diff --git a/samples/cpp/tutorial_code/gpu/gpu-basics-similarity/gpu-basics-similarity.cpp b/samples/cpp/tutorial_code/gpu/gpu-basics-similarity/gpu-basics-similarity.cpp
index 42663e0a56..7597a1f265 100644
--- a/samples/cpp/tutorial_code/gpu/gpu-basics-similarity/gpu-basics-similarity.cpp
+++ b/samples/cpp/tutorial_code/gpu/gpu-basics-similarity/gpu-basics-similarity.cpp
@@ -30,11 +30,11 @@ struct BufferMSSIM                                     // Optimized GPU versions
     gpu::GpuMat I1_2, I2_2, I1_I2;
     vector<gpu::GpuMat> vI1, vI2;
 
-    gpu::GpuMat mu1, mu2; 
-    gpu::GpuMat mu1_2, mu2_2, mu1_mu2; 
+    gpu::GpuMat mu1, mu2;
+    gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
 
-    gpu::GpuMat sigma1_2, sigma2_2, sigma12; 
-    gpu::GpuMat t3; 
+    gpu::GpuMat sigma1_2, sigma2_2, sigma12;
+    gpu::GpuMat t3;
 
     gpu::GpuMat ssim_map;
 
@@ -56,7 +56,7 @@ void help()
 
 int main(int argc, char *argv[])
 {
-    help(); 
+    help();
     Mat I1 = imread(argv[1]);           // Read the two images
     Mat I2 = imread(argv[2]);
 
@@ -69,13 +69,13 @@ int main(int argc, char *argv[])
     BufferPSNR bufferPSNR;
     BufferMSSIM bufferMSSIM;
 
-    int TIMES; 
-    stringstream sstr(argv[3]); 
+    int TIMES;
+    stringstream sstr(argv[3]);
     sstr >> TIMES;
     double time, result;
 
     //------------------------------- PSNR CPU ----------------------------------------------------
-    time = (double)getTickCount();    
+    time = (double)getTickCount();
 
     for (int i = 0; i < TIMES; ++i)
         result = getPSNR(I1,I2);
@@ -84,10 +84,10 @@ int main(int argc, char *argv[])
     time /= TIMES;
 
     cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
-        << " With result of: " <<  result << endl; 
+        << " With result of: " <<  result << endl;
 
     //------------------------------- PSNR GPU ----------------------------------------------------
-    time = (double)getTickCount();    
+    time = (double)getTickCount();
 
     for (int i = 0; i < TIMES; ++i)
         result = getPSNR_GPU(I1,I2);
@@ -96,7 +96,7 @@ int main(int argc, char *argv[])
     time /= TIMES;
 
     cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
-        << " With result of: " <<  result << endl; 
+        << " With result of: " <<  result << endl;
 
     //------------------------------- PSNR GPU Optimized--------------------------------------------
     time = (double)getTickCount();                                  // Initial call
@@ -105,20 +105,20 @@ int main(int argc, char *argv[])
     cout << "Initial call GPU optimized:              " << time  <<" milliseconds."
         << " With result of: " << result << endl;
 
-    time = (double)getTickCount();    
+    time = (double)getTickCount();
     for (int i = 0; i < TIMES; ++i)
         result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
 
     time = 1000*((double)getTickCount() - time)/getTickFrequency();
     time /= TIMES;
 
-    cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time 
-        << " milliseconds." << " With result of: " <<  result << endl << endl; 
+    cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time
+        << " milliseconds." << " With result of: " <<  result << endl << endl;
 
 
     //------------------------------- SSIM CPU -----------------------------------------------------
     Scalar x;
-    time = (double)getTickCount();    
+    time = (double)getTickCount();
 
     for (int i = 0; i < TIMES; ++i)
         x = getMSSIM(I1,I2);
@@ -127,10 +127,10 @@ int main(int argc, char *argv[])
     time /= TIMES;
 
     cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
-        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; 
+        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
 
     //------------------------------- SSIM GPU -----------------------------------------------------
-    time = (double)getTickCount();    
+    time = (double)getTickCount();
 
     for (int i = 0; i < TIMES; ++i)
         x = getMSSIM_GPU(I1,I2);
@@ -139,16 +139,16 @@ int main(int argc, char *argv[])
     time /= TIMES;
 
     cout << "Time of MSSIM GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
-        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; 
+        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
 
     //------------------------------- SSIM GPU Optimized--------------------------------------------
-    time = (double)getTickCount();    
+    time = (double)getTickCount();
     x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
     time = 1000*((double)getTickCount() - time)/getTickFrequency();
     cout << "Time of MSSIM GPU Initial Call            " << time << " milliseconds."
-        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; 
+        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
 
-    time = (double)getTickCount();    
+    time = (double)getTickCount();
 
     for (int i = 0; i < TIMES; ++i)
         x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
@@ -157,14 +157,14 @@ int main(int argc, char *argv[])
     time /= TIMES;
 
     cout << "Time of MSSIM GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
-        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl; 
+        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl;
     return 0;
 }
 
 
 double getPSNR(const Mat& I1, const Mat& I2)
 {
-    Mat s1; 
+    Mat s1;
     absdiff(I1, I2, s1);       // |I1 - I2|
     s1.convertTo(s1, CV_32F);  // cannot make a square on 8 bits
     s1 = s1.mul(s1);           // |I1 - I2|^2
@@ -186,7 +186,7 @@ double getPSNR(const Mat& I1, const Mat& I2)
 
 
 double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
-{    
+{
     b.gI1.upload(I1);
     b.gI2.upload(I2);
 
@@ -210,7 +210,7 @@ double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
 
 double getPSNR_GPU(const Mat& I1, const Mat& I2)
 {
-    gpu::GpuMat gI1, gI2, gs, t1,t2; 
+    gpu::GpuMat gI1, gI2, gs, t1,t2;
 
     gI1.upload(I1);
     gI2.upload(I2);
@@ -218,7 +218,7 @@ double getPSNR_GPU(const Mat& I1, const Mat& I2)
     gI1.convertTo(t1, CV_32F);
     gI2.convertTo(t2, CV_32F);
 
-    gpu::absdiff(t1.reshape(1), t2.reshape(1), gs); 
+    gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
     gpu::multiply(gs, gs, gs);
 
     Scalar s = gpu::sum(gs);
@@ -235,14 +235,14 @@ double getPSNR_GPU(const Mat& I1, const Mat& I2)
 }
 
 Scalar getMSSIM( const Mat& i1, const Mat& i2)
-{ 
+{
     const double C1 = 6.5025, C2 = 58.5225;
     /***************************** INITS **********************************/
     int d     = CV_32F;
 
-    Mat I1, I2; 
+    Mat I1, I2;
     i1.convertTo(I1, d);           // cannot calculate on one byte large values
-    i2.convertTo(I2, d); 
+    i2.convertTo(I2, d);
 
     Mat I2_2   = I2.mul(I2);        // I2^2
     Mat I1_2   = I1.mul(I1);        // I1^2
@@ -254,11 +254,11 @@ Scalar getMSSIM( const Mat& i1, const Mat& i2)
     GaussianBlur(I1, mu1, Size(11, 11), 1.5);
     GaussianBlur(I2, mu2, Size(11, 11), 1.5);
 
-    Mat mu1_2   =   mu1.mul(mu1);    
-    Mat mu2_2   =   mu2.mul(mu2); 
+    Mat mu1_2   =   mu1.mul(mu1);
+    Mat mu2_2   =   mu2.mul(mu2);
     Mat mu1_mu2 =   mu1.mul(mu2);
 
-    Mat sigma1_2, sigma2_2, sigma12; 
+    Mat sigma1_2, sigma2_2, sigma12;
 
     GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
     sigma1_2 -= mu1_2;
@@ -270,28 +270,28 @@ Scalar getMSSIM( const Mat& i1, const Mat& i2)
     sigma12 -= mu1_mu2;
 
     ///////////////////////////////// FORMULA ////////////////////////////////
-    Mat t1, t2, t3; 
+    Mat t1, t2, t3;
 
-    t1 = 2 * mu1_mu2 + C1; 
-    t2 = 2 * sigma12 + C2; 
+    t1 = 2 * mu1_mu2 + C1;
+    t2 = 2 * sigma12 + C2;
     t3 = t1.mul(t2);              // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
 
-    t1 = mu1_2 + mu2_2 + C1; 
-    t2 = sigma1_2 + sigma2_2 + C2;     
+    t1 = mu1_2 + mu2_2 + C1;
+    t2 = sigma1_2 + sigma2_2 + C2;
     t1 = t1.mul(t2);               // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
 
     Mat ssim_map;
     divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;
 
     Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
-    return mssim; 
+    return mssim;
 }
 
 Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
-{ 
+{
     const float C1 = 6.5025f, C2 = 58.5225f;
     /***************************** INITS **********************************/
-    gpu::GpuMat gI1, gI2, gs1, t1,t2; 
+    gpu::GpuMat gI1, gI2, gs1, t1,t2;
 
     gI1.upload(i1);
     gI2.upload(i2);
@@ -299,14 +299,14 @@ Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
     gI1.convertTo(t1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
     gI2.convertTo(t2, CV_MAKE_TYPE(CV_32F, gI2.channels()));
 
-    vector<gpu::GpuMat> vI1, vI2; 
+    vector<gpu::GpuMat> vI1, vI2;
     gpu::split(t1, vI1);
     gpu::split(t2, vI2);
     Scalar mssim;
 
     for( int i = 0; i < gI1.channels(); ++i )
     {
-        gpu::GpuMat I2_2, I1_2, I1_I2; 
+        gpu::GpuMat I2_2, I1_2, I1_I2;
 
         gpu::multiply(vI2[i], vI2[i], I2_2);        // I2^2
         gpu::multiply(vI1[i], vI1[i], I1_2);        // I1^2
@@ -317,45 +317,45 @@ Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
         gpu::GaussianBlur(vI1[i], mu1, Size(11, 11), 1.5);
         gpu::GaussianBlur(vI2[i], mu2, Size(11, 11), 1.5);
 
-        gpu::GpuMat mu1_2, mu2_2, mu1_mu2; 
-        gpu::multiply(mu1, mu1, mu1_2);   
-        gpu::multiply(mu2, mu2, mu2_2);   
-        gpu::multiply(mu1, mu2, mu1_mu2);   
+        gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
+        gpu::multiply(mu1, mu1, mu1_2);
+        gpu::multiply(mu2, mu2, mu2_2);
+        gpu::multiply(mu1, mu2, mu1_mu2);
 
-        gpu::GpuMat sigma1_2, sigma2_2, sigma12; 
+        gpu::GpuMat sigma1_2, sigma2_2, sigma12;
 
         gpu::GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
-        sigma1_2 -= mu1_2;
+        gpu::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;
 
         gpu::GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
-        sigma2_2 -= mu2_2;
+        gpu::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;
 
         gpu::GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
-        sigma12 -= mu1_mu2;
+        gpu::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;
 
         ///////////////////////////////// FORMULA ////////////////////////////////
-        gpu::GpuMat t1, t2, t3; 
+        gpu::GpuMat t1, t2, t3;
 
-        t1 = 2 * mu1_mu2 + C1; 
-        t2 = 2 * sigma12 + C2; 
-        gpu::multiply(t1, t2, t3);     // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
+        mu1_mu2.convertTo(t1, -1, 2, C1); // t1 = 2 * mu1_mu2 + C1;
+        sigma12.convertTo(t2, -1, 2, C2); // t2 = 2 * sigma12 + C2;
+        gpu::multiply(t1, t2, t3);        // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
 
-        t1 = mu1_2 + mu2_2 + C1; 
-        t2 = sigma1_2 + sigma2_2 + C2;     
-        gpu::multiply(t1, t2, t1);     // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
+        gpu::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1);       // t1 = mu1_2 + mu2_2 + C1;
+        gpu::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
+        gpu::multiply(t1, t2, t1);                              // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
 
         gpu::GpuMat ssim_map;
         gpu::divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;
 
-        Scalar s = gpu::sum(ssim_map);    
+        Scalar s = gpu::sum(ssim_map);
         mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);
 
     }
-    return mssim; 
+    return mssim;
 }
 
 Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
-{ 
+{
     int cn = i1.channels();
 
     const float C1 = 6.5025f, C2 = 58.5225f;
@@ -367,60 +367,63 @@ Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
     gpu::Stream stream;
 
     stream.enqueueConvert(b.gI1, b.t1, CV_32F);
-    stream.enqueueConvert(b.gI2, b.t2, CV_32F);      
+    stream.enqueueConvert(b.gI2, b.t2, CV_32F);
 
     gpu::split(b.t1, b.vI1, stream);
     gpu::split(b.t2, b.vI2, stream);
     Scalar mssim;
 
+    gpu::GpuMat buf;
+
     for( int i = 0; i < b.gI1.channels(); ++i )
-    {        
+    {
         gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream);        // I2^2
         gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream);        // I1^2
         gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream);       // I1 * I2
 
-        gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
-        gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
+        gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
+        gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
 
-        gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);   
-        gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);   
-        gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream);   
+        gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);
+        gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);
+        gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream);
 
-        gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
-        gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, stream);
+        gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
+        gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, gpu::GpuMat(), -1, stream);
         //b.sigma1_2 -= b.mu1_2;  - This would result in an extra data transfer operation
 
-        gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
-        gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, stream);
+        gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
+        gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, gpu::GpuMat(), -1, stream);
         //b.sigma2_2 -= b.mu2_2;
 
-        gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
-        gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, stream);
+        gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
+        gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, gpu::GpuMat(), -1, stream);
         //b.sigma12 -= b.mu1_mu2;
 
         //here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
-        gpu::multiply(b.mu1_mu2, 2, b.t1, stream); //b.t1 = 2 * b.mu1_mu2 + C1; 
-        gpu::add(b.t1, C1, b.t1, stream);
-        gpu::multiply(b.sigma12, 2, b.t2, stream); //b.t2 = 2 * b.sigma12 + C2; 
-        gpu::add(b.t2, C2, b.t2, stream);     
+        gpu::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
+        gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);
+        gpu::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
+        gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -12, stream);
 
-        gpu::multiply(b.t1, b.t2, b.t3, stream);     // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
+        gpu::multiply(b.t1, b.t2, b.t3, 1, -1, stream);     // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
 
-        gpu::add(b.mu1_2, b.mu2_2, b.t1, stream);
-        gpu::add(b.t1, C1, b.t1, stream);
+        gpu::add(b.mu1_2, b.mu2_2, b.t1, gpu::GpuMat(), -1, stream);
+        gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);
 
-        gpu::add(b.sigma1_2, b.sigma2_2, b.t2, stream);
-        gpu::add(b.t2, C2, b.t2, stream);
+        gpu::add(b.sigma1_2, b.sigma2_2, b.t2, gpu::GpuMat(), -1, stream);
+        gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -1, stream);
 
 
-        gpu::multiply(b.t1, b.t2, b.t1, stream);     // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))        
-        gpu::divide(b.t3, b.t1, b.ssim_map, stream);      // ssim_map =  t3./t1;
+        gpu::multiply(b.t1, b.t2, b.t1, 1, -1, stream);     // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
+        gpu::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream);      // ssim_map =  t3./t1;
 
         stream.waitForCompletion();
 
-        Scalar s = gpu::sum(b.ssim_map, b.buf);    
+        Scalar s = gpu::sum(b.ssim_map, b.buf);
         mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);
 
     }
-    return mssim; 
-}
\ No newline at end of file
+    return mssim;
+}
+