Replaced several hal:: classes with functions, marked old variants deprecated

pull/7996/head
Maksim Shabunin 8 years ago
parent dcbed8d676
commit c4c1c4c9bb
  1. 104
      modules/imgproc/include/opencv2/imgproc/hal/hal.hpp
  2. 655
      modules/imgproc/src/filter.cpp
  3. 510
      modules/imgproc/src/morph.cpp

@ -10,53 +10,93 @@ namespace cv { namespace hal {
//! @addtogroup imgproc_hal_functions
//! @{
//---------------------------
//! @cond IGNORED
struct CV_EXPORTS Filter2D
{
static Ptr<hal::Filter2D> create(uchar * kernel_data, size_t kernel_step, int kernel_type,
int kernel_width, int kernel_height,
int max_width, int max_height,
int stype, int dtype,
int borderType, double delta,
int anchor_x, int anchor_y,
bool isSubmatrix, bool isInplace);
virtual void apply(uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y) = 0;
CV_DEPRECATED static Ptr<hal::Filter2D> create(uchar * , size_t , int ,
int , int ,
int , int ,
int , int ,
int , double ,
int , int ,
bool , bool );
virtual void apply(uchar * , size_t ,
uchar * , size_t ,
int , int ,
int , int ,
int , int ) = 0;
virtual ~Filter2D() {}
};
struct CV_EXPORTS SepFilter2D
{
static Ptr<hal::SepFilter2D> create(int stype, int dtype, int ktype,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y,
double delta, int borderType);
virtual void apply(uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y) = 0;
CV_DEPRECATED static Ptr<hal::SepFilter2D> create(int , int , int ,
uchar * , int ,
uchar * , int ,
int , int ,
double , int );
virtual void apply(uchar * , size_t ,
uchar * , size_t ,
int , int ,
int , int ,
int , int ) = 0;
virtual ~SepFilter2D() {}
};
struct CV_EXPORTS Morph
struct CV_EXPORTS Morph
{
static Ptr<Morph> create(int op, int src_type, int dst_type, int max_width, int max_height,
int kernel_type, uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
int borderType, const double borderValue[4],
int iterations, bool isSubmatrix, bool allowInplace);
virtual void apply(uchar * src_data, size_t src_step, uchar * dst_data, size_t dst_step, int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2) = 0;
CV_DEPRECATED static Ptr<hal::Morph> create(int , int , int , int , int ,
int , uchar * , size_t ,
int , int ,
int , int ,
int , const double *,
int , bool , bool );
virtual void apply(uchar * , size_t , uchar * , size_t , int , int ,
int , int , int , int ,
int , int , int , int ) = 0;
virtual ~Morph() {}
};
//! @endcond
//---------------------------
CV_EXPORTS void filter2D(int stype, int dtype, int kernel_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
double delta, int borderType,
bool isSubmatrix);
CV_EXPORTS void sepFilter2D(int stype, int dtype, int ktype,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y,
double delta, int borderType);
CV_EXPORTS void morph(int op, int src_type, int dst_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2,
int kernel_type, uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4],
int iterations, bool isSubmatrix);
CV_EXPORTS void resize(int src_type,
const uchar * src_data, size_t src_step, int src_width, int src_height,

@ -4509,39 +4509,29 @@ cv::Ptr<cv::FilterEngine> cv::createLinearFilter( int _srcType, int _dstType,
using namespace cv;
struct ReplacementFilter : public hal::Filter2D
static bool replacementFilter2D(int stype, int dtype, int kernel_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
double delta, int borderType, bool isSubmatrix)
{
cvhalFilter2D* ctx;
bool isInitialized;
ReplacementFilter() : ctx(0), isInitialized(false) { }
bool init(uchar* kernel_data, size_t kernel_step, int kernel_type, int kernel_width,
int kernel_height, int max_width, int max_height, int stype, int dtype, int borderType, double delta,
int anchor_x, int anchor_y, bool isSubmatrix, bool isInplace)
{
int res = cv_hal_filterInit(&ctx, kernel_data, kernel_step, kernel_type, kernel_width, kernel_height, max_width, max_height,
stype, dtype, borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace);
isInitialized = (res == CV_HAL_ERROR_OK);
return isInitialized;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int full_width, int full_height, int offset_x, int offset_y)
{
if (isInitialized)
{
int res = cv_hal_filter(ctx, src_data, src_step, dst_data, dst_step, width, height, full_width, full_height, offset_x, offset_y);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "HAL Filter returned an error");
}
}
~ReplacementFilter()
{
if (isInitialized)
{
int res = cv_hal_filterFree(ctx);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "HAL Filter Free returned an error");
}
}
};
int res = cv_hal_filterInit(&ctx, kernel_data, kernel_step, kernel_type, kernel_width, kernel_height, width, height,
stype, dtype, borderType, delta, anchor_x, anchor_y, isSubmatrix, src_data == dst_data);
if (res != CV_HAL_ERROR_OK)
return false;
res = cv_hal_filter(ctx, src_data, src_step, dst_data, dst_step, width, height, full_width, full_height, offset_x, offset_y);
bool success = (res == CV_HAL_ERROR_OK);
res = cv_hal_filterFree(ctx);
if (res != CV_HAL_ERROR_OK)
return false;
return success;
}
#ifdef HAVE_IPP
typedef IppStatus(CV_STDCALL* IppiFilterBorder)(
@ -4613,8 +4603,17 @@ struct IppFilterTrait<CV_32F>
};
template <int kdepth>
struct IppFilter : public hal::Filter2D
static bool ippFilter2D(int stype, int dtype,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
double delta, int borderType, bool isSubmatrix)
{
CV_INSTRUMENT_REGION_IPP();
typedef IppFilterTrait<kdepth> trait;
typedef typename trait::kernel_type kernel_type;
@ -4624,105 +4623,92 @@ struct IppFilter : public hal::Filter2D
IppiBorderType ippBorderType;
int src_type;
bool init(uchar* kernel_data, size_t kernel_step, int, int kernel_width, int kernel_height,
int max_width, int max_height, int stype, int dtype,
int borderType, double delta, int anchor_x, int anchor_y, bool isSubmatrix, bool isInplace)
{
Point anchor(anchor_x, anchor_y);
Point anchor(anchor_x, anchor_y);
#if IPP_VERSION_X100 >= 900
Point ippAnchor((kernel_width - 1) / 2, (kernel_height - 1) / 2);
Point ippAnchor((kernel_width - 1) / 2, (kernel_height - 1) / 2);
#else
Point ippAnchor(kernel_width >> 1, kernel_height >> 1);
Point ippAnchor(kernel_width >> 1, kernel_height >> 1);
#endif
bool isIsolated = (borderType & BORDER_ISOLATED) != 0;
int borderTypeNI = borderType & ~BORDER_ISOLATED;
ippBorderType = ippiGetBorderType(borderTypeNI);
int ddepth = CV_MAT_DEPTH(dtype);
int sdepth = CV_MAT_DEPTH(stype);
bool isIsolated = (borderType & BORDER_ISOLATED) != 0;
int borderTypeNI = borderType & ~BORDER_ISOLATED;
ippBorderType = ippiGetBorderType(borderTypeNI);
int ddepth = CV_MAT_DEPTH(dtype);
int sdepth = CV_MAT_DEPTH(stype);
#if IPP_VERSION_X100 >= 201700 && IPP_VERSION_X100 < 201702 // IPP bug with 1x1 kernel
if(kernel_width == 1 && kernel_height == 1)
return false;
if(kernel_width == 1 && kernel_height == 1)
return false;
#endif
bool runIpp = true
&& (borderTypeNI == BORDER_CONSTANT || borderTypeNI == BORDER_REPLICATE)
&& (sdepth == ddepth)
&& (getIppFunc(stype))
&& ((int)ippBorderType > 0)
&& (!isSubmatrix || isIsolated)
&& (std::fabs(delta - 0) < DBL_EPSILON)
&& (ippAnchor == anchor)
&& !isInplace;
if (!runIpp)
return false;
bool runIpp = true
&& (borderTypeNI == BORDER_CONSTANT || borderTypeNI == BORDER_REPLICATE)
&& (sdepth == ddepth)
&& (getIppFunc(stype))
&& ((int)ippBorderType > 0)
&& (!isSubmatrix || isIsolated)
&& (std::fabs(delta - 0) < DBL_EPSILON)
&& (ippAnchor == anchor)
&& src_data != dst_data;
if (!runIpp)
return false;
src_type = stype;
int cn = CV_MAT_CN(stype);
IppiSize kernelSize = { kernel_width, kernel_height };
IppDataType dataType = ippiGetDataType(ddepth);
IppDataType kernelType = ippiGetDataType(kdepth);
Ipp32s specSize = 0;
Ipp32s bufsize = 0;
IppiSize dstRoiSize = { width, height };
IppStatus status;
status = ippiFilterBorderGetSize(kernelSize, dstRoiSize, dataType, kernelType, cn, &specSize, &bufsize);
if (status < 0)
return false;
src_type = stype;
int cn = CV_MAT_CN(stype);
IppiSize kernelSize = { kernel_width, kernel_height };
IppDataType dataType = ippiGetDataType(ddepth);
IppDataType kernelType = ippiGetDataType(kdepth);
Ipp32s specSize = 0;
Ipp32s bufsize = 0;
IppiSize dstRoiSize = { max_width, max_height };
IppStatus status;
status = ippiFilterBorderGetSize(kernelSize, dstRoiSize, dataType, kernelType, cn, &specSize, &bufsize);
if (status >= 0) {
kernel_type* pKerBuffer = (kernel_type*)kernel_data;
size_t good_kernel_step = sizeof(kernel_type) * static_cast<size_t>(kernelSize.width);
kernel_type* pKerBuffer = (kernel_type*)kernel_data;
size_t good_kernel_step = sizeof(kernel_type) * static_cast<size_t>(kernelSize.width);
#if IPP_VERSION_X100 >= 900
if (kernel_step != good_kernel_step) {
kernelBuffer.Alloc((int)good_kernel_step * kernelSize.height);
status = trait::get_copy_fun()((kernel_type*)kernel_data, (int)kernel_step, kernelBuffer, (int)good_kernel_step, kernelSize);
if (status < 0)
return false;
pKerBuffer = kernelBuffer;
}
if (kernel_step != good_kernel_step) {
kernelBuffer.Alloc((int)good_kernel_step * kernelSize.height);
status = trait::get_copy_fun()((kernel_type*)kernel_data, (int)kernel_step, kernelBuffer, (int)good_kernel_step, kernelSize);
if (status < 0)
return false;
pKerBuffer = kernelBuffer;
}
#else
kernelBuffer.Alloc(good_kernel_step * kernelSize.height);
Mat kerFlip(Size(kernelSize.width, kernelSize.height), trait::kernel_type_id, kernelBuffer, (int)good_kernel_step);
Mat kernel(Size(kernel_width, kernel_height), trait::kernel_type_id, kernel_data, kernel_step);
flip(kernel, kerFlip, -1);
pKerBuffer = kernelBuffer;
kernelBuffer.Alloc(good_kernel_step * kernelSize.height);
Mat kerFlip(Size(kernelSize.width, kernelSize.height), trait::kernel_type_id, kernelBuffer, (int)good_kernel_step);
Mat kernel(Size(kernel_width, kernel_height), trait::kernel_type_id, kernel_data, kernel_step);
flip(kernel, kerFlip, -1);
pKerBuffer = kernelBuffer;
#endif
spec.Alloc(specSize);
buffer.Alloc(bufsize);
status = trait::runInit(pKerBuffer, kernelSize, 0, dataType, cn, ippRndFinancial, spec);
if (status >= 0) {
return true;
}
}
spec.Alloc(specSize);
buffer.Alloc(bufsize);
status = trait::runInit(pKerBuffer, kernelSize, 0, dataType, cn, ippRndFinancial, spec);
if (status < 0) {
return false;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int, int, int, int)
{
CV_INSTRUMENT_REGION_IPP()
if (dst_data == src_data)
CV_Error(Error::StsBadArg, "Inplace IPP Filter2D is not supported");
IppiFilterBorder ippiFilterBorder = getIppFunc(src_type);
IppiSize dstRoiSize = { width, height };
kernel_type borderValue[4] = { 0, 0, 0, 0 };
IppStatus status = CV_INSTRUMENT_FUN_IPP(ippiFilterBorder, src_data, (int)src_step, dst_data, (int)dst_step, dstRoiSize, ippBorderType, borderValue, spec, buffer);
if (status >= 0) {
CV_IMPL_ADD(CV_IMPL_IPP);
}
IppiFilterBorder ippiFilterBorder = getIppFunc(src_type);
kernel_type borderValue[4] = { 0, 0, 0, 0 };
status = CV_INSTRUMENT_FUN_IPP(ippiFilterBorder, src_data, (int)src_step, dst_data, (int)dst_step, dstRoiSize, ippBorderType, borderValue, spec, buffer);
if (status >= 0) {
CV_IMPL_ADD(CV_IMPL_IPP);
return true;
}
};
return false;
}
#endif
struct DftFilter : public hal::Filter2D
static bool dftFilter2D(int stype, int dtype, int kernel_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
double delta, int borderType)
{
int src_type;
int dst_type;
double delta;
Mat kernel;
Point anchor;
int borderType;
static bool isAppropriate(int stype, int dtype, int kernel_width, int kernel_height)
{
#if CV_SSE2
int sdepth = CV_MAT_DEPTH(stype);
@ -4733,162 +4719,112 @@ struct DftFilter : public hal::Filter2D
CV_UNUSED(dtype);
int dft_filter_size = 50;
#endif
return kernel_width * kernel_height >= dft_filter_size;
}
bool init(uchar* kernel_data, size_t kernel_step, int kernel_type, int kernel_width, int kernel_height,
int, int, int stype, int dtype,
int borderType_, double delta_, int anchor_x, int anchor_y, bool, bool)
{
anchor = Point(anchor_x, anchor_y);
borderType = borderType_;
kernel = Mat(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
src_type = stype;
dst_type = dtype;
delta = delta_;
if (isAppropriate(stype, dtype, kernel_width, kernel_height))
return true;
return false;
if (kernel_width * kernel_height < dft_filter_size)
return false;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int, int, int, int)
{
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
Mat temp;
int src_channels = CV_MAT_CN(src_type);
int dst_channels = CV_MAT_CN(dst_type);
int ddepth = CV_MAT_DEPTH(dst_type);
// crossCorr doesn't accept non-zero delta with multiple channels
if (src_channels != 1 && delta != 0) {
// The semantics of filter2D require that the delta be applied
// as floating-point math. So wee need an intermediate Mat
// with a float datatype. If the dest is already floats,
// we just use that.
int corrDepth = ddepth;
if ((ddepth == CV_32F || ddepth == CV_64F) && src_data != dst_data) {
temp = Mat(Size(width, height), dst_type, dst_data, dst_step);
} else {
corrDepth = ddepth == CV_64F ? CV_64F : CV_32F;
temp.create(Size(width, height), CV_MAKETYPE(corrDepth, dst_channels));
}
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(corrDepth, src_channels),
anchor, 0, borderType);
add(temp, delta, temp);
if (temp.data != dst_data) {
temp.convertTo(dst, dst.type());
}
Point anchor = Point(anchor_x, anchor_y);
Mat kernel = Mat(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
Mat src(Size(width, height), stype, src_data, src_step);
Mat dst(Size(width, height), dtype, dst_data, dst_step);
Mat temp;
int src_channels = CV_MAT_CN(stype);
int dst_channels = CV_MAT_CN(dtype);
int ddepth = CV_MAT_DEPTH(dtype);
// crossCorr doesn't accept non-zero delta with multiple channels
if (src_channels != 1 && delta != 0) {
// The semantics of filter2D require that the delta be applied
// as floating-point math. So wee need an intermediate Mat
// with a float datatype. If the dest is already floats,
// we just use that.
int corrDepth = ddepth;
if ((ddepth == CV_32F || ddepth == CV_64F) && src_data != dst_data) {
temp = Mat(Size(width, height), dtype, dst_data, dst_step);
} else {
if (src_data != dst_data)
temp = Mat(Size(width, height), dst_type, dst_data, dst_step);
else
temp.create(Size(width, height), dst_type);
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(ddepth, src_channels),
anchor, delta, borderType);
if (temp.data != dst_data)
temp.copyTo(dst);
corrDepth = ddepth == CV_64F ? CV_64F : CV_32F;
temp.create(Size(width, height), CV_MAKETYPE(corrDepth, dst_channels));
}
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(corrDepth, src_channels),
anchor, 0, borderType);
add(temp, delta, temp);
if (temp.data != dst_data) {
temp.convertTo(dst, dst.type());
}
} else {
if (src_data != dst_data)
temp = Mat(Size(width, height), dtype, dst_data, dst_step);
else
temp.create(Size(width, height), dtype);
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(ddepth, src_channels),
anchor, delta, borderType);
if (temp.data != dst_data)
temp.copyTo(dst);
}
};
return true;
}
struct OcvFilter : public hal::Filter2D
static void ocvFilter2D(int stype, int dtype, int kernel_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
double delta, int borderType)
{
Ptr<FilterEngine> f;
int src_type;
int dst_type;
bool isIsolated;
bool init(uchar* kernel_data, size_t kernel_step, int kernel_type, int kernel_width,
int kernel_height, int, int, int stype, int dtype, int borderType, double delta,
int anchor_x, int anchor_y, bool, bool)
{
isIsolated = (borderType & BORDER_ISOLATED) != 0;
src_type = stype;
dst_type = dtype;
int borderTypeValue = borderType & ~BORDER_ISOLATED;
Mat kernel = Mat(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
f = createLinearFilter(src_type, dst_type, kernel, Point(anchor_x, anchor_y), delta,
borderTypeValue);
return true;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int full_width, int full_height, int offset_x, int offset_y)
{
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
}
};
int borderTypeValue = borderType & ~BORDER_ISOLATED;
Mat kernel = Mat(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
Ptr<FilterEngine> f = createLinearFilter(stype, dtype, kernel, Point(anchor_x, anchor_y), delta,
borderTypeValue);
Mat src(Size(width, height), stype, src_data, src_step);
Mat dst(Size(width, height), dtype, dst_data, dst_step);
f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
}
struct ReplacementSepFilter : public hal::SepFilter2D
static bool replacementSepFilter(int stype, int dtype, int ktype,
uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
{
cvhalFilter2D *ctx;
bool isInitialized;
ReplacementSepFilter() : ctx(0), isInitialized(false) {}
bool init(int stype, int dtype, int ktype,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
{
int res = cv_hal_sepFilterInit(&ctx, stype, dtype, ktype,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType);
isInitialized = (res == CV_HAL_ERROR_OK);
return isInitialized;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y)
{
if (isInitialized)
{
int res = cv_hal_sepFilter(ctx, src_data, src_step, dst_data, dst_step, width, height, full_width, full_height, offset_x, offset_y);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "Failed to run HAL sepFilter implementation");
}
}
~ReplacementSepFilter()
{
if (isInitialized)
{
int res = cv_hal_sepFilterFree(ctx);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "Failed to run HAL sepFilter implementation");
}
}
};
int res = cv_hal_sepFilterInit(&ctx, stype, dtype, ktype,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType);
if (res != CV_HAL_ERROR_OK)
return false;
res = cv_hal_sepFilter(ctx, src_data, src_step, dst_data, dst_step, width, height, full_width, full_height, offset_x, offset_y);
bool success = (res == CV_HAL_ERROR_OK);
res = cv_hal_sepFilterFree(ctx);
if (res != CV_HAL_ERROR_OK)
return false;
return success;
}
struct OcvSepFilter : public hal::SepFilter2D
static void ocvSepFilter(int stype, int dtype, int ktype,
uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
{
Ptr<FilterEngine> f;
int src_type;
int dst_type;
bool init(int stype, int dtype, int ktype,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
{
src_type = stype;
dst_type = dtype;
Mat kernelX(Size(kernelx_len, 1), ktype, kernelx_data);
Mat kernelY(Size(kernely_len, 1), ktype, kernely_data);
f = createSeparableLinearFilter( stype, dtype, kernelX, kernelY,
Point(anchor_x, anchor_y),
delta, borderType & ~BORDER_ISOLATED );
return true;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y)
{
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
}
Mat kernelX(Size(kernelx_len, 1), ktype, kernelx_data);
Mat kernelY(Size(kernely_len, 1), ktype, kernely_data);
Ptr<FilterEngine> f = createSeparableLinearFilter(stype, dtype, kernelX, kernelY,
Point(anchor_x, anchor_y),
delta, borderType & ~BORDER_ISOLATED);
Mat src(Size(width, height), stype, src_data, src_step);
Mat dst(Size(width, height), dtype, dst_data, dst_step);
f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
};
//===================================================================
@ -4898,97 +4834,124 @@ struct OcvSepFilter : public hal::SepFilter2D
namespace cv {
namespace hal {
Ptr<hal::Filter2D> Filter2D::create(uchar* kernel_data, size_t kernel_step, int kernel_type,
int kernel_width, int kernel_height,
int max_width, int max_height,
int stype, int dtype,
int borderType, double delta, int anchor_x, int anchor_y, bool isSubmatrix, bool isInplace)
{
{
ReplacementFilter* impl = new ReplacementFilter();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
}
CV_DEPRECATED Ptr<hal::Filter2D> Filter2D::create(uchar * , size_t , int ,
int , int ,
int , int ,
int , int ,
int , double ,
int , int ,
bool , bool ) { return Ptr<hal::Filter2D>(); }
CV_DEPRECATED Ptr<hal::SepFilter2D> SepFilter2D::create(int , int , int ,
uchar * , int ,
uchar * , int ,
int , int ,
double , int ) { return Ptr<hal::SepFilter2D>(); }
void filter2D(int stype, int dtype, int kernel_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
double delta, int borderType,
bool isSubmatrix)
{
bool res;
res = replacementFilter2D(stype, dtype, kernel_type,
src_data, src_step,
dst_data, dst_step,
width, height,
full_width, full_height,
offset_x, offset_y,
kernel_data, kernel_step,
kernel_width, kernel_height,
anchor_x, anchor_y,
delta, borderType, isSubmatrix);
if (res)
return;
#ifdef HAVE_IPP
CV_IPP_CHECK()
{
res = false;
if (kernel_type == CV_32FC1) {
IppFilter<CV_32F>* impl = new IppFilter<CV_32F>();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
res = ippFilter2D<CV_32F>(stype, dtype,
src_data, src_step,
dst_data, dst_step,
width, height,
kernel_data, kernel_step,
kernel_width, kernel_height,
anchor_x, anchor_y,
delta, borderType, isSubmatrix);
}
if (kernel_type == CV_16SC1) {
IppFilter<CV_16S>* impl = new IppFilter<CV_16S>();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
else if (kernel_type == CV_16SC1) {
res = ippFilter2D<CV_16S>(stype, dtype,
src_data, src_step,
dst_data, dst_step,
width, height,
kernel_data, kernel_step,
kernel_width, kernel_height,
anchor_x, anchor_y,
delta, borderType, isSubmatrix);
}
if (res)
return;
}
#endif
if (DftFilter::isAppropriate(stype, dtype, kernel_width, kernel_height))
{
DftFilter* impl = new DftFilter();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
}
{
OcvFilter* impl = new OcvFilter();
impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace);
return Ptr<hal::Filter2D>(impl);
}
res = dftFilter2D(stype, dtype, kernel_type,
src_data, src_step,
dst_data, dst_step,
width, height,
kernel_data, kernel_step,
kernel_width, kernel_height,
anchor_x, anchor_y,
delta, borderType);
if (res)
return;
ocvFilter2D(stype, dtype, kernel_type,
src_data, src_step,
dst_data, dst_step,
width, height,
full_width, full_height,
offset_x, offset_y,
kernel_data, kernel_step,
kernel_width, kernel_height,
anchor_x, anchor_y,
delta, borderType);
}
//---------------------------------------------------------------
Ptr<SepFilter2D> SepFilter2D::create(int stype, int dtype, int ktype,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
void sepFilter2D(int stype, int dtype, int ktype,
uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
{
{
ReplacementSepFilter * impl = new ReplacementSepFilter();
if (impl->init(stype, dtype, ktype,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType))
{
return Ptr<hal::SepFilter2D>(impl);
}
delete impl;
}
{
OcvSepFilter * impl = new OcvSepFilter();
impl->init(stype, dtype, ktype,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType);
return Ptr<hal::SepFilter2D>(impl);
}
bool res = replacementSepFilter(stype, dtype, ktype,
src_data, src_step, dst_data, dst_step,
width, height, full_width, full_height,
offset_x, offset_y,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType);
if (res)
return;
ocvSepFilter(stype, dtype, ktype,
src_data, src_step, dst_data, dst_step,
width, height, full_width, full_height,
offset_x, offset_y,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType);
}
} // cv::hal::
@ -5021,10 +4984,12 @@ void cv::filter2D( InputArray _src, OutputArray _dst, int ddepth,
if( (borderType & BORDER_ISOLATED) == 0 )
src.locateROI( wsz, ofs );
Ptr<hal::Filter2D> c = hal::Filter2D::create(kernel.data, kernel.step, kernel.type(), kernel.cols, kernel.rows,
dst.cols, dst.rows, src.type(), dst.type(),
borderType, delta, anchor.x, anchor.y, src.isSubmatrix(), src.data == dst.data);
c->apply(src.data, src.step, dst.data, dst.step, dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y);
hal::filter2D(src.type(), dst.type(), kernel.type(),
src.data, src.step, dst.data, dst.step,
dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y,
kernel.data, kernel.step, kernel.cols, kernel.rows,
anchor.x, anchor.y,
delta, borderType, src.isSubmatrix());
}
void cv::sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
@ -5055,11 +5020,13 @@ void cv::sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
Mat contKernelX = kernelX.isContinuous() ? kernelX : kernelX.clone();
Mat contKernelY = kernelY.isContinuous() ? kernelY : kernelY.clone();
Ptr<hal::SepFilter2D> c = hal::SepFilter2D::create(src.type(), dst.type(), kernelX.type(),
contKernelX.data, kernelX.cols + kernelX.rows - 1,
contKernelY.data, kernelY.cols + kernelY.rows - 1,
anchor.x, anchor.y, delta, borderType & ~BORDER_ISOLATED);
c->apply(src.data, src.step, dst.data, dst.step, dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y);
hal::sepFilter2D(src.type(), dst.type(), kernelX.type(),
src.data, src.step, dst.data, dst.step,
dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y,
contKernelX.data, kernelX.cols + kernelX.rows - 1,
contKernelY.data, kernelY.cols + kernelY.rows - 1,
anchor.x, anchor.y, delta, borderType & ~BORDER_ISOLATED);
}

@ -1079,49 +1079,38 @@ namespace cv
// ===== 1. replacement implementation
struct ReplacementMorphImpl : public hal::Morph
static bool halMorph(int op, int src_type, int dst_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2,
int kernel_type, uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations, bool isSubmatrix)
{
cvhalFilter2D * ctx;
bool isInitialized;
bool init(int op, int src_type, int dst_type, int max_width, int max_height,
int kernel_type, uchar * kernel_data, size_t kernel_step, int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
int borderType, const double borderValue[4],
int iterations, bool isSubmatrix, bool allowInplace)
{
int res = cv_hal_morphInit(&ctx, op, src_type, dst_type, max_width, max_height,
kernel_type, kernel_data, kernel_step, kernel_width, kernel_height,
anchor_x, anchor_y,
borderType, borderValue,
iterations, isSubmatrix, allowInplace);
isInitialized = (res == CV_HAL_ERROR_OK);
return isInitialized;
}
void apply(uchar * src_data, size_t src_step, uchar * dst_data, size_t dst_step, int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2)
{
if (isInitialized)
{
int res = cv_hal_morph(ctx, src_data, src_step, dst_data, dst_step, width, height,
roi_width, roi_height,
roi_x, roi_y,
roi_width2, roi_height2,
roi_x2, roi_y2);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "Failed to run HAL morph implementation");
}
}
~ReplacementMorphImpl()
{
if (isInitialized)
{
int res = cv_hal_morphFree(ctx);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "Failed to run HAL morph implementation");
}
}
};
int res = cv_hal_morphInit(&ctx, op, src_type, dst_type, width, height,
kernel_type, kernel_data, kernel_step, kernel_width, kernel_height,
anchor_x, anchor_y,
borderType, borderValue,
iterations, isSubmatrix, src_data == dst_data);
if (res != CV_HAL_ERROR_OK)
return false;
res = cv_hal_morph(ctx, src_data, src_step, dst_data, dst_step, width, height,
roi_width, roi_height,
roi_x, roi_y,
roi_width2, roi_height2,
roi_x2, roi_y2);
bool success = (res == CV_HAL_ERROR_OK);
res = cv_hal_morphFree(ctx);
if (res != CV_HAL_ERROR_OK)
return false;
return success;
}
// ===== 2. IPP implementation
@ -1133,7 +1122,7 @@ template <int cvtype> struct IppMorphTrait {};
#if IPP_VERSION_X100 >= 900
#define INIT_TRAIT(cvtype, ipptype, flavor, channels, zerodef)\
#define DEFINE_TRAIT(cvtype, ipptype, flavor, channels, zerodef)\
template <>\
struct IppMorphTrait<cvtype>\
{\
@ -1153,7 +1142,7 @@ struct IppMorphTrait<cvtype>\
#else
#define INIT_TRAIT(cvtype, ipptype, flavor, channels, zerodef)\
#define DEFINE_TRAIT(cvtype, ipptype, flavor, channels, zerodef)\
template <>\
struct IppMorphTrait<cvtype>\
{\
@ -1173,28 +1162,28 @@ struct IppMorphTrait<cvtype>\
#endif
INIT_TRAIT(CV_8UC1, 8u, 8u_C1R, 1, zero = 0)
INIT_TRAIT(CV_8UC3, 8u, 8u_C3R, 3, zero[3] = {0})
INIT_TRAIT(CV_8UC4, 8u, 8u_C4R, 4, zero[4] = {0})
INIT_TRAIT(CV_32FC1, 32f, 32f_C1R, 1, zero = 0)
INIT_TRAIT(CV_32FC3, 32f, 32f_C3R, 3, zero[3] = {0})
INIT_TRAIT(CV_32FC4, 32f, 32f_C4R, 4, zero[4] = {0})
DEFINE_TRAIT(CV_8UC1, 8u, 8u_C1R, 1, zero = 0)
DEFINE_TRAIT(CV_8UC3, 8u, 8u_C3R, 3, zero[3] = {0})
DEFINE_TRAIT(CV_8UC4, 8u, 8u_C4R, 4, zero[4] = {0})
DEFINE_TRAIT(CV_32FC1, 32f, 32f_C1R, 1, zero = 0)
DEFINE_TRAIT(CV_32FC3, 32f, 32f_C3R, 3, zero[3] = {0})
DEFINE_TRAIT(CV_32FC4, 32f, 32f_C4R, 4, zero[4] = {0})
#undef INIT_TRAIT
#undef DEFINE_TRAIT
//--------------------------------------
struct IppMorphBaseImpl : public hal::Morph
{
virtual bool init(int _op, int _src_type, int dst_type, int max_width, int max_height,
int kernel_type, uchar * kernel_data, size_t kernel_step, int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
int borderType, const double borderValue[4],
int iterations, bool isSubmatrix, bool allowInplace) = 0;
};
template <int cvtype>
struct IppMorphImpl : public IppMorphBaseImpl
static bool ippMorph(int op, int src_type, int dst_type,
const uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2,
int kernel_type, uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations, bool isSubmatrix)
{
IppMorphTrait<cvtype> trait;
typedef typename IppMorphTrait<cvtype>::ipp_data_type ipp_data_type;
@ -1203,177 +1192,136 @@ struct IppMorphImpl : public IppMorphBaseImpl
IppiSize kernelSize;
bool rectKernel;
IppiPoint anchor;
int op;
int src_type;
int border;
bool init(int _op, int _src_type, int dst_type, int max_width, int max_height,
int kernel_type, uchar * kernel_data, size_t kernel_step, int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
int borderType, const double borderValue[4],
int iterations, bool isSubmatrix, bool allowInplace)
{
border = borderType; // TODO: remove
anchor = ippiPoint(anchor_x, anchor_y);
CV_UNUSED(dst_type);
src_type = _src_type;
Mat kernel(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
int depth = CV_MAT_DEPTH(src_type), cn = CV_MAT_CN(src_type);
if( !( depth == CV_8U || depth == CV_32F )
|| !(cn == 1 || cn == 3 || cn == 4)
|| !( borderType == cv::BORDER_REPLICATE
|| (borderType == cv::BORDER_CONSTANT && Vec<double, 4>(borderValue) == morphologyDefaultBorderValue() && kernel.size() == Size(3,3)))
|| !( op == MORPH_DILATE || op == MORPH_ERODE)
|| isSubmatrix
|| allowInplace)
return false;
// In case BORDER_CONSTANT, IPPMorphReplicate works correct with kernels of size 3*3 only
if( borderType == cv::BORDER_CONSTANT && kernel.data )
{
int x, y;
for( y = 0; y < kernel.rows; y++ )
{
if( kernel.at<uchar>(y, anchor.x) != 0 )
continue;
for( x = 0; x < kernel.cols; x++ )
{
if( kernel.at<uchar>(y,x) != 0 )
return false;
}
}
for( x = 0; x < kernel.cols; x++ )
{
if( kernel.at<uchar>(anchor.y, x) != 0 )
continue;
for( y = 0; y < kernel.rows; y++ )
{
if( kernel.at<uchar>(y,x) != 0 )
return false;
}
}
CV_INSTRUMENT_REGION_IPP()
}
Size ksize = !kernel.empty() ? kernel.size() : Size(3,3);
CV_UNUSED(roi_width); CV_UNUSED(roi_height); CV_UNUSED(roi_x); CV_UNUSED(roi_y);
CV_UNUSED(roi_width2); CV_UNUSED(roi_height2); CV_UNUSED(roi_x2); CV_UNUSED(roi_y2);
CV_UNUSED(dst_type);
rectKernel = false;
if( kernel.empty() )
{
ksize = Size(1+iterations*2,1+iterations*2);
anchor = ippiPoint(iterations, iterations);
rectKernel = true;
iterations = 1;
}
else if( iterations >= 1 && countNonZero(kernel) == kernel.rows*kernel.cols )
{
ksize = Size(ksize.width + (iterations-1)*(ksize.width-1),
ksize.height + (iterations-1)*(ksize.height-1)),
anchor = ippiPoint(anchor.x*iterations, anchor.y*iterations);
kernel = Mat();
rectKernel = true;
iterations = 1;
}
anchor = ippiPoint(anchor_x, anchor_y);
// TODO: implement the case of iterations > 1.
if( iterations > 1 )
return false;
Mat kernel(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
int depth = CV_MAT_DEPTH(src_type), cn = CV_MAT_CN(src_type);
IppiSize roiSize = {max_width, max_height};
kernelSize = ippiSize(ksize);
op = _op;
if( !( depth == CV_8U || depth == CV_32F )
|| !(cn == 1 || cn == 3 || cn == 4)
|| !( borderType == cv::BORDER_REPLICATE
|| (borderType == cv::BORDER_CONSTANT && Vec<double, 4>(borderValue) == morphologyDefaultBorderValue() && kernel.size() == Size(3,3)))
|| !( op == MORPH_DILATE || op == MORPH_ERODE)
|| isSubmatrix
|| src_data == dst_data)
return false;
IppStatus res;
if (!rectKernel)
// In case BORDER_CONSTANT, IPPMorphReplicate works correct with kernels of size 3*3 only
if( borderType == cv::BORDER_CONSTANT && kernel.data )
{
int x, y;
for( y = 0; y < kernel.rows; y++ )
{
if (((kernel.cols - 1) / 2 != anchor.x) || ((kernel.rows - 1) / 2 != anchor.y))
return false;
int specSize = 0, bufferSize = 0;
res = trait.getMorphSize(roiSize, kernelSize, &specSize, &bufferSize);
if (res >= 0)
if( kernel.at<uchar>(y, anchor.x) != 0 )
continue;
for( x = 0; x < kernel.cols; x++ )
{
specBuf.Alloc(specSize);
workBuf.Alloc(bufferSize);
res = trait.morphInit(roiSize, kernel.ptr(), kernelSize, specBuf, workBuf);
if (res >= 0)
return true;
if( kernel.at<uchar>(y,x) != 0 )
return false;
}
}
else
for( x = 0; x < kernel.cols; x++ )
{
if (((kernelSize.width - 1) / 2 != anchor.x) || ((kernelSize.height - 1) / 2 != anchor.y))
return false;
if (op == MORPH_ERODE)
{
int bufSize = 0;
res = trait.filterGetMinSize(roiSize, kernelSize, trait.getDataType(), trait.cn, &bufSize);
if (res >= 0)
{
workBuf.Alloc(bufSize);
return true;
}
}
else
if( kernel.at<uchar>(anchor.y, x) != 0 )
continue;
for( y = 0; y < kernel.rows; y++ )
{
int bufSize = 0;
res = trait.filterGetMaxSize(roiSize, kernelSize, trait.getDataType(), trait.cn, &bufSize);
if (res >= 0)
{
workBuf.Alloc(bufSize);
return true;
}
if( kernel.at<uchar>(y,x) != 0 )
return false;
}
}
return false;
}
void apply(uchar * src_data, size_t src_step, uchar * dst_data, size_t dst_step, int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2)
Size ksize = !kernel.empty() ? kernel.size() : Size(3,3);
rectKernel = false;
if( kernel.empty() )
{
CV_INSTRUMENT_REGION_IPP()
ksize = Size(1+iterations*2,1+iterations*2);
anchor = ippiPoint(iterations, iterations);
rectKernel = true;
iterations = 1;
}
else if( iterations >= 1 && countNonZero(kernel) == kernel.rows*kernel.cols )
{
ksize = Size(ksize.width + (iterations-1)*(ksize.width-1),
ksize.height + (iterations-1)*(ksize.height-1)),
anchor = ippiPoint(anchor.x*iterations, anchor.y*iterations);
kernel = Mat();
rectKernel = true;
iterations = 1;
}
CV_UNUSED(roi_width); CV_UNUSED(roi_height); CV_UNUSED(roi_x); CV_UNUSED(roi_y);
CV_UNUSED(roi_width2); CV_UNUSED(roi_height2); CV_UNUSED(roi_x2); CV_UNUSED(roi_y2);
if (src_data == dst_data)
CV_Error(Error::StsBadArg, "IPP Morph inplace is not alowed");
// TODO: implement the case of iterations > 1.
if( iterations > 1 )
return false;
IppiSize roiSize = {width, height};
IppiSize roiSize = {width, height};
kernelSize = ippiSize(ksize);
IppStatus res;
if (!rectKernel)
IppStatus res;
if (!rectKernel)
{
if (((kernel.cols - 1) / 2 != anchor.x) || ((kernel.rows - 1) / 2 != anchor.y))
return false;
int specSize = 0, bufferSize = 0;
res = trait.getMorphSize(roiSize, kernelSize, &specSize, &bufferSize);
if (res >= 0)
{
specBuf.Alloc(specSize);
workBuf.Alloc(bufferSize);
res = trait.morphInit(roiSize, kernel.ptr(), kernelSize, specBuf, workBuf);
if (res < 0)
return false;
}
}
else
{
if (((kernelSize.width - 1) / 2 != anchor.x) || ((kernelSize.height - 1) / 2 != anchor.y))
return false;
if (op == MORPH_ERODE)
{
if (op == MORPH_ERODE)
res = (trait.morphErode((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, specBuf, workBuf));
int bufSize = 0;
res = trait.filterGetMinSize(roiSize, kernelSize, trait.getDataType(), trait.cn, &bufSize);
if (res >= 0)
workBuf.Alloc(bufSize);
else
res = (trait.morphDilate((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, specBuf, workBuf));
return false;
}
else
{
if (op == MORPH_ERODE)
res = (trait.filterMinBorder((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, kernelSize, anchor, workBuf));
int bufSize = 0;
res = trait.filterGetMaxSize(roiSize, kernelSize, trait.getDataType(), trait.cn, &bufSize);
if (res >= 0)
workBuf.Alloc(bufSize);
else
res = (trait.filterMaxBorder((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, kernelSize, anchor, workBuf));
return false;
}
if (res < 0)
CV_Error(Error::StsBadArg, "Failed to run IPP morph");
}
};
static IppMorphBaseImpl * createIppImpl(int type)
{
switch (type)
if (!rectKernel)
{
case CV_8UC1: return new IppMorphImpl<CV_8UC1>();
case CV_8UC3: return new IppMorphImpl<CV_8UC3>();
case CV_8UC4: return new IppMorphImpl<CV_8UC4>();
case CV_32FC1: return new IppMorphImpl<CV_32FC1>();
case CV_32FC3: return new IppMorphImpl<CV_32FC3>();
case CV_32FC4: return new IppMorphImpl<CV_32FC4>();
if (op == MORPH_ERODE)
res = (trait.morphErode((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, specBuf, workBuf));
else
res = (trait.morphDilate((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, specBuf, workBuf));
}
return 0;
else
{
if (op == MORPH_ERODE)
res = (trait.filterMinBorder((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, kernelSize, anchor, workBuf));
else
res = (trait.filterMaxBorder((ipp_data_type*)src_data, (int)src_step, (ipp_data_type*)dst_data, (int)dst_step, roiSize, kernelSize, anchor, workBuf));
}
return res >= 0;
}
#endif // IPP_VERSION_X100 >= 810
@ -1381,94 +1329,108 @@ static IppMorphBaseImpl * createIppImpl(int type)
// ===== 3. Fallback implementation
struct OcvMorphImpl : public hal::Morph
static void ocvMorph(int op, int src_type, int dst_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2,
int kernel_type, uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations)
{
Ptr<FilterEngine> f;
int iterations;
int src_type;
int dst_type;
bool init(int op, int _src_type, int _dst_type, int, int,
int kernel_type, uchar * kernel_data, size_t kernel_step, int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
int borderType, const double _borderValue[4],
int _iterations, bool, bool)
Mat kernel(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
Point anchor(anchor_x, anchor_y);
Vec<double, 4> borderVal(borderValue);
Ptr<FilterEngine> f = createMorphologyFilter(op, src_type, kernel, anchor, borderType, borderType, borderVal);
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
{
iterations = _iterations;
src_type = _src_type;
dst_type = _dst_type;
Mat kernel(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
Point anchor(anchor_x, anchor_y);
Vec<double, 4> borderValue(_borderValue);
f = createMorphologyFilter(op, src_type, kernel, anchor, borderType, borderType, borderValue );
return true;
Point ofs(roi_x, roi_y);
Size wsz(roi_width, roi_height);
f->apply( src, dst, wsz, ofs );
}
void apply(uchar * src_data, size_t src_step, uchar * dst_data, size_t dst_step, int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2)
{
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
{
Point ofs(roi_x, roi_y);
Size wsz(roi_width, roi_height);
f->apply( src, dst, wsz, ofs );
}
{
Point ofs(roi_x2, roi_y2);
Size wsz(roi_width2, roi_height2);
for( int i = 1; i < iterations; i++ )
f->apply( dst, dst, wsz, ofs );
}
Point ofs(roi_x2, roi_y2);
Size wsz(roi_width2, roi_height2);
for( int i = 1; i < iterations; i++ )
f->apply( dst, dst, wsz, ofs );
}
};
}
// ===== HAL interface implementation
namespace hal {
Ptr<Morph> Morph ::create(int op, int src_type, int dst_type, int max_width, int max_height,
int kernel_type, uchar * kernel_data, size_t kernel_step, int kernel_width, int kernel_height,
int anchor_x, int anchor_y,
int borderType, const double borderValue[4],
int iterations, bool isSubmatrix, bool allowInplace)
CV_DEPRECATED Ptr<Morph> Morph::create(int , int , int , int , int ,
int , uchar * , size_t ,
int , int ,
int , int ,
int , const double *,
int , bool , bool ) { return Ptr<hal::Morph>(); }
void morph(int op, int src_type, int dst_type,
uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int roi_width, int roi_height, int roi_x, int roi_y,
int roi_width2, int roi_height2, int roi_x2, int roi_y2,
int kernel_type, uchar * kernel_data, size_t kernel_step,
int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations, bool isSubmatrix)
{
{
ReplacementMorphImpl * impl = new ReplacementMorphImpl();
if (impl->init(op, src_type, dst_type, max_width, max_height,
kernel_type, kernel_data, kernel_step, kernel_width, kernel_height,
anchor_x, anchor_y,
borderType, borderValue, iterations, isSubmatrix, allowInplace))
{
return Ptr<Morph>(impl);
}
delete impl;
bool res = halMorph(op, src_type, dst_type, src_data, src_step, dst_data, dst_step, width, height,
roi_width, roi_height, roi_x, roi_y,
roi_width2, roi_height2, roi_x2, roi_y2,
kernel_type, kernel_data, kernel_step,
kernel_width, kernel_height, anchor_x, anchor_y,
borderType, borderValue, iterations, isSubmatrix);
if (res)
return;
}
#if defined(HAVE_IPP) && IPP_VERSION_X100 >= 810
#define ONE_CASE(type) \
case type: \
res = ippMorph<type>(op, src_type, dst_type, src_data, src_step, dst_data, dst_step, width, height, \
roi_width, roi_height, roi_x, roi_y, \
roi_width2, roi_height2, roi_x2, roi_y2, \
kernel_type, kernel_data, kernel_step, \
kernel_width, kernel_height, anchor_x, anchor_y, \
borderType, borderValue, iterations, isSubmatrix); \
break;
CV_IPP_CHECK()
{
IppMorphBaseImpl * impl = createIppImpl(src_type);
if (impl)
bool res = false;
switch (src_type)
{
if (impl->init(op, src_type, dst_type, max_width, max_height,
kernel_type, kernel_data, kernel_step, kernel_width, kernel_height,
anchor_x, anchor_y,
borderType, borderValue, iterations, isSubmatrix, allowInplace))
{
return Ptr<Morph>(impl);
}
delete impl;
ONE_CASE(CV_8UC1)
ONE_CASE(CV_8UC3)
ONE_CASE(CV_8UC4)
ONE_CASE(CV_32FC1)
ONE_CASE(CV_32FC3)
ONE_CASE(CV_32FC4)
}
if (res)
return;
}
#undef ONE_CASE
#endif
{
OcvMorphImpl * impl = new OcvMorphImpl();
impl->init(op, src_type, dst_type, max_width, max_height,
kernel_type, kernel_data, kernel_step, kernel_width, kernel_height,
anchor_x, anchor_y,
borderType, borderValue, iterations, isSubmatrix, allowInplace);
return Ptr<Morph>(impl);
}
ocvMorph(op, src_type, dst_type, src_data, src_step, dst_data, dst_step, width, height,
roi_width, roi_height, roi_x, roi_y,
roi_width2, roi_height2, roi_x2, roi_y2,
kernel_type, kernel_data, kernel_step,
kernel_width, kernel_height, anchor_x, anchor_y,
borderType, borderValue, iterations);
}
} // cv::hal
@ -1941,13 +1903,15 @@ static void morphOp( int op, InputArray _src, OutputArray _dst,
dst.locateROI(d_wsz, d_ofs);
}
Ptr<hal::Morph> ctx = hal::Morph::create(op, src.type(), dst.type(), src.cols, src.rows,
kernel.type(), kernel.data, kernel.step, kernel.cols, kernel.rows,
anchor.x, anchor.y, borderType, borderValue.val, iterations,
(src.isSubmatrix() && !isolated), src.data == dst.data);
ctx->apply(src.data, src.step, dst.data, dst.step, src.cols, src.rows,
hal::morph(op, src.type(), dst.type(),
src.data, src.step,
dst.data, dst.step,
src.cols, src.rows,
s_wsz.width, s_wsz.height, s_ofs.x, s_ofs.y,
d_wsz.width, d_wsz.height, d_ofs.x, d_ofs.y);
d_wsz.width, d_wsz.height, d_ofs.x, d_ofs.y,
kernel.type(), kernel.data, kernel.step, kernel.cols, kernel.rows, anchor.x, anchor.y,
borderType, borderValue.val, iterations,
(src.isSubmatrix() && !isolated));
}
}

Loading…
Cancel
Save