mirror of https://github.com/opencv/opencv.git
parent
4168a698f6
commit
c5d8ec4ac0
3 changed files with 820 additions and 1 deletions
@ -0,0 +1,744 @@ |
||||
#include <iostream> |
||||
using namespace std; |
||||
#include "precomp.hpp" |
||||
#include "epnp.h" |
||||
|
||||
namespace cv |
||||
{ |
||||
double ePnP( InputArray _opoints, InputArray _ipoints, |
||||
InputArray _cameraMatrix, InputArray _distCoeffs, |
||||
OutputArray _rvec, OutputArray _tvec) |
||||
{ |
||||
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat(); |
||||
int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F)); |
||||
CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) ); |
||||
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat(); |
||||
|
||||
Mat undistortedPoints; |
||||
undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs); |
||||
|
||||
epnp PnP; |
||||
PnP.set_internal_parameters(cameraMatrix.at<double> (0, 2), cameraMatrix.at<double> (1, 2), cameraMatrix.at<double> (0, 0), cameraMatrix.at<double> (1, 1)); |
||||
PnP.set_maximum_number_of_correspondences(npoints); |
||||
PnP.reset_correspondences(); |
||||
for(int i = 0; i < npoints; i++) { |
||||
PnP.add_correspondence(opoints.at<Point3d>(0,i).x, opoints.at<Point3d>(0,i).y, opoints.at<Point3d>(0,i).z, undistortedPoints.at<Point2d>(0,i).x* cameraMatrix.at<double> (0, 0) + cameraMatrix.at<double> (0, 2), |
||||
undistortedPoints.at<Point2d>(0,i).y* cameraMatrix.at<double> (1, 1) + cameraMatrix.at<double> (1, 2)); |
||||
} |
||||
double R_est[3][3], t_est[3]; |
||||
double error = PnP.compute_pose(R_est, t_est); |
||||
|
||||
_tvec.create(3,1,CV_64F); |
||||
_rvec.create(3,1,CV_64F); |
||||
Mat(3, 1, CV_64FC1, t_est).copyTo(_tvec.getMat()); |
||||
Rodrigues(Mat(3, 3, CV_64FC1, R_est), _rvec.getMat()); |
||||
return error; |
||||
} |
||||
} |
||||
|
||||
epnp::epnp(void) |
||||
{ |
||||
maximum_number_of_correspondences = 0; |
||||
number_of_correspondences = 0; |
||||
|
||||
pws = 0; |
||||
us = 0; |
||||
alphas = 0; |
||||
pcs = 0; |
||||
} |
||||
|
||||
epnp::~epnp() |
||||
{ |
||||
delete [] pws; |
||||
delete [] us; |
||||
delete [] alphas; |
||||
delete [] pcs; |
||||
} |
||||
|
||||
void epnp::set_internal_parameters(double uc, double vc, double fu, double fv) |
||||
{ |
||||
this->uc = uc; |
||||
this->vc = vc; |
||||
this->fu = fu; |
||||
this->fv = fv; |
||||
} |
||||
|
||||
void epnp::set_maximum_number_of_correspondences(int n) |
||||
{ |
||||
if (maximum_number_of_correspondences < n) { |
||||
if (pws != 0) delete [] pws; |
||||
if (us != 0) delete [] us; |
||||
if (alphas != 0) delete [] alphas; |
||||
if (pcs != 0) delete [] pcs; |
||||
|
||||
maximum_number_of_correspondences = n; |
||||
pws = new double[3 * maximum_number_of_correspondences]; |
||||
us = new double[2 * maximum_number_of_correspondences]; |
||||
alphas = new double[4 * maximum_number_of_correspondences]; |
||||
pcs = new double[3 * maximum_number_of_correspondences]; |
||||
} |
||||
} |
||||
|
||||
void epnp::reset_correspondences(void) |
||||
{ |
||||
number_of_correspondences = 0; |
||||
} |
||||
|
||||
void epnp::add_correspondence(double X, double Y, double Z, double u, double v) |
||||
{ |
||||
pws[3 * number_of_correspondences ] = X; |
||||
pws[3 * number_of_correspondences + 1] = Y; |
||||
pws[3 * number_of_correspondences + 2] = Z; |
||||
|
||||
us[2 * number_of_correspondences ] = u; |
||||
us[2 * number_of_correspondences + 1] = v; |
||||
|
||||
number_of_correspondences++; |
||||
} |
||||
|
||||
void epnp::choose_control_points(void) |
||||
{ |
||||
// Take C0 as the reference points centroid:
|
||||
cws[0][0] = cws[0][1] = cws[0][2] = 0; |
||||
for(int i = 0; i < number_of_correspondences; i++) |
||||
for(int j = 0; j < 3; j++) |
||||
cws[0][j] += pws[3 * i + j]; |
||||
|
||||
for(int j = 0; j < 3; j++) |
||||
cws[0][j] /= number_of_correspondences; |
||||
|
||||
|
||||
// Take C1, C2, and C3 from PCA on the reference points:
|
||||
CvMat * PW0 = cvCreateMat(number_of_correspondences, 3, CV_64F); |
||||
|
||||
double pw0tpw0[3 * 3], dc[3], uct[3 * 3]; |
||||
CvMat PW0tPW0 = cvMat(3, 3, CV_64F, pw0tpw0); |
||||
CvMat DC = cvMat(3, 1, CV_64F, dc); |
||||
CvMat UCt = cvMat(3, 3, CV_64F, uct); |
||||
|
||||
for(int i = 0; i < number_of_correspondences; i++) |
||||
for(int j = 0; j < 3; j++) |
||||
PW0->data.db[3 * i + j] = pws[3 * i + j] - cws[0][j]; |
||||
|
||||
cvMulTransposed(PW0, &PW0tPW0, 1); |
||||
cvSVD(&PW0tPW0, &DC, &UCt, 0, CV_SVD_MODIFY_A | CV_SVD_U_T); |
||||
|
||||
cvReleaseMat(&PW0); |
||||
|
||||
for(int i = 1; i < 4; i++) { |
||||
double k = sqrt(dc[i - 1] / number_of_correspondences); |
||||
for(int j = 0; j < 3; j++) |
||||
cws[i][j] = cws[0][j] + k * uct[3 * (i - 1) + j]; |
||||
} |
||||
} |
||||
|
||||
void epnp::compute_barycentric_coordinates(void) |
||||
{ |
||||
double cc[3 * 3], cc_inv[3 * 3]; |
||||
CvMat CC = cvMat(3, 3, CV_64F, cc); |
||||
CvMat CC_inv = cvMat(3, 3, CV_64F, cc_inv); |
||||
|
||||
for(int i = 0; i < 3; i++) |
||||
for(int j = 1; j < 4; j++) |
||||
cc[3 * i + j - 1] = cws[j][i] - cws[0][i]; |
||||
|
||||
cvInvert(&CC, &CC_inv, CV_SVD); |
||||
double * ci = cc_inv; |
||||
for(int i = 0; i < number_of_correspondences; i++) { |
||||
double * pi = pws + 3 * i; |
||||
double * a = alphas + 4 * i; |
||||
|
||||
for(int j = 0; j < 3; j++) |
||||
a[1 + j] = |
||||
ci[3 * j ] * (pi[0] - cws[0][0]) + |
||||
ci[3 * j + 1] * (pi[1] - cws[0][1]) + |
||||
ci[3 * j + 2] * (pi[2] - cws[0][2]); |
||||
a[0] = 1.0f - a[1] - a[2] - a[3]; |
||||
} |
||||
} |
||||
|
||||
void epnp::fill_M(CvMat * M, |
||||
const int row, const double * as, const double u, const double v) |
||||
{ |
||||
double * M1 = M->data.db + row * 12; |
||||
double * M2 = M1 + 12; |
||||
|
||||
for(int i = 0; i < 4; i++) { |
||||
M1[3 * i ] = as[i] * fu; |
||||
M1[3 * i + 1] = 0.0; |
||||
M1[3 * i + 2] = as[i] * (uc - u); |
||||
|
||||
M2[3 * i ] = 0.0; |
||||
M2[3 * i + 1] = as[i] * fv; |
||||
M2[3 * i + 2] = as[i] * (vc - v); |
||||
} |
||||
} |
||||
|
||||
void epnp::compute_ccs(const double * betas, const double * ut) |
||||
{ |
||||
for(int i = 0; i < 4; i++) |
||||
ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0f; |
||||
|
||||
for(int i = 0; i < 4; i++) { |
||||
const double * v = ut + 12 * (11 - i); |
||||
for(int j = 0; j < 4; j++) |
||||
for(int k = 0; k < 3; k++) |
||||
ccs[j][k] += betas[i] * v[3 * j + k]; |
||||
} |
||||
} |
||||
|
||||
void epnp::compute_pcs(void) |
||||
{ |
||||
for(int i = 0; i < number_of_correspondences; i++) { |
||||
double * a = alphas + 4 * i; |
||||
double * pc = pcs + 3 * i; |
||||
|
||||
for(int j = 0; j < 3; j++) |
||||
pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j]; |
||||
} |
||||
} |
||||
|
||||
double epnp::compute_pose(double R[3][3], double t[3]) |
||||
{ |
||||
choose_control_points(); |
||||
compute_barycentric_coordinates(); |
||||
|
||||
CvMat * M = cvCreateMat(2 * number_of_correspondences, 12, CV_64F); |
||||
|
||||
for(int i = 0; i < number_of_correspondences; i++) |
||||
fill_M(M, 2 * i, alphas + 4 * i, us[2 * i], us[2 * i + 1]); |
||||
|
||||
double mtm[12 * 12], d[12], ut[12 * 12]; |
||||
CvMat MtM = cvMat(12, 12, CV_64F, mtm); |
||||
CvMat D = cvMat(12, 1, CV_64F, d); |
||||
CvMat Ut = cvMat(12, 12, CV_64F, ut); |
||||
|
||||
cvMulTransposed(M, &MtM, 1); |
||||
cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T); |
||||
cvReleaseMat(&M); |
||||
|
||||
double l_6x10[6 * 10], rho[6]; |
||||
CvMat L_6x10 = cvMat(6, 10, CV_64F, l_6x10); |
||||
CvMat Rho = cvMat(6, 1, CV_64F, rho); |
||||
|
||||
compute_L_6x10(ut, l_6x10); |
||||
compute_rho(rho); |
||||
|
||||
double Betas[4][4], rep_errors[4]; |
||||
double Rs[4][3][3], ts[4][3]; |
||||
|
||||
find_betas_approx_1(&L_6x10, &Rho, Betas[1]); |
||||
gauss_newton(&L_6x10, &Rho, Betas[1]); |
||||
rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]); |
||||
|
||||
find_betas_approx_2(&L_6x10, &Rho, Betas[2]); |
||||
gauss_newton(&L_6x10, &Rho, Betas[2]); |
||||
rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]); |
||||
|
||||
find_betas_approx_3(&L_6x10, &Rho, Betas[3]); |
||||
gauss_newton(&L_6x10, &Rho, Betas[3]); |
||||
rep_errors[3] = compute_R_and_t(ut, Betas[3], Rs[3], ts[3]); |
||||
|
||||
int N = 1; |
||||
if (rep_errors[2] < rep_errors[1]) N = 2; |
||||
if (rep_errors[3] < rep_errors[N]) N = 3; |
||||
|
||||
copy_R_and_t(Rs[N], ts[N], R, t); |
||||
|
||||
return rep_errors[N]; |
||||
} |
||||
|
||||
void epnp::copy_R_and_t(const double R_src[3][3], const double t_src[3], |
||||
double R_dst[3][3], double t_dst[3]) |
||||
{ |
||||
for(int i = 0; i < 3; i++) { |
||||
for(int j = 0; j < 3; j++) |
||||
R_dst[i][j] = R_src[i][j]; |
||||
t_dst[i] = t_src[i]; |
||||
} |
||||
} |
||||
|
||||
double epnp::dist2(const double * p1, const double * p2) |
||||
{ |
||||
return |
||||
(p1[0] - p2[0]) * (p1[0] - p2[0]) + |
||||
(p1[1] - p2[1]) * (p1[1] - p2[1]) + |
||||
(p1[2] - p2[2]) * (p1[2] - p2[2]); |
||||
} |
||||
|
||||
double epnp::dot(const double * v1, const double * v2) |
||||
{ |
||||
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; |
||||
} |
||||
|
||||
double epnp::reprojection_error(const double R[3][3], const double t[3]) |
||||
{ |
||||
double sum2 = 0.0; |
||||
|
||||
for(int i = 0; i < number_of_correspondences; i++) { |
||||
double * pw = pws + 3 * i; |
||||
double Xc = dot(R[0], pw) + t[0]; |
||||
double Yc = dot(R[1], pw) + t[1]; |
||||
double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]); |
||||
double ue = uc + fu * Xc * inv_Zc; |
||||
double ve = vc + fv * Yc * inv_Zc; |
||||
double u = us[2 * i], v = us[2 * i + 1]; |
||||
|
||||
sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) ); |
||||
} |
||||
|
||||
return sum2 / number_of_correspondences; |
||||
} |
||||
|
||||
void epnp::estimate_R_and_t(double R[3][3], double t[3]) |
||||
{ |
||||
double pc0[3], pw0[3]; |
||||
|
||||
pc0[0] = pc0[1] = pc0[2] = 0.0; |
||||
pw0[0] = pw0[1] = pw0[2] = 0.0; |
||||
|
||||
for(int i = 0; i < number_of_correspondences; i++) { |
||||
const double * pc = pcs + 3 * i; |
||||
const double * pw = pws + 3 * i; |
||||
|
||||
for(int j = 0; j < 3; j++) { |
||||
pc0[j] += pc[j]; |
||||
pw0[j] += pw[j]; |
||||
} |
||||
} |
||||
for(int j = 0; j < 3; j++) { |
||||
pc0[j] /= number_of_correspondences; |
||||
pw0[j] /= number_of_correspondences; |
||||
} |
||||
|
||||
double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3]; |
||||
CvMat ABt = cvMat(3, 3, CV_64F, abt); |
||||
CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d); |
||||
CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u); |
||||
CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v); |
||||
|
||||
cvSetZero(&ABt); |
||||
for(int i = 0; i < number_of_correspondences; i++) { |
||||
double * pc = pcs + 3 * i; |
||||
double * pw = pws + 3 * i; |
||||
|
||||
for(int j = 0; j < 3; j++) { |
||||
abt[3 * j ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]); |
||||
abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]); |
||||
abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]); |
||||
} |
||||
} |
||||
|
||||
cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A); |
||||
|
||||
for(int i = 0; i < 3; i++) |
||||
for(int j = 0; j < 3; j++) |
||||
R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j); |
||||
|
||||
const double det = |
||||
R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] - |
||||
R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1]; |
||||
|
||||
if (det < 0) { |
||||
R[2][0] = -R[2][0]; |
||||
R[2][1] = -R[2][1]; |
||||
R[2][2] = -R[2][2]; |
||||
} |
||||
|
||||
t[0] = pc0[0] - dot(R[0], pw0); |
||||
t[1] = pc0[1] - dot(R[1], pw0); |
||||
t[2] = pc0[2] - dot(R[2], pw0); |
||||
} |
||||
|
||||
void epnp::print_pose(const double R[3][3], const double t[3]) |
||||
{ |
||||
cout << R[0][0] << " " << R[0][1] << " " << R[0][2] << " " << t[0] << endl; |
||||
cout << R[1][0] << " " << R[1][1] << " " << R[1][2] << " " << t[1] << endl; |
||||
cout << R[2][0] << " " << R[2][1] << " " << R[2][2] << " " << t[2] << endl; |
||||
} |
||||
|
||||
void epnp::solve_for_sign(void) |
||||
{ |
||||
if (pcs[2] < 0.0) { |
||||
for(int i = 0; i < 4; i++) |
||||
for(int j = 0; j < 3; j++) |
||||
ccs[i][j] = -ccs[i][j]; |
||||
|
||||
for(int i = 0; i < number_of_correspondences; i++) { |
||||
pcs[3 * i ] = -pcs[3 * i]; |
||||
pcs[3 * i + 1] = -pcs[3 * i + 1]; |
||||
pcs[3 * i + 2] = -pcs[3 * i + 2]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
double epnp::compute_R_and_t(const double * ut, const double * betas, |
||||
double R[3][3], double t[3]) |
||||
{ |
||||
compute_ccs(betas, ut); |
||||
compute_pcs(); |
||||
|
||||
solve_for_sign(); |
||||
|
||||
estimate_R_and_t(R, t); |
||||
|
||||
return reprojection_error(R, t); |
||||
} |
||||
|
||||
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
|
||||
// betas_approx_1 = [B11 B12 B13 B14]
|
||||
|
||||
void epnp::find_betas_approx_1(const CvMat * L_6x10, const CvMat * Rho, |
||||
double * betas) |
||||
{ |
||||
double l_6x4[6 * 4], b4[4]; |
||||
CvMat L_6x4 = cvMat(6, 4, CV_64F, l_6x4); |
||||
CvMat B4 = cvMat(4, 1, CV_64F, b4); |
||||
|
||||
for(int i = 0; i < 6; i++) { |
||||
cvmSet(&L_6x4, i, 0, cvmGet(L_6x10, i, 0)); |
||||
cvmSet(&L_6x4, i, 1, cvmGet(L_6x10, i, 1)); |
||||
cvmSet(&L_6x4, i, 2, cvmGet(L_6x10, i, 3)); |
||||
cvmSet(&L_6x4, i, 3, cvmGet(L_6x10, i, 6)); |
||||
} |
||||
|
||||
cvSolve(&L_6x4, Rho, &B4, CV_SVD); |
||||
|
||||
if (b4[0] < 0) { |
||||
betas[0] = sqrt(-b4[0]); |
||||
betas[1] = -b4[1] / betas[0]; |
||||
betas[2] = -b4[2] / betas[0]; |
||||
betas[3] = -b4[3] / betas[0]; |
||||
} else { |
||||
betas[0] = sqrt(b4[0]); |
||||
betas[1] = b4[1] / betas[0]; |
||||
betas[2] = b4[2] / betas[0]; |
||||
betas[3] = b4[3] / betas[0]; |
||||
} |
||||
} |
||||
|
||||
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
|
||||
// betas_approx_2 = [B11 B12 B22 ]
|
||||
|
||||
void epnp::find_betas_approx_2(const CvMat * L_6x10, const CvMat * Rho, |
||||
double * betas) |
||||
{ |
||||
double l_6x3[6 * 3], b3[3]; |
||||
CvMat L_6x3 = cvMat(6, 3, CV_64F, l_6x3); |
||||
CvMat B3 = cvMat(3, 1, CV_64F, b3); |
||||
|
||||
for(int i = 0; i < 6; i++) { |
||||
cvmSet(&L_6x3, i, 0, cvmGet(L_6x10, i, 0)); |
||||
cvmSet(&L_6x3, i, 1, cvmGet(L_6x10, i, 1)); |
||||
cvmSet(&L_6x3, i, 2, cvmGet(L_6x10, i, 2)); |
||||
} |
||||
|
||||
cvSolve(&L_6x3, Rho, &B3, CV_SVD); |
||||
|
||||
if (b3[0] < 0) { |
||||
betas[0] = sqrt(-b3[0]); |
||||
betas[1] = (b3[2] < 0) ? sqrt(-b3[2]) : 0.0; |
||||
} else { |
||||
betas[0] = sqrt(b3[0]); |
||||
betas[1] = (b3[2] > 0) ? sqrt(b3[2]) : 0.0; |
||||
} |
||||
|
||||
if (b3[1] < 0) betas[0] = -betas[0]; |
||||
|
||||
betas[2] = 0.0; |
||||
betas[3] = 0.0; |
||||
} |
||||
|
||||
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
|
||||
// betas_approx_3 = [B11 B12 B22 B13 B23 ]
|
||||
|
||||
void epnp::find_betas_approx_3(const CvMat * L_6x10, const CvMat * Rho, |
||||
double * betas) |
||||
{ |
||||
double l_6x5[6 * 5], b5[5]; |
||||
CvMat L_6x5 = cvMat(6, 5, CV_64F, l_6x5); |
||||
CvMat B5 = cvMat(5, 1, CV_64F, b5); |
||||
|
||||
for(int i = 0; i < 6; i++) { |
||||
cvmSet(&L_6x5, i, 0, cvmGet(L_6x10, i, 0)); |
||||
cvmSet(&L_6x5, i, 1, cvmGet(L_6x10, i, 1)); |
||||
cvmSet(&L_6x5, i, 2, cvmGet(L_6x10, i, 2)); |
||||
cvmSet(&L_6x5, i, 3, cvmGet(L_6x10, i, 3)); |
||||
cvmSet(&L_6x5, i, 4, cvmGet(L_6x10, i, 4)); |
||||
} |
||||
|
||||
cvSolve(&L_6x5, Rho, &B5, CV_SVD); |
||||
|
||||
if (b5[0] < 0) { |
||||
betas[0] = sqrt(-b5[0]); |
||||
betas[1] = (b5[2] < 0) ? sqrt(-b5[2]) : 0.0; |
||||
} else { |
||||
betas[0] = sqrt(b5[0]); |
||||
betas[1] = (b5[2] > 0) ? sqrt(b5[2]) : 0.0; |
||||
} |
||||
if (b5[1] < 0) betas[0] = -betas[0]; |
||||
betas[2] = b5[3] / betas[0]; |
||||
betas[3] = 0.0; |
||||
} |
||||
|
||||
void epnp::compute_L_6x10(const double * ut, double * l_6x10) |
||||
{ |
||||
const double * v[4]; |
||||
|
||||
v[0] = ut + 12 * 11; |
||||
v[1] = ut + 12 * 10; |
||||
v[2] = ut + 12 * 9; |
||||
v[3] = ut + 12 * 8; |
||||
|
||||
double dv[4][6][3]; |
||||
|
||||
for(int i = 0; i < 4; i++) { |
||||
int a = 0, b = 1; |
||||
for(int j = 0; j < 6; j++) { |
||||
dv[i][j][0] = v[i][3 * a ] - v[i][3 * b]; |
||||
dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1]; |
||||
dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2]; |
||||
|
||||
b++; |
||||
if (b > 3) { |
||||
a++; |
||||
b = a + 1; |
||||
} |
||||
} |
||||
} |
||||
|
||||
for(int i = 0; i < 6; i++) { |
||||
double * row = l_6x10 + 10 * i; |
||||
|
||||
row[0] = dot(dv[0][i], dv[0][i]); |
||||
row[1] = 2.0f * dot(dv[0][i], dv[1][i]); |
||||
row[2] = dot(dv[1][i], dv[1][i]); |
||||
row[3] = 2.0f * dot(dv[0][i], dv[2][i]); |
||||
row[4] = 2.0f * dot(dv[1][i], dv[2][i]); |
||||
row[5] = dot(dv[2][i], dv[2][i]); |
||||
row[6] = 2.0f * dot(dv[0][i], dv[3][i]); |
||||
row[7] = 2.0f * dot(dv[1][i], dv[3][i]); |
||||
row[8] = 2.0f * dot(dv[2][i], dv[3][i]); |
||||
row[9] = dot(dv[3][i], dv[3][i]); |
||||
} |
||||
} |
||||
|
||||
void epnp::compute_rho(double * rho) |
||||
{ |
||||
rho[0] = dist2(cws[0], cws[1]); |
||||
rho[1] = dist2(cws[0], cws[2]); |
||||
rho[2] = dist2(cws[0], cws[3]); |
||||
rho[3] = dist2(cws[1], cws[2]); |
||||
rho[4] = dist2(cws[1], cws[3]); |
||||
rho[5] = dist2(cws[2], cws[3]); |
||||
} |
||||
|
||||
void epnp::compute_A_and_b_gauss_newton(const double * l_6x10, const double * rho, |
||||
double betas[4], CvMat * A, CvMat * b) |
||||
{ |
||||
for(int i = 0; i < 6; i++) { |
||||
const double * rowL = l_6x10 + i * 10; |
||||
double * rowA = A->data.db + i * 4; |
||||
|
||||
rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[3] * betas[2] + rowL[6] * betas[3]; |
||||
rowA[1] = rowL[1] * betas[0] + 2 * rowL[2] * betas[1] + rowL[4] * betas[2] + rowL[7] * betas[3]; |
||||
rowA[2] = rowL[3] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + rowL[8] * betas[3]; |
||||
rowA[3] = rowL[6] * betas[0] + rowL[7] * betas[1] + rowL[8] * betas[2] + 2 * rowL[9] * betas[3]; |
||||
|
||||
cvmSet(b, i, 0, rho[i] - |
||||
( |
||||
rowL[0] * betas[0] * betas[0] + |
||||
rowL[1] * betas[0] * betas[1] + |
||||
rowL[2] * betas[1] * betas[1] + |
||||
rowL[3] * betas[0] * betas[2] + |
||||
rowL[4] * betas[1] * betas[2] + |
||||
rowL[5] * betas[2] * betas[2] + |
||||
rowL[6] * betas[0] * betas[3] + |
||||
rowL[7] * betas[1] * betas[3] + |
||||
rowL[8] * betas[2] * betas[3] + |
||||
rowL[9] * betas[3] * betas[3] |
||||
)); |
||||
} |
||||
} |
||||
|
||||
void epnp::gauss_newton(const CvMat * L_6x10, const CvMat * Rho, |
||||
double betas[4]) |
||||
{ |
||||
const int iterations_number = 5; |
||||
|
||||
double a[6*4], b[6], x[4]; |
||||
CvMat A = cvMat(6, 4, CV_64F, a); |
||||
CvMat B = cvMat(6, 1, CV_64F, b); |
||||
CvMat X = cvMat(4, 1, CV_64F, x); |
||||
|
||||
for(int k = 0; k < iterations_number; k++) { |
||||
compute_A_and_b_gauss_newton(L_6x10->data.db, Rho->data.db, |
||||
betas, &A, &B); |
||||
qr_solve(&A, &B, &X); |
||||
|
||||
for(int i = 0; i < 4; i++) |
||||
betas[i] += x[i]; |
||||
} |
||||
} |
||||
|
||||
void epnp::qr_solve(CvMat * A, CvMat * b, CvMat * X) |
||||
{ |
||||
static int max_nr = 0; |
||||
static double * A1, * A2; |
||||
|
||||
const int nr = A->rows; |
||||
const int nc = A->cols; |
||||
|
||||
if (max_nr != 0 && max_nr < nr) { |
||||
delete [] A1; |
||||
delete [] A2; |
||||
} |
||||
if (max_nr < nr) { |
||||
max_nr = nr; |
||||
A1 = new double[nr]; |
||||
A2 = new double[nr]; |
||||
} |
||||
|
||||
double * pA = A->data.db, * ppAkk = pA; |
||||
for(int k = 0; k < nc; k++) { |
||||
double * ppAik = ppAkk, eta = fabs(*ppAik); |
||||
for(int i = k + 1; i < nr; i++) { |
||||
double elt = fabs(*ppAik); |
||||
if (eta < elt) eta = elt; |
||||
ppAik += nc; |
||||
} |
||||
|
||||
if (eta == 0) { |
||||
A1[k] = A2[k] = 0.0; |
||||
cerr << "God damnit, A is singular, this shouldn't happen." << endl; |
||||
return; |
||||
} else { |
||||
double * ppAik = ppAkk, sum = 0.0, inv_eta = 1. / eta; |
||||
for(int i = k; i < nr; i++) { |
||||
*ppAik *= inv_eta; |
||||
sum += *ppAik * *ppAik; |
||||
ppAik += nc; |
||||
} |
||||
double sigma = sqrt(sum); |
||||
if (*ppAkk < 0) |
||||
sigma = -sigma; |
||||
*ppAkk += sigma; |
||||
A1[k] = sigma * *ppAkk; |
||||
A2[k] = -eta * sigma; |
||||
for(int j = k + 1; j < nc; j++) { |
||||
double * ppAik = ppAkk, sum = 0; |
||||
for(int i = k; i < nr; i++) { |
||||
sum += *ppAik * ppAik[j - k]; |
||||
ppAik += nc; |
||||
} |
||||
double tau = sum / A1[k]; |
||||
ppAik = ppAkk; |
||||
for(int i = k; i < nr; i++) { |
||||
ppAik[j - k] -= tau * *ppAik; |
||||
ppAik += nc; |
||||
} |
||||
} |
||||
} |
||||
ppAkk += nc + 1; |
||||
} |
||||
|
||||
// b <- Qt b
|
||||
double * ppAjj = pA, * pb = b->data.db; |
||||
for(int j = 0; j < nc; j++) { |
||||
double * ppAij = ppAjj, tau = 0; |
||||
for(int i = j; i < nr; i++) { |
||||
tau += *ppAij * pb[i]; |
||||
ppAij += nc; |
||||
} |
||||
tau /= A1[j]; |
||||
ppAij = ppAjj; |
||||
for(int i = j; i < nr; i++) { |
||||
pb[i] -= tau * *ppAij; |
||||
ppAij += nc; |
||||
} |
||||
ppAjj += nc + 1; |
||||
} |
||||
|
||||
// X = R-1 b
|
||||
double * pX = X->data.db; |
||||
pX[nc - 1] = pb[nc - 1] / A2[nc - 1]; |
||||
for(int i = nc - 2; i >= 0; i--) { |
||||
double * ppAij = pA + i * nc + (i + 1), sum = 0; |
||||
|
||||
for(int j = i + 1; j < nc; j++) { |
||||
sum += *ppAij * pX[j]; |
||||
ppAij++; |
||||
} |
||||
pX[i] = (pb[i] - sum) / A2[i]; |
||||
} |
||||
} |
||||
|
||||
|
||||
|
||||
void epnp::relative_error(double & rot_err, double & transl_err, |
||||
const double Rtrue[3][3], const double ttrue[3], |
||||
const double Rest[3][3], const double test[3]) |
||||
{ |
||||
double qtrue[4], qest[4]; |
||||
|
||||
mat_to_quat(Rtrue, qtrue); |
||||
mat_to_quat(Rest, qest); |
||||
|
||||
double rot_err1 = sqrt((qtrue[0] - qest[0]) * (qtrue[0] - qest[0]) + |
||||
(qtrue[1] - qest[1]) * (qtrue[1] - qest[1]) + |
||||
(qtrue[2] - qest[2]) * (qtrue[2] - qest[2]) + |
||||
(qtrue[3] - qest[3]) * (qtrue[3] - qest[3]) ) / |
||||
sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]); |
||||
|
||||
double rot_err2 = sqrt((qtrue[0] + qest[0]) * (qtrue[0] + qest[0]) + |
||||
(qtrue[1] + qest[1]) * (qtrue[1] + qest[1]) + |
||||
(qtrue[2] + qest[2]) * (qtrue[2] + qest[2]) + |
||||
(qtrue[3] + qest[3]) * (qtrue[3] + qest[3]) ) / |
||||
sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]); |
||||
|
||||
rot_err = min(rot_err1, rot_err2); |
||||
|
||||
transl_err = |
||||
sqrt((ttrue[0] - test[0]) * (ttrue[0] - test[0]) + |
||||
(ttrue[1] - test[1]) * (ttrue[1] - test[1]) + |
||||
(ttrue[2] - test[2]) * (ttrue[2] - test[2])) / |
||||
sqrt(ttrue[0] * ttrue[0] + ttrue[1] * ttrue[1] + ttrue[2] * ttrue[2]); |
||||
} |
||||
|
||||
void epnp::mat_to_quat(const double R[3][3], double q[4]) |
||||
{ |
||||
double tr = R[0][0] + R[1][1] + R[2][2]; |
||||
double n4; |
||||
|
||||
if (tr > 0.0f) { |
||||
q[0] = R[1][2] - R[2][1]; |
||||
q[1] = R[2][0] - R[0][2]; |
||||
q[2] = R[0][1] - R[1][0]; |
||||
q[3] = tr + 1.0f; |
||||
n4 = q[3]; |
||||
} else if ( (R[0][0] > R[1][1]) && (R[0][0] > R[2][2]) ) { |
||||
q[0] = 1.0f + R[0][0] - R[1][1] - R[2][2]; |
||||
q[1] = R[1][0] + R[0][1]; |
||||
q[2] = R[2][0] + R[0][2]; |
||||
q[3] = R[1][2] - R[2][1]; |
||||
n4 = q[0]; |
||||
} else if (R[1][1] > R[2][2]) { |
||||
q[0] = R[1][0] + R[0][1]; |
||||
q[1] = 1.0f + R[1][1] - R[0][0] - R[2][2]; |
||||
q[2] = R[2][1] + R[1][2]; |
||||
q[3] = R[2][0] - R[0][2]; |
||||
n4 = q[1]; |
||||
} else { |
||||
q[0] = R[2][0] + R[0][2]; |
||||
q[1] = R[2][1] + R[1][2]; |
||||
q[2] = 1.0f + R[2][2] - R[0][0] - R[1][1]; |
||||
q[3] = R[0][1] - R[1][0]; |
||||
n4 = q[2]; |
||||
} |
||||
double scale = 0.5f / double(sqrt(n4)); |
||||
|
||||
q[0] *= scale; |
||||
q[1] *= scale; |
||||
q[2] *= scale; |
||||
q[3] *= scale; |
||||
} |
@ -0,0 +1,73 @@ |
||||
#ifndef epnp_h |
||||
#define epnp_h |
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
class epnp { |
||||
public: |
||||
epnp(void); |
||||
~epnp(); |
||||
|
||||
void set_internal_parameters(const double uc, const double vc, |
||||
const double fu, const double fv); |
||||
|
||||
void set_maximum_number_of_correspondences(const int n); |
||||
void reset_correspondences(void); |
||||
void add_correspondence(const double X, const double Y, const double Z, |
||||
const double u, const double v); |
||||
|
||||
double compute_pose(double R[3][3], double T[3]); |
||||
|
||||
void relative_error(double & rot_err, double & transl_err, |
||||
const double Rtrue[3][3], const double ttrue[3], |
||||
const double Rest[3][3], const double test[3]); |
||||
|
||||
void print_pose(const double R[3][3], const double t[3]); |
||||
double reprojection_error(const double R[3][3], const double t[3]); |
||||
|
||||
private: |
||||
void choose_control_points(void); |
||||
void compute_barycentric_coordinates(void); |
||||
void fill_M(CvMat * M, const int row, const double * alphas, const double u, const double v); |
||||
void compute_ccs(const double * betas, const double * ut); |
||||
void compute_pcs(void); |
||||
|
||||
void solve_for_sign(void); |
||||
|
||||
void find_betas_approx_1(const CvMat * L_6x10, const CvMat * Rho, double * betas); |
||||
void find_betas_approx_2(const CvMat * L_6x10, const CvMat * Rho, double * betas); |
||||
void find_betas_approx_3(const CvMat * L_6x10, const CvMat * Rho, double * betas); |
||||
void qr_solve(CvMat * A, CvMat * b, CvMat * X); |
||||
|
||||
double dot(const double * v1, const double * v2); |
||||
double dist2(const double * p1, const double * p2); |
||||
|
||||
void compute_rho(double * rho); |
||||
void compute_L_6x10(const double * ut, double * l_6x10); |
||||
|
||||
void gauss_newton(const CvMat * L_6x10, const CvMat * Rho, double current_betas[4]); |
||||
void compute_A_and_b_gauss_newton(const double * l_6x10, const double * rho, |
||||
double cb[4], CvMat * A, CvMat * b); |
||||
|
||||
double compute_R_and_t(const double * ut, const double * betas, |
||||
double R[3][3], double t[3]); |
||||
|
||||
void estimate_R_and_t(double R[3][3], double t[3]); |
||||
|
||||
void copy_R_and_t(const double R_dst[3][3], const double t_dst[3], |
||||
double R_src[3][3], double t_src[3]); |
||||
|
||||
void mat_to_quat(const double R[3][3], double q[4]); |
||||
|
||||
|
||||
double uc, vc, fu, fv; |
||||
|
||||
double * pws, * us, * alphas, * pcs; |
||||
int maximum_number_of_correspondences; |
||||
int number_of_correspondences; |
||||
|
||||
double cws[4][3], ccs[4][3]; |
||||
double cws_determinant; |
||||
}; |
||||
|
||||
#endif |
Loading…
Reference in new issue