about rounding negative values in integer division... |
||||
*/ |
||||
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
||||
} |
||||
} |
||||
return odither; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Create the ordered-dither tables. |
||||
* Components having the same number of representative colors may |
||||
* share a dither table. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
create_odither_tables (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
ODITHER_MATRIX_PTR odither; |
||||
int i, j, nci; |
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
||||
odither = NULL; /* search for matching prior component */ |
||||
for (j = 0; j < i; j++) { |
||||
if (nci == cquantize->Ncolors[j]) { |
||||
odither = cquantize->odither[j]; |
||||
break; |
||||
} |
||||
} |
||||
if (odither == NULL) /* need a new table? */ |
||||
odither = make_odither_array(cinfo, nci); |
||||
cquantize->odither[i] = odither; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Map some rows of pixels to the output colormapped representation. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* General case, no dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
JSAMPARRAY colorindex = cquantize->colorindex; |
||||
register int pixcode, ci; |
||||
register JSAMPROW ptrin, ptrout; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
register int nc = cinfo->out_color_components; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
ptrin = input_buf[row]; |
||||
ptrout = output_buf[row]; |
||||
for (col = width; col > 0; col--) { |
||||
pixcode = 0; |
||||
for (ci = 0; ci < nc; ci++) { |
||||
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
||||
} |
||||
*ptrout++ = (JSAMPLE) pixcode; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* Fast path for out_color_components==3, no dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register int pixcode; |
||||
register JSAMPROW ptrin, ptrout; |
||||
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
||||
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
||||
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
ptrin = input_buf[row]; |
||||
ptrout = output_buf[row]; |
||||
for (col = width; col > 0; col--) { |
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
||||
*ptrout++ = (JSAMPLE) pixcode; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* General case, with ordered dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register JSAMPROW input_ptr; |
||||
register JSAMPROW output_ptr; |
||||
JSAMPROW colorindex_ci; |
||||
int *dither; /* points to active row of dither matrix */ |
||||
int row_index, col_index; /* current indexes into dither matrix */ |
||||
int nc = cinfo->out_color_components; |
||||
int ci; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
/* Initialize output values to 0 so can process components separately */ |
||||
jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE))); |
||||
row_index = cquantize->row_index; |
||||
for (ci = 0; ci < nc; ci++) { |
||||
input_ptr = input_buf[row] + ci; |
||||
output_ptr = output_buf[row]; |
||||
colorindex_ci = cquantize->colorindex[ci]; |
||||
dither = cquantize->odither[ci][row_index]; |
||||
col_index = 0; |
||||
|
||||
for (col = width; col > 0; col--) { |
||||
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
||||
* select output value, accumulate into output code for this pixel. |
||||
* Range-limiting need not be done explicitly, as we have extended |
||||
* the colorindex table to produce the right answers for out-of-range |
||||
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
||||
* required amount of padding. |
||||
*/ |
||||
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
||||
input_ptr += nc; |
||||
output_ptr++; |
||||
col_index = (col_index + 1) & ODITHER_MASK; |
||||
} |
||||
} |
||||
/* Advance row index for next row */ |
||||
row_index = (row_index + 1) & ODITHER_MASK; |
||||
cquantize->row_index = row_index; |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* Fast path for out_color_components==3, with ordered dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register int pixcode; |
||||
register JSAMPROW input_ptr; |
||||
register JSAMPROW output_ptr; |
||||
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
||||
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
||||
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
||||
int *dither0; /* points to active row of dither matrix */ |
||||
int *dither1; |
||||
int *dither2; |
||||
int row_index, col_index; /* current indexes into dither matrix */ |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
row_index = cquantize->row_index; |
||||
input_ptr = input_buf[row]; |
||||
output_ptr = output_buf[row]; |
||||
dither0 = cquantize->odither[0][row_index]; |
||||
dither1 = cquantize->odither[1][row_index]; |
||||
dither2 = cquantize->odither[2][row_index]; |
||||
col_index = 0; |
||||
|
||||
for (col = width; col > 0; col--) { |
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
||||
dither0[col_index]]); |
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
||||
dither1[col_index]]); |
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
||||
dither2[col_index]]); |
||||
*output_ptr++ = (JSAMPLE) pixcode; |
||||
col_index = (col_index + 1) & ODITHER_MASK; |
||||
} |
||||
row_index = (row_index + 1) & ODITHER_MASK; |
||||
cquantize->row_index = row_index; |
||||
} |
||||
} |
||||
|
||||
|
||||
METHODDEF(void) |
||||
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
/* General case, with Floyd-Steinberg dithering */ |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
register LOCFSERROR cur; /* current error or pixel value */ |
||||
LOCFSERROR belowerr; /* error for pixel below cur */ |
||||
LOCFSERROR bpreverr; /* error for below/prev col */ |
||||
LOCFSERROR bnexterr; /* error for below/next col */ |
||||
LOCFSERROR delta; |
||||
register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
||||
register JSAMPROW input_ptr; |
||||
register JSAMPROW output_ptr; |
||||
JSAMPROW colorindex_ci; |
||||
JSAMPROW colormap_ci; |
||||
int pixcode; |
||||
int nc = cinfo->out_color_components; |
||||
int dir; /* 1 for left-to-right, -1 for right-to-left */ |
||||
int dirnc; /* dir * nc */ |
||||
int ci; |
||||
int row; |
||||
JDIMENSION col; |
||||
JDIMENSION width = cinfo->output_width; |
||||
JSAMPLE *range_limit = cinfo->sample_range_limit; |
||||
SHIFT_TEMPS |
||||
|
||||
for (row = 0; row < num_rows; row++) { |
||||
/* Initialize output values to 0 so can process components separately */ |
||||
jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE))); |
||||
for (ci = 0; ci < nc; ci++) { |
||||
input_ptr = input_buf[row] + ci; |
||||
output_ptr = output_buf[row]; |
||||
if (cquantize->on_odd_row) { |
||||
/* work right to left in this row */ |
||||
input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
||||
output_ptr += width-1; |
||||
dir = -1; |
||||
dirnc = -nc; |
||||
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
||||
} else { |
||||
/* work left to right in this row */ |
||||
dir = 1; |
||||
dirnc = nc; |
||||
errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
||||
} |
||||
colorindex_ci = cquantize->colorindex[ci]; |
||||
colormap_ci = cquantize->sv_colormap[ci]; |
||||
/* Preset error values: no error propagated to first pixel from left */ |
||||
cur = 0; |
||||
/* and no error propagated to row below yet */ |
||||
belowerr = bpreverr = 0; |
||||
|
||||
for (col = width; col > 0; col--) { |
||||
/* cur holds the error propagated from the previous pixel on the
|
||||
* current line. Add the error propagated from the previous line |
||||
* to form the complete error correction term for this pixel, and |
||||
* round the error term (which is expressed * 16) to an integer. |
||||
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
||||
* for either sign of the error value. |
||||
* Note: errorptr points to *previous* column's array entry. |
||||
*/ |
||||
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
||||
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
||||
* The maximum error is +- MAXJSAMPLE; this sets the required size |
||||
* of the range_limit array. |
||||
*/ |
||||
cur += GETJSAMPLE(*input_ptr); |
||||
cur = GETJSAMPLE(range_limit[cur]); |
||||
/* Select output value, accumulate into output code for this pixel */ |
||||
pixcode = GETJSAMPLE(colorindex_ci[cur]); |
||||
*output_ptr += (JSAMPLE) pixcode; |
||||
/* Compute actual representation error at this pixel */ |
||||
/* Note: we can do this even though we don't have the final */ |
||||
/* pixel code, because the colormap is orthogonal. */ |
||||
cur -= GETJSAMPLE(colormap_ci[pixcode]); |
||||
/* Compute error fractions to be propagated to adjacent pixels.
|
||||
* Add these into the running sums, and simultaneously shift the |
||||
* next-line error sums left by 1 column. |
||||
*/ |
||||
bnexterr = cur; |
||||
delta = cur * 2; |
||||
cur += delta; /* form error * 3 */ |
||||
errorptr[0] = (FSERROR) (bpreverr + cur); |
||||
cur += delta; /* form error * 5 */ |
||||
bpreverr = belowerr + cur; |
||||
belowerr = bnexterr; |
||||
cur += delta; /* form error * 7 */ |
||||
/* At this point cur contains the 7/16 error value to be propagated
|
||||
* to the next pixel on the current line, and all the errors for the |
||||
* next line have been shifted over. We are therefore ready to move on. |
||||
*/ |
||||
input_ptr += dirnc; /* advance input ptr to next column */ |
||||
output_ptr += dir; /* advance output ptr to next column */ |
||||
errorptr += dir; /* advance errorptr to current column */ |
||||
} |
||||
/* Post-loop cleanup: we must unload the final error value into the
|
||||
* final fserrors[] entry. Note we need not unload belowerr because |
||||
* it is for the dummy column before or after the actual array. |
||||
*/ |
||||
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
||||
} |
||||
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Allocate workspace for Floyd-Steinberg errors. |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
alloc_fs_workspace (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
size_t arraysize; |
||||
int i; |
||||
|
||||
arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR)); |
||||
for (i = 0; i < cinfo->out_color_components; i++) { |
||||
cquantize->fserrors[i] = (FSERRPTR) |
||||
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Initialize for one-pass color quantization. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
||||
{ |
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
||||
size_t arraysize; |
||||
int i; |
||||
|
||||
/* Install my colormap. */ |
||||
cinfo->colormap = cquantize->sv_colormap; |
||||
cinfo->actual_number_of_colors = cquantize->sv_actual; |
||||
|
||||
/* Initialize for desired dithering mode. */ |
||||
switch (cinfo->dither_mode) { |
||||
case JDITHER_NONE: |
||||
if (cinfo->out_color_components == 3) |
||||
cquantize->pub.color_quantize = color_quantize3; |
||||
else |
||||
cquantize->pub.color_quantize = color_quantize; |
||||
break; |
||||
case JDITHER_ORDERED: |
||||
if (cinfo->out_color_components == 3) |
||||
cquantize->pub.color_quantize = quantize3_ord_dither; |
||||
else |
||||
cquantize->pub.color_quantize = quantize_ord_dither; |
||||
cquantize->row_index = 0; /* initialize state for ordered dither */ |
||||
/* If user changed to ordered dither from another mode,
|
||||
* we must recreate the color index table with padding. |
||||
* This will cost extra space, but probably isn't very likely. |
||||
*/ |
||||
if (! cquantize->is_padded) |
||||
create_colorindex(cinfo); |
||||
/* Create ordered-dither tables if we didn't already. */ |
||||
if (cquantize->odither[0] == NULL) |
||||
create_odither_tables(cinfo); |
||||
break; |
||||
case JDITHER_FS: |
||||
cquantize->pub.color_quantize = quantize_fs_dither; |
||||
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
||||
/* Allocate Floyd-Steinberg workspace if didn't already. */ |
||||
if (cquantize->fserrors[0] == NULL) |
||||
alloc_fs_workspace(cinfo); |
||||
/* Initialize the propagated errors to zero. */ |
||||
arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR)); |
||||
for (i = 0; i < cinfo->out_color_components; i++) |
||||
jzero_far((void *) cquantize->fserrors[i], arraysize); |
||||
break; |
||||
default: |
||||
ERREXIT(cinfo, JERR_NOT_COMPILED); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the pass. |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
finish_pass_1_quant (j_decompress_ptr cinfo) |
||||
{ |
||||
/* no work in 1-pass case */ |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes. |
||||
* Shouldn't get to this module! |
||||
*/ |
||||
|
||||
METHODDEF(void) |
||||
new_color_map_1_quant (j_decompress_ptr cinfo) |
||||
{ |
||||
ERREXIT(cinfo, JERR_MODE_CHANGE); |
||||
} |
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for 1-pass color quantization. |
||||
*/ |
||||
|
||||
GLOBAL(void) |
||||
jinit_1pass_quantizer (j_decompress_ptr cinfo) |
||||
{ |
||||
my_cquantize_ptr cquantize; |
||||
|
||||
cquantize = (my_cquantize_ptr) |
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||||
sizeof(my_cquantizer)); |
||||
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
||||
cquantize->pub.start_pass = start_pass_1_quant; |
||||
cquantize->pub.finish_pass = finish_pass_1_quant; |
||||
cquantize->pub.new_color_map = new_color_map_1_quant; |
||||
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
||||
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
||||
|
||||
/* Make sure my internal arrays won't overflow */ |
||||
if (cinfo->out_color_components > MAX_Q_COMPS) |
||||
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
||||
/* Make sure colormap indexes can be represented by JSAMPLEs */ |
||||
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
||||
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
||||
|
||||
/* Create the colormap and color index table. */ |
||||
create_colormap(cinfo); |
||||
create_colorindex(cinfo); |
||||
|
||||
/* Allocate Floyd-Steinberg workspace now if requested.
|
||||
* We do this now since it may affect the memory manager's space |
||||
* calculations. If the user changes to FS dither mode in a later pass, we |
||||
* will allocate the space then, and will possibly overrun the |
||||
* max_memory_to_use setting. |
||||
*/ |
||||
if (cinfo->dither_mode == JDITHER_FS) |
||||
alloc_fs_workspace(cinfo); |
||||
} |
||||
|
||||
#endif /* QUANT_1PASS_SUPPORTED */ |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,93 @@ |
||||
/*
|
||||
* jsimd.h |
||||
* |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2011, 2014, D. R. Commander. |
||||
* Copyright (C) 2015, Matthieu Darbois. |
||||
* |
||||
* Based on the x86 SIMD extension for IJG JPEG library, |
||||
* Copyright (C) 1999-2006, MIYASAKA Masaru. |
||||
* For conditions of distribution and use, see copyright notice in jsimdext.inc |
||||
* |
||||
*/ |
||||
|
||||
#include "jchuff.h" /* Declarations shared with jcphuff.c */ |
||||
|
||||
EXTERN(int) jsimd_can_rgb_ycc (void); |
||||
EXTERN(int) jsimd_can_rgb_gray (void); |
||||
EXTERN(int) jsimd_can_ycc_rgb (void); |
||||
EXTERN(int) jsimd_can_ycc_rgb565 (void); |
||||
EXTERN(int) jsimd_c_can_null_convert (void); |
||||
|
||||
EXTERN(void) jsimd_rgb_ycc_convert |
||||
(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows); |
||||
EXTERN(void) jsimd_rgb_gray_convert |
||||
(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows); |
||||
EXTERN(void) jsimd_ycc_rgb_convert |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows); |
||||
EXTERN(void) jsimd_ycc_rgb565_convert |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows); |
||||
EXTERN(void) jsimd_c_null_convert |
||||
(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows); |
||||
|
||||
EXTERN(int) jsimd_can_h2v2_downsample (void); |
||||
EXTERN(int) jsimd_can_h2v1_downsample (void); |
||||
|
||||
EXTERN(void) jsimd_h2v2_downsample |
||||
(j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data); |
||||
|
||||
EXTERN(int) jsimd_can_h2v2_smooth_downsample (void); |
||||
|
||||
EXTERN(void) jsimd_h2v2_smooth_downsample |
||||
(j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data); |
||||
|
||||
EXTERN(void) jsimd_h2v1_downsample |
||||
(j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data); |
||||
|
||||
EXTERN(int) jsimd_can_h2v2_upsample (void); |
||||
EXTERN(int) jsimd_can_h2v1_upsample (void); |
||||
EXTERN(int) jsimd_can_int_upsample (void); |
||||
|
||||
EXTERN(void) jsimd_h2v2_upsample |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); |
||||
EXTERN(void) jsimd_h2v1_upsample |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); |
||||
EXTERN(void) jsimd_int_upsample |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); |
||||
|
||||
EXTERN(int) jsimd_can_h2v2_fancy_upsample (void); |
||||
EXTERN(int) jsimd_can_h2v1_fancy_upsample (void); |
||||
|
||||
EXTERN(void) jsimd_h2v2_fancy_upsample |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); |
||||
EXTERN(void) jsimd_h2v1_fancy_upsample |
||||
(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); |
||||
|
||||
EXTERN(int) jsimd_can_h2v2_merged_upsample (void); |
||||
EXTERN(int) jsimd_can_h2v1_merged_upsample (void); |
||||
|
||||
EXTERN(void) jsimd_h2v2_merged_upsample |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); |
||||
EXTERN(void) jsimd_h2v1_merged_upsample |
||||
(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); |
||||
|
||||
EXTERN(int) jsimd_can_huff_encode_one_block (void); |
||||
|
||||
EXTERN(JOCTET*) jsimd_huff_encode_one_block |
||||
(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, |
||||
c_derived_tbl *dctbl, c_derived_tbl *actbl); |
@ -0,0 +1,404 @@ |
||||
/*
|
||||
* jsimd_none.c |
||||
* |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* Copyright (C) 2009-2011, 2014, D. R. Commander. |
||||
* Copyright (C) 2015, Matthieu Darbois. |
||||
* |
||||
* Based on the x86 SIMD extension for IJG JPEG library, |
||||
* Copyright (C) 1999-2006, MIYASAKA Masaru. |
||||
* For conditions of distribution and use, see copyright notice in jsimdext.inc |
||||
* |
||||
* This file contains stubs for when there is no SIMD support available. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
#include "jsimd.h" |
||||
#include "jdct.h" |
||||
#include "jsimddct.h" |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_rgb_ycc (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_rgb_gray (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_ycc_rgb (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_ycc_rgb565 (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_c_can_null_convert (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_rgb_ycc_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_rgb_gray_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, JDIMENSION input_row, |
||||
JSAMPARRAY output_buf, int num_rows) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_c_null_convert (j_compress_ptr cinfo, |
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
||||
JDIMENSION output_row, int num_rows) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v2_downsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v1_downsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v2_smooth_downsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v2_smooth_downsample (j_compress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY output_data) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v2_upsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v1_upsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_int_upsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_int_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v2_upsample (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, |
||||
JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v1_upsample (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, |
||||
JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v2_fancy_upsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v1_fancy_upsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, |
||||
JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JSAMPARRAY input_data, |
||||
JSAMPARRAY *output_data_ptr) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v2_merged_upsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_h2v1_merged_upsample (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, |
||||
JSAMPIMAGE input_buf, |
||||
JDIMENSION in_row_group_ctr, |
||||
JSAMPARRAY output_buf) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_convsamp (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_convsamp_float (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, |
||||
DCTELEM *workspace) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, |
||||
FAST_FLOAT *workspace) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_fdct_islow (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_fdct_ifast (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_fdct_float (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_fdct_islow (DCTELEM *data) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_fdct_ifast (DCTELEM *data) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_fdct_float (FAST_FLOAT *data) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_quantize (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_quantize_float (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_quantize (JCOEFPTR coef_block, DCTELEM *divisors, |
||||
DCTELEM *workspace) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, |
||||
FAST_FLOAT *workspace) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_idct_2x2 (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_idct_4x4 (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_idct_6x6 (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_idct_12x12 (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_idct_islow (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_idct_ifast (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_idct_float (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(void) |
||||
jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col) |
||||
{ |
||||
} |
||||
|
||||
GLOBAL(int) |
||||
jsimd_can_huff_encode_one_block (void) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
GLOBAL(JOCTET*) |
||||
jsimd_huff_encode_one_block (void *state, JOCTET *buffer, JCOEFPTR block, |
||||
int last_dc_val, c_derived_tbl *dctbl, |
||||
c_derived_tbl *actbl) |
||||
{ |
||||
return NULL; |
||||
} |
@ -0,0 +1,74 @@ |
||||
/*
|
||||
* jsimddct.h |
||||
* |
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
||||
* |
||||
* Based on the x86 SIMD extension for IJG JPEG library, |
||||
* Copyright (C) 1999-2006, MIYASAKA Masaru. |
||||
* For conditions of distribution and use, see copyright notice in jsimdext.inc |
||||
* |
||||
*/ |
||||
|
||||
EXTERN(int) jsimd_can_convsamp (void); |
||||
EXTERN(int) jsimd_can_convsamp_float (void); |
||||
|
||||
EXTERN(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, |
||||
DCTELEM *workspace); |
||||
EXTERN(void) jsimd_convsamp_float (JSAMPARRAY sample_data, |
||||
JDIMENSION start_col, |
||||
FAST_FLOAT *workspace); |
||||
|
||||
EXTERN(int) jsimd_can_fdct_islow (void); |
||||
EXTERN(int) jsimd_can_fdct_ifast (void); |
||||
EXTERN(int) jsimd_can_fdct_float (void); |
||||
|
||||
EXTERN(void) jsimd_fdct_islow (DCTELEM *data); |
||||
EXTERN(void) jsimd_fdct_ifast (DCTELEM *data); |
||||
EXTERN(void) jsimd_fdct_float (FAST_FLOAT *data); |
||||
|
||||
EXTERN(int) jsimd_can_quantize (void); |
||||
EXTERN(int) jsimd_can_quantize_float (void); |
||||
|
||||
EXTERN(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM *divisors, |
||||
DCTELEM *workspace); |
||||
EXTERN(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, |
||||
FAST_FLOAT *workspace); |
||||
|
||||
EXTERN(int) jsimd_can_idct_2x2 (void); |
||||
EXTERN(int) jsimd_can_idct_4x4 (void); |
||||
EXTERN(int) jsimd_can_idct_6x6 (void); |
||||
EXTERN(int) jsimd_can_idct_12x12 (void); |
||||
|
||||
EXTERN(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
||||
EXTERN(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
||||
EXTERN(void) jsimd_idct_6x6 (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
||||
EXTERN(void) jsimd_idct_12x12 (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
||||
|
||||
EXTERN(int) jsimd_can_idct_islow (void); |
||||
EXTERN(int) jsimd_can_idct_ifast (void); |
||||
EXTERN(int) jsimd_can_idct_float (void); |
||||
|
||||
EXTERN(void) jsimd_idct_islow (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
||||
EXTERN(void) jsimd_idct_ifast (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
||||
EXTERN(void) jsimd_idct_float (j_decompress_ptr cinfo, |
||||
jpeg_component_info *compptr, |
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, |
||||
JDIMENSION output_col); |
@ -0,0 +1,135 @@ |
||||
/*
|
||||
* jstdhuff.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1998, Thomas G. Lane. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2013, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains routines to set the default Huffman tables, if they are |
||||
* not already set. |
||||
*/ |
||||
|
||||
/*
|
||||
* Huffman table setup routines |
||||
*/ |
||||
|
||||
LOCAL(void) |
||||
add_huff_table (j_common_ptr cinfo, |
||||
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) |
||||
/* Define a Huffman table */ |
||||
{ |
||||
int nsymbols, len; |
||||
|
||||
if (*htblptr == NULL) |
||||
*htblptr = jpeg_alloc_huff_table(cinfo); |
||||
else |
||||
return; |
||||
|
||||
/* Copy the number-of-symbols-of-each-code-length counts */ |
||||
MEMCOPY((*htblptr)->bits, bits, sizeof((*htblptr)->bits)); |
||||
|
||||
/* Validate the counts. We do this here mainly so we can copy the right
|
||||
* number of symbols from the val[] array, without risking marching off |
||||
* the end of memory. jchuff.c will do a more thorough test later. |
||||
*/ |
||||
nsymbols = 0; |
||||
for (len = 1; len <= 16; len++) |
||||
nsymbols += bits[len]; |
||||
if (nsymbols < 1 || nsymbols > 256) |
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
||||
|
||||
MEMCOPY((*htblptr)->huffval, val, nsymbols * sizeof(UINT8)); |
||||
MEMZERO(&((*htblptr)->huffval[nsymbols]), (256 - nsymbols) * sizeof(UINT8)); |
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */ |
||||
(*htblptr)->sent_table = FALSE; |
||||
} |
||||
|
||||
|
||||
LOCAL(void) |
||||
std_huff_tables (j_common_ptr cinfo) |
||||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ |
||||
/* IMPORTANT: these are only valid for 8-bit data precision! */ |
||||
{ |
||||
JHUFF_TBL **dc_huff_tbl_ptrs, **ac_huff_tbl_ptrs; |
||||
|
||||
static const UINT8 bits_dc_luminance[17] = |
||||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; |
||||
static const UINT8 val_dc_luminance[] = |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
||||
|
||||
static const UINT8 bits_dc_chrominance[17] = |
||||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; |
||||
static const UINT8 val_dc_chrominance[] = |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; |
||||
|
||||
static const UINT8 bits_ac_luminance[17] = |
||||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; |
||||
static const UINT8 val_ac_luminance[] = |
||||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, |
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, |
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, |
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, |
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, |
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, |
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, |
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, |
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, |
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, |
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, |
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, |
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, |
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, |
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, |
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, |
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, |
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, |
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, |
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, |
||||
0xf9, 0xfa }; |
||||
|
||||
static const UINT8 bits_ac_chrominance[17] = |
||||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; |
||||
static const UINT8 val_ac_chrominance[] = |
||||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, |
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, |
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, |
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, |
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, |
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, |
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, |
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, |
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, |
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, |
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, |
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, |
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, |
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, |
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, |
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, |
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, |
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, |
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, |
||||
0xf9, 0xfa }; |
||||
|
||||
if (cinfo->is_decompressor) { |
||||
dc_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->dc_huff_tbl_ptrs; |
||||
ac_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->ac_huff_tbl_ptrs; |
||||
} else { |
||||
dc_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->dc_huff_tbl_ptrs; |
||||
ac_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->ac_huff_tbl_ptrs; |
||||
} |
||||
|
||||
add_huff_table(cinfo, &dc_huff_tbl_ptrs[0], bits_dc_luminance, |
||||
val_dc_luminance); |
||||
add_huff_table(cinfo, &ac_huff_tbl_ptrs[0], bits_ac_luminance, |
||||
val_ac_luminance); |
||||
add_huff_table(cinfo, &dc_huff_tbl_ptrs[1], bits_dc_chrominance, |
||||
val_dc_chrominance); |
||||
add_huff_table(cinfo, &ac_huff_tbl_ptrs[1], bits_ac_chrominance, |
||||
val_ac_chrominance); |
||||
} |
@ -0,0 +1,133 @@ |
||||
/*
|
||||
* jutils.c |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-1996, Thomas G. Lane. |
||||
* It was modified by The libjpeg-turbo Project to include only code |
||||
* relevant to libjpeg-turbo. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains tables and miscellaneous utility routines needed |
||||
* for both compression and decompression. |
||||
* Note we prefix all global names with "j" to minimize conflicts with |
||||
* a surrounding application. |
||||
*/ |
||||
|
||||
#define JPEG_INTERNALS |
||||
#include "jinclude.h" |
||||
#include "jpeglib.h" |
||||
|
||||
|
||||
/*
|
||||
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element |
||||
* of a DCT block read in natural order (left to right, top to bottom). |
||||
*/ |
||||
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
|
||||
const int jpeg_zigzag_order[DCTSIZE2] = { |
||||
0, 1, 5, 6, 14, 15, 27, 28, |
||||
2, 4, 7, 13, 16, 26, 29, 42, |
||||
3, 8, 12, 17, 25, 30, 41, 43, |
||||
9, 11, 18, 24, 31, 40, 44, 53, |
||||
10, 19, 23, 32, 39, 45, 52, 54, |
||||
20, 22, 33, 38, 46, 51, 55, 60, |
||||
21, 34, 37, 47, 50, 56, 59, 61, |
||||
35, 36, 48, 49, 57, 58, 62, 63 |
||||
}; |
||||
|
||||
#endif |
||||
|
||||
/*
|
||||
* jpeg_natural_order[i] is the natural-order position of the i'th element |
||||
* of zigzag order. |
||||
* |
||||
* When reading corrupted data, the Huffman decoders could attempt |
||||
* to reference an entry beyond the end of this array (if the decoded |
||||
* zero run length reaches past the end of the block). To prevent |
||||
* wild stores without adding an inner-loop test, we put some extra |
||||
* "63"s after the real entries. This will cause the extra coefficient |
||||
* to be stored in location 63 of the block, not somewhere random. |
||||
* The worst case would be a run-length of 15, which means we need 16 |
||||
* fake entries. |
||||
*/ |
||||
|
||||
const int jpeg_natural_order[DCTSIZE2+16] = { |
||||
0, 1, 8, 16, 9, 2, 3, 10, |
||||
17, 24, 32, 25, 18, 11, 4, 5, |
||||
12, 19, 26, 33, 40, 48, 41, 34, |
||||
27, 20, 13, 6, 7, 14, 21, 28, |
||||
35, 42, 49, 56, 57, 50, 43, 36, |
||||
29, 22, 15, 23, 30, 37, 44, 51, |
||||
58, 59, 52, 45, 38, 31, 39, 46, |
||||
53, 60, 61, 54, 47, 55, 62, 63, |
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ |
||||
63, 63, 63, 63, 63, 63, 63, 63 |
||||
}; |
||||
|
||||
|
||||
/*
|
||||
* Arithmetic utilities |
||||
*/ |
||||
|
||||
GLOBAL(long) |
||||
jdiv_round_up (long a, long b) |
||||
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */ |
||||
/* Assumes a >= 0, b > 0 */ |
||||
{ |
||||
return (a + b - 1L) / b; |
||||
} |
||||
|
||||
|
||||
GLOBAL(long) |
||||
jround_up (long a, long b) |
||||
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ |
||||
/* Assumes a >= 0, b > 0 */ |
||||
{ |
||||
a += b - 1L; |
||||
return a - (a % b); |
||||
} |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jcopy_sample_rows (JSAMPARRAY input_array, int source_row, |
||||
JSAMPARRAY output_array, int dest_row, |
||||
int num_rows, JDIMENSION num_cols) |
||||
/* Copy some rows of samples from one place to another.
|
||||
* num_rows rows are copied from input_array[source_row++] |
||||
* to output_array[dest_row++]; these areas may overlap for duplication. |
||||
* The source and destination arrays must be at least as wide as num_cols. |
||||
*/ |
||||
{ |
||||
register JSAMPROW inptr, outptr; |
||||
register size_t count = (size_t) (num_cols * sizeof(JSAMPLE)); |
||||
register int row; |
||||
|
||||
input_array += source_row; |
||||
output_array += dest_row; |
||||
|
||||
for (row = num_rows; row > 0; row--) { |
||||
inptr = *input_array++; |
||||
outptr = *output_array++; |
||||
MEMCOPY(outptr, inptr, count); |
||||
} |
||||
} |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, |
||||
JDIMENSION num_blocks) |
||||
/* Copy a row of coefficient blocks from one place to another. */ |
||||
{ |
||||
MEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * sizeof(JCOEF))); |
||||
} |
||||
|
||||
|
||||
GLOBAL(void) |
||||
jzero_far (void *target, size_t bytestozero) |
||||
/* Zero out a chunk of memory. */ |
||||
/* This might be sample-array data, block-array data, or alloc_large data. */ |
||||
{ |
||||
MEMZERO(target, bytestozero); |
||||
} |
@ -0,0 +1,49 @@ |
||||
/*
|
||||
* jversion.h |
||||
* |
||||
* This file was part of the Independent JPEG Group's software: |
||||
* Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding. |
||||
* libjpeg-turbo Modifications: |
||||
* Copyright (C) 2010, 2012-2017, D. R. Commander. |
||||
* For conditions of distribution and use, see the accompanying README.ijg |
||||
* file. |
||||
* |
||||
* This file contains software version identification. |
||||
*/ |
||||
|
||||
|
||||
#if JPEG_LIB_VERSION >= 80 |
||||
|
||||
#define JVERSION "8d 15-Jan-2012" |
||||
|
||||
#elif JPEG_LIB_VERSION >= 70 |
||||
|
||||
#define JVERSION "7 27-Jun-2009" |
||||
|
||||
#else |
||||
|
||||
#define JVERSION "6b 27-Mar-1998" |
||||
|
||||
#endif |
||||
|
||||
/*
|
||||
* NOTE: It is our convention to place the authors in the following order: |
||||
* - libjpeg-turbo authors (2009-) in descending order of the date of their |
||||
* most recent contribution to the project, then in ascending order of the |
||||
* date of their first contribution to the project |
||||
* - Upstream authors in descending order of the date of the first inclusion of |
||||
* their code |
||||
*/ |
||||
|
||||
#define JCOPYRIGHT "Copyright (C) 2009-2017 D. R. Commander\n" \ |
||||
"Copyright (C) 2011-2016 Siarhei Siamashka\n" \
|
||||
"Copyright (C) 2015-2016 Matthieu Darbois\n" \
|
||||
"Copyright (C) 2015 Google, Inc.\n" \
|
||||
"Copyright (C) 2013-2014 MIPS Technologies, Inc.\n" \
|
||||
"Copyright (C) 2013 Linaro Limited\n" \
|
||||
"Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)\n" \
|
||||
"Copyright (C) 2009 Pierre Ossman for Cendio AB\n" \
|
||||
"Copyright (C) 1999-2006 MIYASAKA Masaru\n" \
|
||||
"Copyright (C) 1991-2016 Thomas G. Lane, Guido Vollbeding" \
|
||||
|
||||
#define JCOPYRIGHT_SHORT "Copyright (C) 1991-2017 The libjpeg-turbo Project and many others" |
Loading…
Reference in new issue