* 'master' of github.com:itseez/opencv: (82 commits) moved part of video to contrib/{outflow, bgsegm}; moved matlab to contrib added some basic functionality needed by the new face module (moved from the old "contrib") moved to the new opencv_contrib/face module fixed various warnings and obvious errors reported by clang compiler and the coverity tool. Fixed review comment from Vadim Pisarevsky modified farneback sample to use T-API ECC patch by the author (G. Evangelidis); fixed some OCL Farneback optical flow test failures on Mac small fix for GaussianBlur ocl test fix binary package build small fix for ocl_resize fix IOS framework fixed test ocl_MatchTemplate for sparse matrix Fixed typos fixing error, wrong template method param. fixing Mac build some formal changes (generally adding constness) Fixed choice of kercn and rowsPerWI for non-Intel device. fixed nDiffs for CalcBackProject fixed tests for ocl_filter2d, ocl_matchTemplate, ocl_histogram.cpp Fixed issue: Mat::copyTo(UMat) if device copy is obsolete. Added test. ... Conflicts: modules/core/include/opencv2/core/mat.inl.hpppull/3071/head
commit
c54b8f9b00
346 changed files with 25385 additions and 421795 deletions
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,792 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "old_ml_precomp.hpp" |
||||
#include <ctype.h> |
||||
|
||||
#define MISS_VAL FLT_MAX |
||||
#define CV_VAR_MISS 0 |
||||
|
||||
CvTrainTestSplit::CvTrainTestSplit() |
||||
{ |
||||
train_sample_part_mode = CV_COUNT; |
||||
train_sample_part.count = -1; |
||||
mix = false; |
||||
} |
||||
|
||||
CvTrainTestSplit::CvTrainTestSplit( int _train_sample_count, bool _mix ) |
||||
{ |
||||
train_sample_part_mode = CV_COUNT; |
||||
train_sample_part.count = _train_sample_count; |
||||
mix = _mix; |
||||
} |
||||
|
||||
CvTrainTestSplit::CvTrainTestSplit( float _train_sample_portion, bool _mix ) |
||||
{ |
||||
train_sample_part_mode = CV_PORTION; |
||||
train_sample_part.portion = _train_sample_portion; |
||||
mix = _mix; |
||||
} |
||||
|
||||
////////////////
|
||||
|
||||
CvMLData::CvMLData() |
||||
{ |
||||
values = missing = var_types = var_idx_mask = response_out = var_idx_out = var_types_out = 0; |
||||
train_sample_idx = test_sample_idx = 0; |
||||
header_lines_number = 0; |
||||
sample_idx = 0; |
||||
response_idx = -1; |
||||
|
||||
train_sample_count = -1; |
||||
|
||||
delimiter = ','; |
||||
miss_ch = '?'; |
||||
//flt_separator = '.';
|
||||
|
||||
rng = &cv::theRNG(); |
||||
} |
||||
|
||||
CvMLData::~CvMLData() |
||||
{ |
||||
clear(); |
||||
} |
||||
|
||||
void CvMLData::free_train_test_idx() |
||||
{ |
||||
cvReleaseMat( &train_sample_idx ); |
||||
cvReleaseMat( &test_sample_idx ); |
||||
sample_idx = 0; |
||||
} |
||||
|
||||
void CvMLData::clear() |
||||
{ |
||||
class_map.clear(); |
||||
|
||||
cvReleaseMat( &values ); |
||||
cvReleaseMat( &missing ); |
||||
cvReleaseMat( &var_types ); |
||||
cvReleaseMat( &var_idx_mask ); |
||||
|
||||
cvReleaseMat( &response_out ); |
||||
cvReleaseMat( &var_idx_out ); |
||||
cvReleaseMat( &var_types_out ); |
||||
|
||||
free_train_test_idx(); |
||||
|
||||
total_class_count = 0; |
||||
|
||||
response_idx = -1; |
||||
|
||||
train_sample_count = -1; |
||||
} |
||||
|
||||
|
||||
void CvMLData::set_header_lines_number( int idx ) |
||||
{ |
||||
header_lines_number = std::max(0, idx); |
||||
} |
||||
|
||||
int CvMLData::get_header_lines_number() const |
||||
{ |
||||
return header_lines_number; |
||||
} |
||||
|
||||
static char *fgets_chomp(char *str, int n, FILE *stream) |
||||
{ |
||||
char *head = fgets(str, n, stream); |
||||
if( head ) |
||||
{ |
||||
for(char *tail = head + strlen(head) - 1; tail >= head; --tail) |
||||
{ |
||||
if( *tail != '\r' && *tail != '\n' ) |
||||
break; |
||||
*tail = '\0'; |
||||
} |
||||
} |
||||
return head; |
||||
} |
||||
|
||||
|
||||
int CvMLData::read_csv(const char* filename) |
||||
{ |
||||
const int M = 1000000; |
||||
const char str_delimiter[3] = { ' ', delimiter, '\0' }; |
||||
FILE* file = 0; |
||||
CvMemStorage* storage; |
||||
CvSeq* seq; |
||||
char *ptr; |
||||
float* el_ptr; |
||||
CvSeqReader reader; |
||||
int cols_count = 0; |
||||
uchar *var_types_ptr = 0; |
||||
|
||||
clear(); |
||||
|
||||
file = fopen( filename, "rt" ); |
||||
|
||||
if( !file ) |
||||
return -1; |
||||
|
||||
std::vector<char> _buf(M); |
||||
char* buf = &_buf[0]; |
||||
|
||||
// skip header lines
|
||||
for( int i = 0; i < header_lines_number; i++ ) |
||||
{ |
||||
if( fgets( buf, M, file ) == 0 ) |
||||
{ |
||||
fclose(file); |
||||
return -1; |
||||
} |
||||
} |
||||
|
||||
// read the first data line and determine the number of variables
|
||||
if( !fgets_chomp( buf, M, file )) |
||||
{ |
||||
fclose(file); |
||||
return -1; |
||||
} |
||||
|
||||
ptr = buf; |
||||
while( *ptr == ' ' ) |
||||
ptr++; |
||||
for( ; *ptr != '\0'; ) |
||||
{ |
||||
if(*ptr == delimiter || *ptr == ' ') |
||||
{ |
||||
cols_count++; |
||||
ptr++; |
||||
while( *ptr == ' ' ) ptr++; |
||||
} |
||||
else |
||||
ptr++; |
||||
} |
||||
|
||||
cols_count++; |
||||
|
||||
if ( cols_count == 0) |
||||
{ |
||||
fclose(file); |
||||
return -1; |
||||
} |
||||
|
||||
// create temporary memory storage to store the whole database
|
||||
el_ptr = new float[cols_count]; |
||||
storage = cvCreateMemStorage(); |
||||
seq = cvCreateSeq( 0, sizeof(*seq), cols_count*sizeof(float), storage ); |
||||
|
||||
var_types = cvCreateMat( 1, cols_count, CV_8U ); |
||||
cvZero( var_types ); |
||||
var_types_ptr = var_types->data.ptr; |
||||
|
||||
for(;;) |
||||
{ |
||||
char *token = NULL; |
||||
int type; |
||||
token = strtok(buf, str_delimiter); |
||||
if (!token) |
||||
break; |
||||
for (int i = 0; i < cols_count-1; i++) |
||||
{ |
||||
str_to_flt_elem( token, el_ptr[i], type); |
||||
var_types_ptr[i] |= type; |
||||
token = strtok(NULL, str_delimiter); |
||||
if (!token) |
||||
{ |
||||
fclose(file); |
||||
delete [] el_ptr; |
||||
return -1; |
||||
} |
||||
} |
||||
str_to_flt_elem( token, el_ptr[cols_count-1], type); |
||||
var_types_ptr[cols_count-1] |= type; |
||||
cvSeqPush( seq, el_ptr ); |
||||
if( !fgets_chomp( buf, M, file ) ) |
||||
break; |
||||
} |
||||
fclose(file); |
||||
|
||||
values = cvCreateMat( seq->total, cols_count, CV_32FC1 ); |
||||
missing = cvCreateMat( seq->total, cols_count, CV_8U ); |
||||
var_idx_mask = cvCreateMat( 1, values->cols, CV_8UC1 ); |
||||
cvSet( var_idx_mask, cvRealScalar(1) ); |
||||
train_sample_count = seq->total; |
||||
|
||||
cvStartReadSeq( seq, &reader ); |
||||
for(int i = 0; i < seq->total; i++ ) |
||||
{ |
||||
const float* sdata = (float*)reader.ptr; |
||||
float* ddata = values->data.fl + cols_count*i; |
||||
uchar* dm = missing->data.ptr + cols_count*i; |
||||
|
||||
for( int j = 0; j < cols_count; j++ ) |
||||
{ |
||||
ddata[j] = sdata[j]; |
||||
dm[j] = ( fabs( MISS_VAL - sdata[j] ) <= FLT_EPSILON ); |
||||
} |
||||
CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); |
||||
} |
||||
|
||||
if ( cvNorm( missing, 0, CV_L1 ) <= FLT_EPSILON ) |
||||
cvReleaseMat( &missing ); |
||||
|
||||
cvReleaseMemStorage( &storage ); |
||||
delete []el_ptr; |
||||
return 0; |
||||
} |
||||
|
||||
const CvMat* CvMLData::get_values() const |
||||
{ |
||||
return values; |
||||
} |
||||
|
||||
const CvMat* CvMLData::get_missing() const |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::get_missing" ); |
||||
__BEGIN__; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
__END__; |
||||
|
||||
return missing; |
||||
} |
||||
|
||||
const std::map<cv::String, int>& CvMLData::get_class_labels_map() const |
||||
{ |
||||
return class_map; |
||||
} |
||||
|
||||
void CvMLData::str_to_flt_elem( const char* token, float& flt_elem, int& type) |
||||
{ |
||||
|
||||
char* stopstring = NULL; |
||||
flt_elem = (float)strtod( token, &stopstring ); |
||||
assert( stopstring ); |
||||
type = CV_VAR_ORDERED; |
||||
if ( *stopstring == miss_ch && strlen(stopstring) == 1 ) // missed value
|
||||
{ |
||||
flt_elem = MISS_VAL; |
||||
type = CV_VAR_MISS; |
||||
} |
||||
else |
||||
{ |
||||
if ( (*stopstring != 0) && (*stopstring != '\n') && (strcmp(stopstring, "\r\n") != 0) ) // class label
|
||||
{ |
||||
int idx = class_map[token]; |
||||
if ( idx == 0) |
||||
{ |
||||
total_class_count++; |
||||
idx = total_class_count; |
||||
class_map[token] = idx; |
||||
} |
||||
flt_elem = (float)idx; |
||||
type = CV_VAR_CATEGORICAL; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void CvMLData::set_delimiter(char ch) |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::set_delimited" ); |
||||
__BEGIN__; |
||||
|
||||
if (ch == miss_ch /*|| ch == flt_separator*/) |
||||
CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different"); |
||||
|
||||
delimiter = ch; |
||||
|
||||
__END__; |
||||
} |
||||
|
||||
char CvMLData::get_delimiter() const |
||||
{ |
||||
return delimiter; |
||||
} |
||||
|
||||
void CvMLData::set_miss_ch(char ch) |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::set_miss_ch" ); |
||||
__BEGIN__; |
||||
|
||||
if (ch == delimiter/* || ch == flt_separator*/) |
||||
CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different"); |
||||
|
||||
miss_ch = ch; |
||||
|
||||
__END__; |
||||
} |
||||
|
||||
char CvMLData::get_miss_ch() const |
||||
{ |
||||
return miss_ch; |
||||
} |
||||
|
||||
void CvMLData::set_response_idx( int idx ) |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::set_response_idx" ); |
||||
__BEGIN__; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
if ( idx >= values->cols) |
||||
CV_ERROR( CV_StsBadArg, "idx value is not correct" ); |
||||
|
||||
if ( response_idx >= 0 ) |
||||
chahge_var_idx( response_idx, true ); |
||||
if ( idx >= 0 ) |
||||
chahge_var_idx( idx, false ); |
||||
response_idx = idx; |
||||
|
||||
__END__; |
||||
} |
||||
|
||||
int CvMLData::get_response_idx() const |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::get_response_idx" ); |
||||
__BEGIN__; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
__END__; |
||||
return response_idx; |
||||
} |
||||
|
||||
void CvMLData::change_var_type( int var_idx, int type ) |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::change_var_type" ); |
||||
__BEGIN__; |
||||
|
||||
int var_count = 0; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
var_count = values->cols; |
||||
|
||||
if ( var_idx < 0 || var_idx >= var_count) |
||||
CV_ERROR( CV_StsBadArg, "var_idx is not correct" ); |
||||
|
||||
if ( type != CV_VAR_ORDERED && type != CV_VAR_CATEGORICAL) |
||||
CV_ERROR( CV_StsBadArg, "type is not correct" ); |
||||
|
||||
assert( var_types ); |
||||
if ( var_types->data.ptr[var_idx] == CV_VAR_CATEGORICAL && type == CV_VAR_ORDERED) |
||||
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" ); |
||||
var_types->data.ptr[var_idx] = (uchar)type; |
||||
|
||||
__END__; |
||||
|
||||
return; |
||||
} |
||||
|
||||
void CvMLData::set_var_types( const char* str ) |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::set_var_types" ); |
||||
__BEGIN__; |
||||
|
||||
const char* ord = 0, *cat = 0; |
||||
int var_count = 0, set_var_type_count = 0; |
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
var_count = values->cols; |
||||
|
||||
assert( var_types ); |
||||
|
||||
ord = strstr( str, "ord" ); |
||||
cat = strstr( str, "cat" ); |
||||
if ( !ord && !cat ) |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
|
||||
if ( !ord && strlen(cat) == 3 ) // str == "cat"
|
||||
{ |
||||
cvSet( var_types, cvScalarAll(CV_VAR_CATEGORICAL) ); |
||||
return; |
||||
} |
||||
|
||||
if ( !cat && strlen(ord) == 3 ) // str == "ord"
|
||||
{ |
||||
cvSet( var_types, cvScalarAll(CV_VAR_ORDERED) ); |
||||
return; |
||||
} |
||||
|
||||
if ( ord ) // parse ord str
|
||||
{ |
||||
char* stopstring = NULL; |
||||
if ( ord[3] != '[') |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
|
||||
ord += 4; // pass "ord["
|
||||
do |
||||
{ |
||||
int b1 = (int)strtod( ord, &stopstring ); |
||||
if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') ) |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
ord = stopstring + 1; |
||||
if ( (stopstring[0] == ',') || (stopstring[0] == ']')) |
||||
{ |
||||
if ( var_types->data.ptr[b1] == CV_VAR_CATEGORICAL) |
||||
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" ); |
||||
var_types->data.ptr[b1] = CV_VAR_ORDERED; |
||||
set_var_type_count++; |
||||
} |
||||
else |
||||
{ |
||||
if ( stopstring[0] == '-') |
||||
{ |
||||
int b2 = (int)strtod( ord, &stopstring); |
||||
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') ) |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
ord = stopstring + 1; |
||||
for (int i = b1; i <= b2; i++) |
||||
{ |
||||
if ( var_types->data.ptr[i] == CV_VAR_CATEGORICAL) |
||||
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" ); |
||||
var_types->data.ptr[i] = CV_VAR_ORDERED; |
||||
} |
||||
set_var_type_count += b2 - b1 + 1; |
||||
} |
||||
else |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
|
||||
} |
||||
} |
||||
while (*stopstring != ']'); |
||||
|
||||
if ( stopstring[1] != '\0' && stopstring[1] != ',') |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
} |
||||
|
||||
if ( cat ) // parse cat str
|
||||
{ |
||||
char* stopstring = NULL; |
||||
if ( cat[3] != '[') |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
|
||||
cat += 4; // pass "cat["
|
||||
do |
||||
{ |
||||
int b1 = (int)strtod( cat, &stopstring ); |
||||
if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') ) |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
cat = stopstring + 1; |
||||
if ( (stopstring[0] == ',') || (stopstring[0] == ']')) |
||||
{ |
||||
var_types->data.ptr[b1] = CV_VAR_CATEGORICAL; |
||||
set_var_type_count++; |
||||
} |
||||
else |
||||
{ |
||||
if ( stopstring[0] == '-') |
||||
{ |
||||
int b2 = (int)strtod( cat, &stopstring); |
||||
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') ) |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
cat = stopstring + 1; |
||||
for (int i = b1; i <= b2; i++) |
||||
var_types->data.ptr[i] = CV_VAR_CATEGORICAL; |
||||
set_var_type_count += b2 - b1 + 1; |
||||
} |
||||
else |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
|
||||
} |
||||
} |
||||
while (*stopstring != ']'); |
||||
|
||||
if ( stopstring[1] != '\0' && stopstring[1] != ',') |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
} |
||||
|
||||
if (set_var_type_count != var_count) |
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
||||
|
||||
__END__; |
||||
} |
||||
|
||||
const CvMat* CvMLData::get_var_types() |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::get_var_types" ); |
||||
__BEGIN__; |
||||
|
||||
uchar *var_types_out_ptr = 0; |
||||
int avcount, vt_size; |
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
assert( var_idx_mask ); |
||||
|
||||
avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) ); |
||||
vt_size = avcount + (response_idx >= 0); |
||||
|
||||
if ( avcount == values->cols || (avcount == values->cols-1 && response_idx == values->cols-1) ) |
||||
return var_types; |
||||
|
||||
if ( !var_types_out || ( var_types_out && var_types_out->cols != vt_size ) ) |
||||
{ |
||||
cvReleaseMat( &var_types_out ); |
||||
var_types_out = cvCreateMat( 1, vt_size, CV_8UC1 ); |
||||
} |
||||
|
||||
var_types_out_ptr = var_types_out->data.ptr; |
||||
for( int i = 0; i < var_types->cols; i++) |
||||
{ |
||||
if (i == response_idx || !var_idx_mask->data.ptr[i]) continue; |
||||
*var_types_out_ptr = var_types->data.ptr[i]; |
||||
var_types_out_ptr++; |
||||
} |
||||
if ( response_idx >= 0 ) |
||||
*var_types_out_ptr = var_types->data.ptr[response_idx]; |
||||
|
||||
__END__; |
||||
|
||||
return var_types_out; |
||||
} |
||||
|
||||
int CvMLData::get_var_type( int var_idx ) const |
||||
{ |
||||
return var_types->data.ptr[var_idx]; |
||||
} |
||||
|
||||
const CvMat* CvMLData::get_responses() |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::get_responses_ptr" ); |
||||
__BEGIN__; |
||||
|
||||
int var_count = 0; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
var_count = values->cols; |
||||
|
||||
if ( response_idx < 0 || response_idx >= var_count ) |
||||
return 0; |
||||
if ( !response_out ) |
||||
response_out = cvCreateMatHeader( values->rows, 1, CV_32FC1 ); |
||||
else |
||||
cvInitMatHeader( response_out, values->rows, 1, CV_32FC1); |
||||
cvGetCol( values, response_out, response_idx ); |
||||
|
||||
__END__; |
||||
|
||||
return response_out; |
||||
} |
||||
|
||||
void CvMLData::set_train_test_split( const CvTrainTestSplit * spl) |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::set_division" ); |
||||
__BEGIN__; |
||||
|
||||
int sample_count = 0; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
sample_count = values->rows; |
||||
|
||||
float train_sample_portion; |
||||
|
||||
if (spl->train_sample_part_mode == CV_COUNT) |
||||
{ |
||||
train_sample_count = spl->train_sample_part.count; |
||||
if (train_sample_count > sample_count) |
||||
CV_ERROR( CV_StsBadArg, "train samples count is not correct" ); |
||||
train_sample_count = train_sample_count<=0 ? sample_count : train_sample_count; |
||||
} |
||||
else // dtype.train_sample_part_mode == CV_PORTION
|
||||
{ |
||||
train_sample_portion = spl->train_sample_part.portion; |
||||
if ( train_sample_portion > 1) |
||||
CV_ERROR( CV_StsBadArg, "train samples count is not correct" ); |
||||
train_sample_portion = train_sample_portion <= FLT_EPSILON || |
||||
1 - train_sample_portion <= FLT_EPSILON ? 1 : train_sample_portion; |
||||
train_sample_count = std::max(1, cvFloor( train_sample_portion * sample_count )); |
||||
} |
||||
|
||||
if ( train_sample_count == sample_count ) |
||||
{ |
||||
free_train_test_idx(); |
||||
return; |
||||
} |
||||
|
||||
if ( train_sample_idx && train_sample_idx->cols != train_sample_count ) |
||||
free_train_test_idx(); |
||||
|
||||
if ( !sample_idx) |
||||
{ |
||||
int test_sample_count = sample_count- train_sample_count; |
||||
sample_idx = (int*)cvAlloc( sample_count * sizeof(sample_idx[0]) ); |
||||
for (int i = 0; i < sample_count; i++ ) |
||||
sample_idx[i] = i; |
||||
train_sample_idx = cvCreateMatHeader( 1, train_sample_count, CV_32SC1 ); |
||||
*train_sample_idx = cvMat( 1, train_sample_count, CV_32SC1, &sample_idx[0] ); |
||||
|
||||
CV_Assert(test_sample_count > 0); |
||||
test_sample_idx = cvCreateMatHeader( 1, test_sample_count, CV_32SC1 ); |
||||
*test_sample_idx = cvMat( 1, test_sample_count, CV_32SC1, &sample_idx[train_sample_count] ); |
||||
} |
||||
|
||||
mix = spl->mix; |
||||
if ( mix ) |
||||
mix_train_and_test_idx(); |
||||
|
||||
__END__; |
||||
} |
||||
|
||||
const CvMat* CvMLData::get_train_sample_idx() const |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::get_train_sample_idx" ); |
||||
__BEGIN__; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
__END__; |
||||
|
||||
return train_sample_idx; |
||||
} |
||||
|
||||
const CvMat* CvMLData::get_test_sample_idx() const |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::get_test_sample_idx" ); |
||||
__BEGIN__; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
__END__; |
||||
|
||||
return test_sample_idx; |
||||
} |
||||
|
||||
void CvMLData::mix_train_and_test_idx() |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::mix_train_and_test_idx" ); |
||||
__BEGIN__; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
__END__; |
||||
|
||||
if ( !sample_idx) |
||||
return; |
||||
|
||||
if ( train_sample_count > 0 && train_sample_count < values->rows ) |
||||
{ |
||||
int n = values->rows; |
||||
for (int i = 0; i < n; i++) |
||||
{ |
||||
int a = (*rng)(n); |
||||
int b = (*rng)(n); |
||||
int t; |
||||
CV_SWAP( sample_idx[a], sample_idx[b], t ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
const CvMat* CvMLData::get_var_idx() |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::get_var_idx" ); |
||||
__BEGIN__; |
||||
|
||||
int avcount = 0; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
assert( var_idx_mask ); |
||||
|
||||
avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) ); |
||||
int* vidx; |
||||
|
||||
if ( avcount == values->cols ) |
||||
return 0; |
||||
|
||||
if ( !var_idx_out || ( var_idx_out && var_idx_out->cols != avcount ) ) |
||||
{ |
||||
cvReleaseMat( &var_idx_out ); |
||||
var_idx_out = cvCreateMat( 1, avcount, CV_32SC1); |
||||
if ( response_idx >=0 ) |
||||
var_idx_mask->data.ptr[response_idx] = 0; |
||||
} |
||||
|
||||
vidx = var_idx_out->data.i; |
||||
|
||||
for(int i = 0; i < var_idx_mask->cols; i++) |
||||
if ( var_idx_mask->data.ptr[i] ) |
||||
{ |
||||
*vidx = i; |
||||
vidx++; |
||||
} |
||||
|
||||
__END__; |
||||
|
||||
return var_idx_out; |
||||
} |
||||
|
||||
void CvMLData::chahge_var_idx( int vi, bool state ) |
||||
{ |
||||
change_var_idx( vi, state ); |
||||
} |
||||
|
||||
void CvMLData::change_var_idx( int vi, bool state ) |
||||
{ |
||||
CV_FUNCNAME( "CvMLData::change_var_idx" ); |
||||
__BEGIN__; |
||||
|
||||
int var_count = 0; |
||||
|
||||
if ( !values ) |
||||
CV_ERROR( CV_StsInternal, "data is empty" ); |
||||
|
||||
var_count = values->cols; |
||||
|
||||
if ( vi < 0 || vi >= var_count) |
||||
CV_ERROR( CV_StsBadArg, "variable index is not correct" ); |
||||
|
||||
assert( var_idx_mask ); |
||||
var_idx_mask->data.ptr[vi] = state; |
||||
|
||||
__END__; |
||||
} |
||||
|
||||
/* End of file. */ |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,376 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_PRECOMP_H__ |
||||
#define __OPENCV_PRECOMP_H__ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
#include "old_ml.hpp" |
||||
#include "opencv2/core/core_c.h" |
||||
#include "opencv2/core/utility.hpp" |
||||
|
||||
#include "opencv2/core/private.hpp" |
||||
|
||||
#include <assert.h> |
||||
#include <float.h> |
||||
#include <limits.h> |
||||
#include <math.h> |
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <time.h> |
||||
|
||||
#define ML_IMPL CV_IMPL |
||||
#define __BEGIN__ __CV_BEGIN__ |
||||
#define __END__ __CV_END__ |
||||
#define EXIT __CV_EXIT__ |
||||
|
||||
#define CV_MAT_ELEM_FLAG( mat, type, comp, vect, tflag ) \ |
||||
(( tflag == CV_ROW_SAMPLE ) \
|
||||
? (CV_MAT_ELEM( mat, type, comp, vect )) \
|
||||
: (CV_MAT_ELEM( mat, type, vect, comp ))) |
||||
|
||||
/* Convert matrix to vector */ |
||||
#define ICV_MAT2VEC( mat, vdata, vstep, num ) \ |
||||
if( MIN( (mat).rows, (mat).cols ) != 1 ) \
|
||||
CV_ERROR( CV_StsBadArg, "" ); \
|
||||
(vdata) = ((mat).data.ptr); \
|
||||
if( (mat).rows == 1 ) \
|
||||
{ \
|
||||
(vstep) = CV_ELEM_SIZE( (mat).type ); \
|
||||
(num) = (mat).cols; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(vstep) = (mat).step; \
|
||||
(num) = (mat).rows; \
|
||||
} |
||||
|
||||
/* get raw data */ |
||||
#define ICV_RAWDATA( mat, flags, rdata, sstep, cstep, m, n ) \ |
||||
(rdata) = (mat).data.ptr; \
|
||||
if( CV_IS_ROW_SAMPLE( flags ) ) \
|
||||
{ \
|
||||
(sstep) = (mat).step; \
|
||||
(cstep) = CV_ELEM_SIZE( (mat).type ); \
|
||||
(m) = (mat).rows; \
|
||||
(n) = (mat).cols; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(cstep) = (mat).step; \
|
||||
(sstep) = CV_ELEM_SIZE( (mat).type ); \
|
||||
(n) = (mat).rows; \
|
||||
(m) = (mat).cols; \
|
||||
} |
||||
|
||||
#define ICV_IS_MAT_OF_TYPE( mat, mat_type) \ |
||||
(CV_IS_MAT( mat ) && CV_MAT_TYPE( mat->type ) == (mat_type) && \
|
||||
(mat)->cols > 0 && (mat)->rows > 0) |
||||
|
||||
/*
|
||||
uchar* data; int sstep, cstep; - trainData->data |
||||
uchar* classes; int clstep; int ncl;- trainClasses |
||||
uchar* tmask; int tmstep; int ntm; - typeMask |
||||
uchar* missed;int msstep, mcstep; -missedMeasurements... |
||||
int mm, mn; == m,n == size,dim |
||||
uchar* sidx;int sistep; - sampleIdx |
||||
uchar* cidx;int cistep; - compIdx |
||||
int k, l; == n,m == dim,size (length of cidx, sidx) |
||||
int m, n; == size,dim |
||||
*/ |
||||
#define ICV_DECLARE_TRAIN_ARGS() \ |
||||
uchar* data; \
|
||||
int sstep, cstep; \
|
||||
uchar* classes; \
|
||||
int clstep; \
|
||||
int ncl; \
|
||||
uchar* tmask; \
|
||||
int tmstep; \
|
||||
int ntm; \
|
||||
uchar* missed; \
|
||||
int msstep, mcstep; \
|
||||
int mm, mn; \
|
||||
uchar* sidx; \
|
||||
int sistep; \
|
||||
uchar* cidx; \
|
||||
int cistep; \
|
||||
int k, l; \
|
||||
int m, n; \
|
||||
\
|
||||
data = classes = tmask = missed = sidx = cidx = NULL; \
|
||||
sstep = cstep = clstep = ncl = tmstep = ntm = msstep = mcstep = mm = mn = 0; \
|
||||
sistep = cistep = k = l = m = n = 0; |
||||
|
||||
#define ICV_TRAIN_DATA_REQUIRED( param, flags ) \ |
||||
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_RAWDATA( *(param), (flags), data, sstep, cstep, m, n ); \
|
||||
k = n; \
|
||||
l = m; \
|
||||
} |
||||
|
||||
#define ICV_TRAIN_CLASSES_REQUIRED( param ) \ |
||||
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *(param), classes, clstep, ncl ); \
|
||||
if( m != ncl ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \
|
||||
} \
|
||||
} |
||||
|
||||
#define ICV_ARG_NULL( param ) \ |
||||
if( (param) != NULL ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, #param " parameter must be NULL" ); \
|
||||
} |
||||
|
||||
#define ICV_MISSED_MEASUREMENTS_OPTIONAL( param, flags ) \ |
||||
if( param ) \
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_8UC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_RAWDATA( *(param), (flags), missed, msstep, mcstep, mm, mn ); \
|
||||
if( mm != m || mn != n ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \
|
||||
} \
|
||||
} \
|
||||
} |
||||
|
||||
#define ICV_COMP_IDX_OPTIONAL( param ) \ |
||||
if( param ) \
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *(param), cidx, cistep, k ); \
|
||||
if( k > n ) \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
} |
||||
|
||||
#define ICV_SAMPLE_IDX_OPTIONAL( param ) \ |
||||
if( param ) \
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \
|
||||
if( l > m ) \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
} |
||||
|
||||
/****************************************************************************************/ |
||||
#define ICV_CONVERT_FLOAT_ARRAY_TO_MATRICE( array, matrice ) \ |
||||
{ \
|
||||
CvMat a, b; \
|
||||
int dims = (matrice)->cols; \
|
||||
int nsamples = (matrice)->rows; \
|
||||
int type = CV_MAT_TYPE((matrice)->type); \
|
||||
int i, offset = dims; \
|
||||
\
|
||||
CV_ASSERT( type == CV_32FC1 || type == CV_64FC1 ); \
|
||||
offset *= ((type == CV_32FC1) ? sizeof(float) : sizeof(double));\
|
||||
\
|
||||
b = cvMat( 1, dims, CV_32FC1 ); \
|
||||
cvGetRow( matrice, &a, 0 ); \
|
||||
for( i = 0; i < nsamples; i++, a.data.ptr += offset ) \
|
||||
{ \
|
||||
b.data.fl = (float*)array[i]; \
|
||||
CV_CALL( cvConvert( &b, &a ) ); \
|
||||
} \
|
||||
} |
||||
|
||||
/****************************************************************************************\
|
||||
* Auxiliary functions declarations * |
||||
\****************************************************************************************/ |
||||
|
||||
/* Generates a set of classes centers in quantity <num_of_clusters> that are generated as
|
||||
uniform random vectors in parallelepiped, where <data> is concentrated. Vectors in |
||||
<data> should have horizontal orientation. If <centers> != NULL, the function doesn't |
||||
allocate any memory and stores generated centers in <centers>, returns <centers>. |
||||
If <centers> == NULL, the function allocates memory and creates the matrice. Centers |
||||
are supposed to be oriented horizontally. */ |
||||
CvMat* icvGenerateRandomClusterCenters( int seed, |
||||
const CvMat* data, |
||||
int num_of_clusters, |
||||
CvMat* centers CV_DEFAULT(0)); |
||||
|
||||
/* Fills the <labels> using <probs> by choosing the maximal probability. Outliers are
|
||||
fixed by <oulier_tresh> and have cluster label (-1). Function also controls that there |
||||
weren't "empty" clusters by filling empty clusters with the maximal probability vector. |
||||
If probs_sums != NULL, filles it with the sums of probabilities for each sample (it is |
||||
useful for normalizing probabilities' matrice of FCM) */ |
||||
void icvFindClusterLabels( const CvMat* probs, float outlier_thresh, float r, |
||||
const CvMat* labels ); |
||||
|
||||
typedef struct CvSparseVecElem32f |
||||
{ |
||||
int idx; |
||||
float val; |
||||
} |
||||
CvSparseVecElem32f; |
||||
|
||||
/* Prepare training data and related parameters */ |
||||
#define CV_TRAIN_STATMODEL_DEFRAGMENT_TRAIN_DATA 1 |
||||
#define CV_TRAIN_STATMODEL_SAMPLES_AS_ROWS 2 |
||||
#define CV_TRAIN_STATMODEL_SAMPLES_AS_COLUMNS 4 |
||||
#define CV_TRAIN_STATMODEL_CATEGORICAL_RESPONSE 8 |
||||
#define CV_TRAIN_STATMODEL_ORDERED_RESPONSE 16 |
||||
#define CV_TRAIN_STATMODEL_RESPONSES_ON_OUTPUT 32 |
||||
#define CV_TRAIN_STATMODEL_ALWAYS_COPY_TRAIN_DATA 64 |
||||
#define CV_TRAIN_STATMODEL_SPARSE_AS_SPARSE 128 |
||||
|
||||
int |
||||
cvPrepareTrainData( const char* /*funcname*/, |
||||
const CvMat* train_data, int tflag, |
||||
const CvMat* responses, int response_type, |
||||
const CvMat* var_idx, |
||||
const CvMat* sample_idx, |
||||
bool always_copy_data, |
||||
const float*** out_train_samples, |
||||
int* _sample_count, |
||||
int* _var_count, |
||||
int* _var_all, |
||||
CvMat** out_responses, |
||||
CvMat** out_response_map, |
||||
CvMat** out_var_idx, |
||||
CvMat** out_sample_idx=0 ); |
||||
|
||||
void |
||||
cvSortSamplesByClasses( const float** samples, const CvMat* classes, |
||||
int* class_ranges, const uchar** mask CV_DEFAULT(0) ); |
||||
|
||||
void |
||||
cvCombineResponseMaps (CvMat* _responses, |
||||
const CvMat* old_response_map, |
||||
CvMat* new_response_map, |
||||
CvMat** out_response_map); |
||||
|
||||
void |
||||
cvPreparePredictData( const CvArr* sample, int dims_all, const CvMat* comp_idx, |
||||
int class_count, const CvMat* prob, float** row_sample, |
||||
int as_sparse CV_DEFAULT(0) ); |
||||
|
||||
/* copies clustering [or batch "predict"] results
|
||||
(labels and/or centers and/or probs) back to the output arrays */ |
||||
void |
||||
cvWritebackLabels( const CvMat* labels, CvMat* dst_labels, |
||||
const CvMat* centers, CvMat* dst_centers, |
||||
const CvMat* probs, CvMat* dst_probs, |
||||
const CvMat* sample_idx, int samples_all, |
||||
const CvMat* comp_idx, int dims_all ); |
||||
#define cvWritebackResponses cvWritebackLabels |
||||
|
||||
#define XML_FIELD_NAME "_name" |
||||
CvFileNode* icvFileNodeGetChild(CvFileNode* father, const char* name); |
||||
CvFileNode* icvFileNodeGetChildArrayElem(CvFileNode* father, const char* name,int index); |
||||
CvFileNode* icvFileNodeGetNext(CvFileNode* n, const char* name); |
||||
|
||||
|
||||
void cvCheckTrainData( const CvMat* train_data, int tflag, |
||||
const CvMat* missing_mask, |
||||
int* var_all, int* sample_all ); |
||||
|
||||
CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates=false ); |
||||
|
||||
CvMat* cvPreprocessVarType( const CvMat* type_mask, const CvMat* var_idx, |
||||
int var_all, int* response_type ); |
||||
|
||||
CvMat* cvPreprocessOrderedResponses( const CvMat* responses, |
||||
const CvMat* sample_idx, int sample_all ); |
||||
|
||||
CvMat* cvPreprocessCategoricalResponses( const CvMat* responses, |
||||
const CvMat* sample_idx, int sample_all, |
||||
CvMat** out_response_map, CvMat** class_counts=0 ); |
||||
|
||||
const float** cvGetTrainSamples( const CvMat* train_data, int tflag, |
||||
const CvMat* var_idx, const CvMat* sample_idx, |
||||
int* _var_count, int* _sample_count, |
||||
bool always_copy_data=false ); |
||||
|
||||
namespace cv |
||||
{ |
||||
struct DTreeBestSplitFinder |
||||
{ |
||||
DTreeBestSplitFinder(){ splitSize = 0, tree = 0; node = 0; } |
||||
DTreeBestSplitFinder( CvDTree* _tree, CvDTreeNode* _node); |
||||
DTreeBestSplitFinder( const DTreeBestSplitFinder& finder, Split ); |
||||
virtual ~DTreeBestSplitFinder() {} |
||||
virtual void operator()(const BlockedRange& range); |
||||
void join( DTreeBestSplitFinder& rhs ); |
||||
Ptr<CvDTreeSplit> bestSplit; |
||||
Ptr<CvDTreeSplit> split; |
||||
int splitSize; |
||||
CvDTree* tree; |
||||
CvDTreeNode* node; |
||||
}; |
||||
|
||||
struct ForestTreeBestSplitFinder : DTreeBestSplitFinder |
||||
{ |
||||
ForestTreeBestSplitFinder() : DTreeBestSplitFinder() {} |
||||
ForestTreeBestSplitFinder( CvForestTree* _tree, CvDTreeNode* _node ); |
||||
ForestTreeBestSplitFinder( const ForestTreeBestSplitFinder& finder, Split ); |
||||
virtual void operator()(const BlockedRange& range); |
||||
}; |
||||
} |
||||
|
||||
#endif /* __ML_H__ */ |
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,6 @@ |
||||
set(MIN_VER_CMAKE 2.8.7) |
||||
set(MIN_VER_CUDA 4.2) |
||||
set(MIN_VER_PYTHON 2.6) |
||||
set(MIN_VER_PYTHON2 2.6) |
||||
set(MIN_VER_PYTHON3 3.2) |
||||
set(MIN_VER_ZLIB 1.2.3) |
||||
set(MIN_VER_GTK 2.18.0) |
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,482 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// This is a homography decomposition implementation contributed to OpenCV
|
||||
// by Samson Yilma. It implements the homography decomposition algorithm
|
||||
// descriped in the research report:
|
||||
// Malis, E and Vargas, M, "Deeper understanding of the homography decomposition
|
||||
// for vision-based control", Research Report 6303, INRIA (2007)
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Samson Yilma¸ (samson_yilma@yahoo.com), all rights reserved.
|
||||
//
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <memory> |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
namespace HomographyDecomposition |
||||
{ |
||||
|
||||
//struct to hold solutions of homography decomposition
|
||||
typedef struct _CameraMotion { |
||||
cv::Matx33d R; //!< rotation matrix
|
||||
cv::Vec3d n; //!< normal of the plane the camera is looking at
|
||||
cv::Vec3d t; //!< translation vector
|
||||
} CameraMotion; |
||||
|
||||
inline int signd(const double x) |
||||
{ |
||||
return ( x >= 0 ? 1 : -1 ); |
||||
} |
||||
|
||||
class HomographyDecomp { |
||||
|
||||
public: |
||||
HomographyDecomp() {} |
||||
virtual ~HomographyDecomp() {} |
||||
virtual void decomposeHomography(const cv::Matx33d& H, const cv::Matx33d& K, |
||||
std::vector<CameraMotion>& camMotions); |
||||
bool isRotationValid(const cv::Matx33d& R, const double epsilon=0.01); |
||||
|
||||
protected: |
||||
bool passesSameSideOfPlaneConstraint(CameraMotion& motion); |
||||
virtual void decompose(std::vector<CameraMotion>& camMotions) = 0; |
||||
const cv::Matx33d& getHnorm() const { |
||||
return _Hnorm; |
||||
} |
||||
|
||||
private: |
||||
cv::Matx33d normalize(const cv::Matx33d& H, const cv::Matx33d& K); |
||||
void removeScale(); |
||||
cv::Matx33d _Hnorm; |
||||
}; |
||||
|
||||
class HomographyDecompZhang : public HomographyDecomp { |
||||
|
||||
public: |
||||
HomographyDecompZhang():HomographyDecomp() {} |
||||
virtual ~HomographyDecompZhang() {} |
||||
|
||||
private: |
||||
virtual void decompose(std::vector<CameraMotion>& camMotions); |
||||
bool findMotionFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, CameraMotion& motion); |
||||
}; |
||||
|
||||
class HomographyDecompInria : public HomographyDecomp { |
||||
|
||||
public: |
||||
HomographyDecompInria():HomographyDecomp() {} |
||||
virtual ~HomographyDecompInria() {} |
||||
|
||||
private: |
||||
virtual void decompose(std::vector<CameraMotion>& camMotions); |
||||
double oppositeOfMinor(const cv::Matx33d& M, const int row, const int col); |
||||
void findRmatFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, const double v, cv::Matx33d& R); |
||||
}; |
||||
|
||||
// normalizes homography with intrinsic camera parameters
|
||||
Matx33d HomographyDecomp::normalize(const Matx33d& H, const Matx33d& K) |
||||
{ |
||||
return K.inv() * H * K; |
||||
} |
||||
|
||||
void HomographyDecomp::removeScale() |
||||
{ |
||||
Mat W; |
||||
SVD::compute(_Hnorm, W); |
||||
_Hnorm = _Hnorm * (1.0/W.at<double>(1)); |
||||
} |
||||
|
||||
/*! This checks that the input is a pure rotation matrix 'm'.
|
||||
* The conditions for this are: R' * R = I and det(R) = 1 (proper rotation matrix) |
||||
*/ |
||||
bool HomographyDecomp::isRotationValid(const Matx33d& R, const double epsilon) |
||||
{ |
||||
Matx33d RtR = R.t() * R; |
||||
Matx33d I(1,0,0, 0,1,0, 0,0,1); |
||||
if (norm(RtR, I, NORM_INF) > epsilon) |
||||
return false; |
||||
return (fabs(determinant(R) - 1.0) < epsilon); |
||||
} |
||||
|
||||
bool HomographyDecomp::passesSameSideOfPlaneConstraint(CameraMotion& motion) |
||||
{ |
||||
typedef Matx<double, 1, 1> Matx11d; |
||||
Matx31d t = Matx31d(motion.t); |
||||
Matx31d n = Matx31d(motion.n); |
||||
Matx11d proj = n.t() * motion.R.t() * t; |
||||
if ( (1 + proj(0, 0) ) <= 0 ) |
||||
return false; |
||||
return true; |
||||
} |
||||
|
||||
//!main routine to decompose homography
|
||||
void HomographyDecomp::decomposeHomography(const Matx33d& H, const cv::Matx33d& K, |
||||
std::vector<CameraMotion>& camMotions) |
||||
{ |
||||
//normalize homography matrix with intrinsic camera matrix
|
||||
_Hnorm = normalize(H, K); |
||||
//remove scale of the normalized homography
|
||||
removeScale(); |
||||
//apply decomposition
|
||||
decompose(camMotions); |
||||
} |
||||
|
||||
/* function computes R&t from tstar, and plane normal(n) using
|
||||
R = H * inv(I + tstar*transpose(n) ); |
||||
t = R * tstar; |
||||
returns true if computed R&t is a valid solution |
||||
*/ |
||||
bool HomographyDecompZhang::findMotionFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, CameraMotion& motion) |
||||
{ |
||||
Matx31d tstar_m = Mat(tstar); |
||||
Matx31d n_m = Mat(n); |
||||
Matx33d temp = tstar_m * n_m.t(); |
||||
temp(0, 0) += 1.0; |
||||
temp(1, 1) += 1.0; |
||||
temp(2, 2) += 1.0; |
||||
motion.R = getHnorm() * temp.inv(); |
||||
motion.t = motion.R * tstar; |
||||
motion.n = n; |
||||
return passesSameSideOfPlaneConstraint(motion); |
||||
} |
||||
|
||||
void HomographyDecompZhang::decompose(std::vector<CameraMotion>& camMotions) |
||||
{ |
||||
Mat W, U, Vt; |
||||
SVD::compute(getHnorm(), W, U, Vt); |
||||
double lambda1=W.at<double>(0); |
||||
double lambda3=W.at<double>(2); |
||||
double lambda1m3 = (lambda1-lambda3); |
||||
double lambda1m3_2 = lambda1m3*lambda1m3; |
||||
double lambda1t3 = lambda1*lambda3; |
||||
|
||||
double t1 = 1.0/(2.0*lambda1t3); |
||||
double t2 = sqrt(1.0+4.0*lambda1t3/lambda1m3_2); |
||||
double t12 = t1*t2; |
||||
|
||||
double e1 = -t1 + t12; //t1*(-1.0f + t2 );
|
||||
double e3 = -t1 - t12; //t1*(-1.0f - t2);
|
||||
double e1_2 = e1*e1; |
||||
double e3_2 = e3*e3; |
||||
|
||||
double nv1p = sqrt(e1_2*lambda1m3_2 + 2*e1*(lambda1t3-1) + 1.0); |
||||
double nv3p = sqrt(e3_2*lambda1m3_2 + 2*e3*(lambda1t3-1) + 1.0); |
||||
double v1p[3], v3p[3]; |
||||
|
||||
v1p[0]=Vt.at<double>(0)*nv1p, v1p[1]=Vt.at<double>(1)*nv1p, v1p[2]=Vt.at<double>(2)*nv1p; |
||||
v3p[0]=Vt.at<double>(6)*nv3p, v3p[1]=Vt.at<double>(7)*nv3p, v3p[2]=Vt.at<double>(8)*nv3p; |
||||
|
||||
/*The eight solutions are
|
||||
(A): tstar = +- (v1p - v3p)/(e1 -e3), n = +- (e1*v3p - e3*v1p)/(e1-e3) |
||||
(B): tstar = +- (v1p + v3p)/(e1 -e3), n = +- (e1*v3p + e3*v1p)/(e1-e3) |
||||
*/ |
||||
double v1pmv3p[3], v1ppv3p[3]; |
||||
double e1v3me3v1[3], e1v3pe3v1[3]; |
||||
double inv_e1me3 = 1.0/(e1-e3); |
||||
|
||||
for(int kk=0;kk<3;++kk){ |
||||
v1pmv3p[kk] = v1p[kk]-v3p[kk]; |
||||
v1ppv3p[kk] = v1p[kk]+v3p[kk]; |
||||
} |
||||
|
||||
for(int kk=0; kk<3; ++kk){ |
||||
double e1v3 = e1*v3p[kk]; |
||||
double e3v1=e3*v1p[kk]; |
||||
e1v3me3v1[kk] = e1v3-e3v1; |
||||
e1v3pe3v1[kk] = e1v3+e3v1; |
||||
} |
||||
|
||||
Vec3d tstar_p, tstar_n; |
||||
Vec3d n_p, n_n; |
||||
|
||||
///Solution group A
|
||||
for(int kk=0; kk<3; ++kk) { |
||||
tstar_p[kk] = v1pmv3p[kk]*inv_e1me3; |
||||
tstar_n[kk] = -tstar_p[kk]; |
||||
n_p[kk] = e1v3me3v1[kk]*inv_e1me3; |
||||
n_n[kk] = -n_p[kk]; |
||||
} |
||||
|
||||
CameraMotion cmotion; |
||||
//(A) Four different combinations for solution A
|
||||
// (i) (+, +)
|
||||
if (findMotionFrom_tstar_n(tstar_p, n_p, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
|
||||
// (ii) (+, -)
|
||||
if (findMotionFrom_tstar_n(tstar_p, n_n, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
|
||||
// (iii) (-, +)
|
||||
if (findMotionFrom_tstar_n(tstar_n, n_p, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
|
||||
// (iv) (-, -)
|
||||
if (findMotionFrom_tstar_n(tstar_n, n_n, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
//////////////////////////////////////////////////////////////////
|
||||
///Solution group B
|
||||
for(int kk=0;kk<3;++kk){ |
||||
tstar_p[kk] = v1ppv3p[kk]*inv_e1me3; |
||||
tstar_n[kk] = -tstar_p[kk]; |
||||
n_p[kk] = e1v3pe3v1[kk]*inv_e1me3; |
||||
n_n[kk] = -n_p[kk]; |
||||
} |
||||
|
||||
//(B) Four different combinations for solution B
|
||||
// (i) (+, +)
|
||||
if (findMotionFrom_tstar_n(tstar_p, n_p, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
|
||||
// (ii) (+, -)
|
||||
if (findMotionFrom_tstar_n(tstar_p, n_n, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
|
||||
// (iii) (-, +)
|
||||
if (findMotionFrom_tstar_n(tstar_n, n_p, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
|
||||
// (iv) (-, -)
|
||||
if (findMotionFrom_tstar_n(tstar_n, n_n, cmotion)) |
||||
camMotions.push_back(cmotion); |
||||
} |
||||
|
||||
double HomographyDecompInria::oppositeOfMinor(const Matx33d& M, const int row, const int col) |
||||
{ |
||||
int x1 = col == 0 ? 1 : 0; |
||||
int x2 = col == 2 ? 1 : 2; |
||||
int y1 = row == 0 ? 1 : 0; |
||||
int y2 = row == 2 ? 1 : 2; |
||||
|
||||
return (M(y1, x2) * M(y2, x1) - M(y1, x1) * M(y2, x2)); |
||||
} |
||||
|
||||
//computes R = H( I - (2/v)*te_star*ne_t )
|
||||
void HomographyDecompInria::findRmatFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, const double v, cv::Matx33d& R) |
||||
{ |
||||
Matx31d tstar_m = Matx31d(tstar); |
||||
Matx31d n_m = Matx31d(n); |
||||
Matx33d I(1.0, 0.0, 0.0, |
||||
0.0, 1.0, 0.0, |
||||
0.0, 0.0, 1.0); |
||||
|
||||
R = getHnorm() * (I - (2/v) * tstar_m * n_m.t() ); |
||||
} |
||||
|
||||
void HomographyDecompInria::decompose(std::vector<CameraMotion>& camMotions) |
||||
{ |
||||
const double epsilon = 0.001; |
||||
Matx33d S; |
||||
|
||||
//S = H'H - I
|
||||
S = getHnorm().t() * getHnorm(); |
||||
S(0, 0) -= 1.0; |
||||
S(1, 1) -= 1.0; |
||||
S(2, 2) -= 1.0; |
||||
|
||||
//check if H is rotation matrix
|
||||
if( norm(S, NORM_INF) < epsilon) { |
||||
CameraMotion motion; |
||||
motion.R = Matx33d(getHnorm()); |
||||
motion.t = Vec3d(0, 0, 0); |
||||
motion.n = Vec3d(0, 0, 0); |
||||
camMotions.push_back(motion); |
||||
return; |
||||
} |
||||
|
||||
//! Compute nvectors
|
||||
Vec3d npa, npb; |
||||
|
||||
double M00 = oppositeOfMinor(S, 0, 0); |
||||
double M11 = oppositeOfMinor(S, 1, 1); |
||||
double M22 = oppositeOfMinor(S, 2, 2); |
||||
|
||||
double rtM00 = sqrt(M00); |
||||
double rtM11 = sqrt(M11); |
||||
double rtM22 = sqrt(M22); |
||||
|
||||
double M01 = oppositeOfMinor(S, 0, 1); |
||||
double M12 = oppositeOfMinor(S, 1, 2); |
||||
double M02 = oppositeOfMinor(S, 0, 2); |
||||
|
||||
int e12 = signd(M12); |
||||
int e02 = signd(M02); |
||||
int e01 = signd(M01); |
||||
|
||||
double nS00 = abs(S(0, 0)); |
||||
double nS11 = abs(S(1, 1)); |
||||
double nS22 = abs(S(2, 2)); |
||||
|
||||
//find max( |Sii| ), i=0, 1, 2
|
||||
int indx = 0; |
||||
if(nS00 < nS11){ |
||||
indx = 1; |
||||
if( nS11 < nS22 ) |
||||
indx = 2; |
||||
} |
||||
else { |
||||
if(nS00 < nS22 ) |
||||
indx = 2; |
||||
} |
||||
|
||||
switch (indx) { |
||||
case 0: |
||||
npa[0] = S(0, 0), npb[0] = S(0, 0); |
||||
npa[1] = S(0, 1) + rtM22, npb[1] = S(0, 1) - rtM22; |
||||
npa[2] = S(0, 2) + e12 * rtM11, npb[2] = S(0, 2) - e12 * rtM11; |
||||
break; |
||||
case 1: |
||||
npa[0] = S(0, 1) + rtM22, npb[0] = S(0, 1) - rtM22; |
||||
npa[1] = S(1, 1), npb[1] = S(1, 1); |
||||
npa[2] = S(1, 2) - e02 * rtM00, npb[2] = S(1, 2) + e02 * rtM00; |
||||
break; |
||||
case 2: |
||||
npa[0] = S(0, 2) + e01 * rtM11, npb[0] = S(0, 2) - e01 * rtM11; |
||||
npa[1] = S(1, 2) + rtM00, npb[1] = S(1, 2) - rtM00; |
||||
npa[2] = S(2, 2), npb[2] = S(2, 2); |
||||
break; |
||||
default: |
||||
break; |
||||
} |
||||
|
||||
double traceS = S(0, 0) + S(1, 1) + S(2, 2); |
||||
double v = 2.0 * sqrt(1 + traceS - M00 - M11 - M22); |
||||
|
||||
double ESii = signd(S(indx, indx)) ; |
||||
double r_2 = 2 + traceS + v; |
||||
double nt_2 = 2 + traceS - v; |
||||
|
||||
double r = sqrt(r_2); |
||||
double n_t = sqrt(nt_2); |
||||
|
||||
Vec3d na = npa / norm(npa); |
||||
Vec3d nb = npb / norm(npb); |
||||
|
||||
double half_nt = 0.5 * n_t; |
||||
double esii_t_r = ESii * r; |
||||
|
||||
Vec3d ta_star = half_nt * (esii_t_r * nb - n_t * na); |
||||
Vec3d tb_star = half_nt * (esii_t_r * na - n_t * nb); |
||||
|
||||
camMotions.resize(4); |
||||
|
||||
Matx33d Ra, Rb; |
||||
Vec3d ta, tb; |
||||
|
||||
//Ra, ta, na
|
||||
findRmatFrom_tstar_n(ta_star, na, v, Ra); |
||||
ta = Ra * ta_star; |
||||
|
||||
camMotions[0].R = Ra; |
||||
camMotions[0].t = ta; |
||||
camMotions[0].n = na; |
||||
|
||||
//Ra, -ta, -na
|
||||
camMotions[1].R = Ra; |
||||
camMotions[1].t = -ta; |
||||
camMotions[1].n = -na; |
||||
|
||||
//Rb, tb, nb
|
||||
findRmatFrom_tstar_n(tb_star, nb, v, Rb); |
||||
tb = Rb * tb_star; |
||||
|
||||
camMotions[2].R = Rb; |
||||
camMotions[2].t = tb; |
||||
camMotions[2].n = nb; |
||||
|
||||
//Rb, -tb, -nb
|
||||
camMotions[3].R = Rb; |
||||
camMotions[3].t = -tb; |
||||
camMotions[3].n = -nb; |
||||
} |
||||
|
||||
} //namespace HomographyDecomposition
|
||||
|
||||
// function decomposes image-to-image homography to rotation and translation matrices
|
||||
int decomposeHomographyMat(InputArray _H, |
||||
InputArray _K, |
||||
OutputArrayOfArrays _rotations, |
||||
OutputArrayOfArrays _translations, |
||||
OutputArrayOfArrays _normals) |
||||
{ |
||||
using namespace std; |
||||
using namespace HomographyDecomposition; |
||||
|
||||
Mat H = _H.getMat().reshape(1, 3); |
||||
CV_Assert(H.cols == 3 && H.rows == 3); |
||||
|
||||
Mat K = _K.getMat().reshape(1, 3); |
||||
CV_Assert(K.cols == 3 && K.rows == 3); |
||||
|
||||
auto_ptr<HomographyDecomp> hdecomp(new HomographyDecompInria); |
||||
|
||||
vector<CameraMotion> motions; |
||||
hdecomp->decomposeHomography(H, K, motions); |
||||
|
||||
int nsols = static_cast<int>(motions.size()); |
||||
int depth = CV_64F; //double precision matrices used in CameraMotion struct
|
||||
|
||||
if (_rotations.needed()) { |
||||
_rotations.create(nsols, 1, depth); |
||||
for (int k = 0; k < nsols; ++k ) { |
||||
_rotations.getMatRef(k) = Mat(motions[k].R); |
||||
} |
||||
} |
||||
|
||||
if (_translations.needed()) { |
||||
_translations.create(nsols, 1, depth); |
||||
for (int k = 0; k < nsols; ++k ) { |
||||
_translations.getMatRef(k) = Mat(motions[k].t); |
||||
} |
||||
} |
||||
|
||||
if (_normals.needed()) { |
||||
_normals.create(nsols, 1, depth); |
||||
for (int k = 0; k < nsols; ++k ) { |
||||
_normals.getMatRef(k) = Mat(motions[k].n); |
||||
} |
||||
} |
||||
|
||||
return nsols; |
||||
} |
||||
|
||||
} //namespace cv
|
@ -0,0 +1,138 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// This is a test file for the function decomposeHomography contributed to OpenCV
|
||||
// by Samson Yilma.
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Samson Yilma¸ (samson_yilma@yahoo.com), all rights reserved.
|
||||
//
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include "opencv2/calib3d.hpp" |
||||
#include <vector> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
class CV_HomographyDecompTest: public cvtest::BaseTest { |
||||
|
||||
public: |
||||
CV_HomographyDecompTest() |
||||
{ |
||||
buildTestDataSet(); |
||||
} |
||||
|
||||
protected: |
||||
void run(int) |
||||
{ |
||||
vector<Mat> rotations; |
||||
vector<Mat> translations; |
||||
vector<Mat> normals; |
||||
|
||||
decomposeHomographyMat(_H, _K, rotations, translations, normals); |
||||
|
||||
//there should be at least 1 solution
|
||||
ASSERT_GT(static_cast<int>(rotations.size()), 0); |
||||
ASSERT_GT(static_cast<int>(translations.size()), 0); |
||||
ASSERT_GT(static_cast<int>(normals.size()), 0); |
||||
|
||||
ASSERT_EQ(rotations.size(), normals.size()); |
||||
ASSERT_EQ(translations.size(), normals.size()); |
||||
|
||||
ASSERT_TRUE(containsValidMotion(rotations, translations, normals)); |
||||
|
||||
decomposeHomographyMat(_H, _K, rotations, noArray(), noArray()); |
||||
ASSERT_GT(static_cast<int>(rotations.size()), 0); |
||||
} |
||||
|
||||
private: |
||||
|
||||
void buildTestDataSet() |
||||
{ |
||||
_K = Matx33d(640, 0.0, 320, |
||||
0, 640, 240, |
||||
0, 0, 1); |
||||
|
||||
_H = Matx33d(2.649157564634028, 4.583875997496426, 70.694447785121326, |
||||
-1.072756858861583, 3.533262150437228, 1513.656999614321649, |
||||
0.001303887589576, 0.003042206876298, 1.000000000000000 |
||||
); |
||||
|
||||
//expected solution for the given homography and intrinsic matrices
|
||||
_R = Matx33d(0.43307983549125, 0.545749113549648, -0.717356090899523, |
||||
-0.85630229674426, 0.497582023798831, -0.138414255706431, |
||||
0.281404038139784, 0.67421809131173, 0.682818960388909); |
||||
|
||||
_t = Vec3d(1.826751712278038, 1.264718492450820, 0.195080809998819); |
||||
_n = Vec3d(0.244875830334816, 0.480857890778889, 0.841909446789566); |
||||
} |
||||
|
||||
bool containsValidMotion(std::vector<Mat>& rotations, |
||||
std::vector<Mat>& translations, |
||||
std::vector<Mat>& normals |
||||
) |
||||
{ |
||||
double max_error = 1.0e-3; |
||||
|
||||
vector<Mat>::iterator riter = rotations.begin(); |
||||
vector<Mat>::iterator titer = translations.begin(); |
||||
vector<Mat>::iterator niter = normals.begin(); |
||||
|
||||
for (; |
||||
riter != rotations.end() && titer != translations.end() && niter != normals.end(); |
||||
++riter, ++titer, ++niter) { |
||||
|
||||
double rdist = norm(*riter, _R, NORM_INF); |
||||
double tdist = norm(*titer, _t, NORM_INF); |
||||
double ndist = norm(*niter, _n, NORM_INF); |
||||
|
||||
if ( rdist < max_error |
||||
&& tdist < max_error |
||||
&& ndist < max_error ) |
||||
return true; |
||||
} |
||||
|
||||
return false; |
||||
} |
||||
|
||||
Matx33d _R, _K, _H; |
||||
Vec3d _t, _n; |
||||
}; |
||||
|
||||
TEST(Calib3d_DecomposeHomography, regression) { CV_HomographyDecompTest test; test.safe_run(); } |
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue