|
|
|
@ -47,73 +47,124 @@ |
|
|
|
|
|
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::ocl; |
|
|
|
|
using namespace cvtest; |
|
|
|
|
using namespace testing; |
|
|
|
|
using namespace std; |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &weights1, const cv::Mat &weights2, cv::Mat &result_gold) |
|
|
|
|
static void blendLinearGold(const Mat &img1, const Mat &img2, |
|
|
|
|
const Mat &weights1, const Mat &weights2, |
|
|
|
|
Mat &result_gold) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(img1.size() == img2.size() && img1.type() == img2.type()); |
|
|
|
|
CV_Assert(weights1.size() == weights2.size() && weights1.size() == img1.size() && |
|
|
|
|
weights1.type() == CV_32FC1 && weights2.type() == CV_32FC1); |
|
|
|
|
|
|
|
|
|
result_gold.create(img1.size(), img1.type()); |
|
|
|
|
|
|
|
|
|
int cn = img1.channels(); |
|
|
|
|
int step1 = img1.cols * img1.channels(); |
|
|
|
|
|
|
|
|
|
for (int y = 0; y < img1.rows; ++y) |
|
|
|
|
{ |
|
|
|
|
const float *weights1_row = weights1.ptr<float>(y); |
|
|
|
|
const float *weights2_row = weights2.ptr<float>(y); |
|
|
|
|
const T *img1_row = img1.ptr<T>(y); |
|
|
|
|
const T *img2_row = img2.ptr<T>(y); |
|
|
|
|
T *result_gold_row = result_gold.ptr<T>(y); |
|
|
|
|
const float * const weights1_row = weights1.ptr<float>(y); |
|
|
|
|
const float * const weights2_row = weights2.ptr<float>(y); |
|
|
|
|
const T * const img1_row = img1.ptr<T>(y); |
|
|
|
|
const T * const img2_row = img2.ptr<T>(y); |
|
|
|
|
T * const result_gold_row = result_gold.ptr<T>(y); |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < img1.cols * cn; ++x) |
|
|
|
|
for (int x = 0; x < step1; ++x) |
|
|
|
|
{ |
|
|
|
|
float w1 = weights1_row[x / cn]; |
|
|
|
|
float w2 = weights2_row[x / cn]; |
|
|
|
|
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f)); |
|
|
|
|
int x1 = x / cn; |
|
|
|
|
float w1 = weights1_row[x1], w2 = weights2_row[x1]; |
|
|
|
|
result_gold_row[x] = saturate_cast<T>(((float)img1_row[x] * w1 |
|
|
|
|
+ (float)img2_row[x] * w2) / (w1 + w2 + 1e-5f)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(Blend, cv::Size, MatType/*, UseRoi*/) |
|
|
|
|
PARAM_TEST_CASE(Blend, MatDepth, int, bool) |
|
|
|
|
{ |
|
|
|
|
cv::Size size; |
|
|
|
|
int type; |
|
|
|
|
int depth, channels; |
|
|
|
|
bool useRoi; |
|
|
|
|
|
|
|
|
|
Mat src1, src2, weights1, weights2, dst; |
|
|
|
|
Mat src1_roi, src2_roi, weights1_roi, weights2_roi, dst_roi; |
|
|
|
|
oclMat gsrc1, gsrc2, gweights1, gweights2, gdst, gst; |
|
|
|
|
oclMat gsrc1_roi, gsrc2_roi, gweights1_roi, gweights2_roi, gdst_roi; |
|
|
|
|
|
|
|
|
|
virtual void SetUp() |
|
|
|
|
{ |
|
|
|
|
size = GET_PARAM(0); |
|
|
|
|
type = GET_PARAM(1); |
|
|
|
|
depth = GET_PARAM(0); |
|
|
|
|
channels = GET_PARAM(1); |
|
|
|
|
useRoi = GET_PARAM(2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void random_roi() |
|
|
|
|
{ |
|
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
|
|
|
|
|
|
const double upValue = 1200; |
|
|
|
|
|
|
|
|
|
Size roiSize = randomSize(1, 20); |
|
|
|
|
Border src1Border = randomBorder(0, useRoi ? MAX_VALUE : 0); |
|
|
|
|
randomSubMat(src1, src1_roi, roiSize, src1Border, type, -upValue, upValue); |
|
|
|
|
|
|
|
|
|
Border src2Border = randomBorder(0, useRoi ? MAX_VALUE : 0); |
|
|
|
|
randomSubMat(src2, src2_roi, roiSize, src2Border, type, -upValue, upValue); |
|
|
|
|
|
|
|
|
|
Border weights1Border = randomBorder(0, useRoi ? MAX_VALUE : 0); |
|
|
|
|
randomSubMat(weights1, weights1_roi, roiSize, weights1Border, CV_32FC1, -upValue, upValue); |
|
|
|
|
|
|
|
|
|
Border weights2Border = randomBorder(0, useRoi ? MAX_VALUE : 0); |
|
|
|
|
randomSubMat(weights2, weights2_roi, roiSize, weights2Border, CV_32FC1, -upValue, upValue); |
|
|
|
|
|
|
|
|
|
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); |
|
|
|
|
randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 5, 16); |
|
|
|
|
|
|
|
|
|
generateOclMat(gsrc1, gsrc1_roi, src1, roiSize, src1Border); |
|
|
|
|
generateOclMat(gsrc2, gsrc2_roi, src2, roiSize, src2Border); |
|
|
|
|
generateOclMat(gweights1, gweights1_roi, weights1, roiSize, weights1Border); |
|
|
|
|
generateOclMat(gweights2, gweights2_roi, weights2, roiSize, weights2Border); |
|
|
|
|
generateOclMat(gdst, gdst_roi, dst, roiSize, dstBorder); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void Near(double eps = 0.0) |
|
|
|
|
{ |
|
|
|
|
Mat whole, roi; |
|
|
|
|
gdst.download(whole); |
|
|
|
|
gdst_roi.download(roi); |
|
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(dst, whole, eps); |
|
|
|
|
EXPECT_MAT_NEAR(dst_roi, roi, eps); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
typedef void (*blendLinearFunc)(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &weights1, const cv::Mat &weights2, cv::Mat &result_gold); |
|
|
|
|
|
|
|
|
|
OCL_TEST_P(Blend, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int depth = CV_MAT_DEPTH(type); |
|
|
|
|
|
|
|
|
|
cv::Mat img1 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); |
|
|
|
|
cv::Mat img2 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); |
|
|
|
|
cv::Mat weights1 = randomMat(size, CV_32F, 0, 1); |
|
|
|
|
cv::Mat weights2 = randomMat(size, CV_32F, 0, 1); |
|
|
|
|
|
|
|
|
|
cv::ocl::oclMat gimg1(img1), gimg2(img2), gweights1(weights1), gweights2(weights2); |
|
|
|
|
cv::ocl::oclMat dst; |
|
|
|
|
|
|
|
|
|
cv::ocl::blendLinear(gimg1, gimg2, gweights1, gweights2, dst); |
|
|
|
|
cv::Mat result; |
|
|
|
|
cv::Mat result_gold; |
|
|
|
|
dst.download(result); |
|
|
|
|
if (depth == CV_8U) |
|
|
|
|
blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold); |
|
|
|
|
else |
|
|
|
|
blendLinearGold<float>(img1, img2, weights1, weights2, result_gold); |
|
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1.f : 1e-5f); |
|
|
|
|
for (int i = 0; i < LOOP_TIMES; ++i) |
|
|
|
|
{ |
|
|
|
|
random_roi(); |
|
|
|
|
|
|
|
|
|
cv::ocl::blendLinear(gsrc1_roi, gsrc2_roi, gweights1_roi, gweights2_roi, gdst_roi); |
|
|
|
|
|
|
|
|
|
static blendLinearFunc funcs[] = { |
|
|
|
|
blendLinearGold<uchar>, |
|
|
|
|
blendLinearGold<schar>, |
|
|
|
|
blendLinearGold<ushort>, |
|
|
|
|
blendLinearGold<short>, |
|
|
|
|
blendLinearGold<int>, |
|
|
|
|
blendLinearGold<float>, |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
blendLinearFunc func = funcs[depth]; |
|
|
|
|
func(src1_roi, src2_roi, weights1_roi, weights2_roi, dst_roi); |
|
|
|
|
|
|
|
|
|
Near(depth <= CV_32S ? 1.0 : 0.2); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Blend, Combine( |
|
|
|
|
DIFFERENT_SIZES, |
|
|
|
|
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)) |
|
|
|
|
)); |
|
|
|
|
#endif |
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Blend, |
|
|
|
|
Combine(testing::Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F), |
|
|
|
|
testing::Range(1, 5), Bool())); |
|
|
|
|