Fallback for "SAME" padMode in ocl convolution and pooling

It fixes tensorflow ocl testcase of MobileNetSSD and Inception_v2_SSD

Signed-off-by: Li Peng <peng.li@intel.com>
pull/10918/head
Li Peng 7 years ago
parent 203ac0f818
commit c524f669c7
  1. 10
      modules/dnn/src/layers/convolution_layer.cpp
  2. 3
      modules/dnn/src/layers/pooling_layer.cpp
  3. 4
      modules/dnn/test/test_backends.cpp
  4. 35
      modules/dnn/test/test_tf_importer.cpp

@ -824,15 +824,9 @@ public:
for (int i = 0; i < inputs.size(); ++i)
CV_Assert(inputs[i].u != outputs[0].u);
int inpH = inputs[0].size[2];
int inpW = inputs[0].size[3];
int out_h = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
int out_w = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
if (out_h != outputs[0].size[2] || out_w != outputs[0].size[3])
if (padMode == "SAME")
return false;
int group = inputs[0].size[1] / umat_blobs[0].size[1];
if (convolutionOp.empty())
{
OCL4DNNConvConfig config;
@ -842,7 +836,7 @@ public:
config.pad = pad;
config.stride = stride;
config.dilation = dilation;
config.group = group;
config.group = inputs[0].size[1] / umat_blobs[0].size[1];
config.bias_term = (hasBias()) ? true : false;
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));

@ -145,6 +145,9 @@ public:
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (type == AVE && padMode == "SAME")
return false;
if (poolOp.empty())
{
OCL4DNNPoolConfig config;

@ -233,9 +233,7 @@ TEST_P(DNNTestNetwork, opencv_face_detector)
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt",

@ -317,11 +317,44 @@ OCL_TEST(Test_TensorFlow, MobileNet_SSD)
std::vector<Mat> output;
net.forward(output, outNames);
normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4);
normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1));
normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4);
normAssert(target[2].reshape(1, 1), output[2].reshape(1, 1), "", 4e-5, 1e-2);
}
OCL_TEST(Test_TensorFlow, Inception_v2_SSD)
{
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false);
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/street.png", false));
Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false);
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
net.setPreferableTarget(DNN_TARGET_OPENCL);
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
out = out.reshape(1, out.total() / 7);
Mat detections;
for (int i = 0; i < out.rows; ++i)
{
if (out.at<float>(i, 2) > 0.5)
detections.push_back(out.row(i).colRange(1, 7));
}
Mat ref = (Mat_<float>(5, 6) << 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
normAssert(detections, ref);
}
TEST(Test_TensorFlow, lstm)
{
runTensorFlowNet("lstm", DNN_TARGET_CPU, true);

Loading…
Cancel
Save