diff --git a/modules/photo/include/opencv2/photo.hpp b/modules/photo/include/opencv2/photo.hpp index 5e11333ee9..d613c2420b 100644 --- a/modules/photo/include/opencv2/photo.hpp +++ b/modules/photo/include/opencv2/photo.hpp @@ -149,10 +149,10 @@ Should be odd. Recommended value 7 pixels @param searchWindowSize Size in pixels of the window that is used to compute weighted average for given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater denoising time. Recommended value 21 pixels -@param h Array of parameters regulating filter strength, one per -channel. Big h value perfectly removes noise but also removes image -details, smaller h value preserves details but also preserves some -noise +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in src. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise This function expected to be applied to grayscale images. For colored images look at fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored @@ -160,7 +160,7 @@ image in different colorspaces. Such approach is used in fastNlMeansDenoisingCol image to CIELAB colorspace and then separately denoise L and AB components with different h parameter. */ -CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float *h, +CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, std::vector h, int templateWindowSize = 7, int searchWindowSize = 21); /** @brief Perform image denoising using Non-local Means Denoising @@ -201,10 +201,10 @@ Should be odd. Recommended value 7 pixels @param searchWindowSize Size in pixels of the window that is used to compute weighted average for given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater denoising time. Recommended value 21 pixels -@param h Array of parameters regulating filter strength, one per -channel. Big h value perfectly removes noise but also removes image -details, smaller h value preserves details but also preserves some -noise +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in src. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise This function expected to be applied to grayscale images. For colored images look at fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored @@ -212,7 +212,7 @@ image in different colorspaces. Such approach is used in fastNlMeansDenoisingCol image to CIELAB colorspace and then separately denoise L and AB components with different h parameter. */ -CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float *h, +CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, std::vector h, int templateWindowSize = 7, int searchWindowSize = 21); /** @brief Modification of fastNlMeansDenoising function for colored images @@ -283,14 +283,14 @@ Should be odd. Recommended value 7 pixels @param searchWindowSize Size in pixels of the window that is used to compute weighted average for given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater denoising time. Recommended value 21 pixels -@param h Array of parameters regulating filter strength, one for each -channel. Bigger h value perfectly removes noise but also removes image -details, smaller h value preserves details but also preserves some -noise +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in src. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise */ CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, - float *h , int templateWindowSize = 7, int searchWindowSize = 21); + std::vector h , int templateWindowSize = 7, int searchWindowSize = 21); /** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been captured in small period @@ -346,14 +346,14 @@ Should be odd. Recommended value 7 pixels @param searchWindowSize Size in pixels of the window that is used to compute weighted average for given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater denoising time. Recommended value 21 pixels -@param h Array of parameters regulating filter strength, one for each -channel. Bigger h value perfectly removes noise but also removes image -details, smaller h value preserves details but also preserves some -noise +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in src. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise */ CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, - float *h, int templateWindowSize = 7, int searchWindowSize = 21); + std::vector h, int templateWindowSize = 7, int searchWindowSize = 21); /** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences diff --git a/modules/photo/src/denoising.cpp b/modules/photo/src/denoising.cpp index 9f63254b01..7251b6446a 100644 --- a/modules/photo/src/denoising.cpp +++ b/modules/photo/src/denoising.cpp @@ -48,55 +48,20 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h, int templateWindowSize, int searchWindowSize) { - Size src_size = _src.size(); - CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) && - src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes - ocl_fastNlMeansDenoising(_src, _dst, &h, 1, - templateWindowSize, searchWindowSize, false)) - - Mat src = _src.getMat(); - _dst.create(src_size, src.type()); - Mat dst = _dst.getMat(); - -#ifdef HAVE_TEGRA_OPTIMIZATION - if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize)) - return; -#endif - - switch (src.type()) { - case CV_8U: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC2: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC3: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC4: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - default: - CV_Error(Error::StsBadArg, - "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported"); - } + fastNlMeansDenoising(_src, _dst, std::vector(1, h), + templateWindowSize, searchWindowSize); } -void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h, +void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, std::vector h, int templateWindowSize, int searchWindowSize) { + int hn = h.size(); + CV_Assert(hn == 1 || hn == CV_MAT_CN(_src.type())); + Size src_size = _src.size(); CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) && src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes - ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()), + ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn, templateWindowSize, searchWindowSize, false)) Mat src = _src.getMat(); @@ -111,23 +76,38 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h, switch (src.type()) { case CV_8U: parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC2: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC3: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC4: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; default: CV_Error(Error::StsBadArg, @@ -138,70 +118,20 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h, void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h, int templateWindowSize, int searchWindowSize) { - Size src_size = _src.size(); - CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) && - src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes - ocl_fastNlMeansDenoising(_src, _dst, &h, 1, - templateWindowSize, searchWindowSize, true)) - - Mat src = _src.getMat(); - _dst.create(src_size, src.type()); - Mat dst = _dst.getMat(); - - switch (src.type()) { - case CV_8U: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC2: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC3: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC4: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16U: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16UC2: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, int>( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16UC3: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, int>( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16UC4: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, int>( - src, dst, templateWindowSize, searchWindowSize, &h)); - break; - default: - CV_Error(Error::StsBadArg, - "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported"); - } + fastNlMeansDenoisingAbs(_src, _dst, std::vector(1, h), + templateWindowSize, searchWindowSize); } -void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h, +void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, std::vector h, int templateWindowSize, int searchWindowSize) { + int hn = h.size(); + CV_Assert(hn == 1 || hn == CV_MAT_CN(_src.type())); + Size src_size = _src.size(); CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) && src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes - ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()), + ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn, templateWindowSize, searchWindowSize, true)) Mat src = _src.getMat(); @@ -211,43 +141,73 @@ void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h, switch (src.type()) { case CV_8U: parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC2: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC3: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC4: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16U: parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker( - src, dst, templateWindowSize, searchWindowSize, h)); + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16UC2: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec2i>( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, int>( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec2i>( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16UC3: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec3i>( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, int>( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec3i>( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16UC4: - parallel_for_(cv::Range(0, src.rows), - FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec4i>( - src, dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, int>( + src, dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, src.rows), + FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec4i>( + src, dst, templateWindowSize, searchWindowSize, &h[0])); break; default: CV_Error(Error::StsBadArg, @@ -332,51 +292,14 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize) { - std::vector srcImgs; - _srcImgs.getMatVector(srcImgs); - - fastNlMeansDenoisingMultiCheckPreconditions( - srcImgs, imgToDenoiseIndex, - temporalWindowSize, templateWindowSize, searchWindowSize); - - _dst.create(srcImgs[0].size(), srcImgs[0].type()); - Mat dst = _dst.getMat(); - - switch (srcImgs[0].type()) - { - case CV_8U: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC2: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC3: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC4: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - default: - CV_Error(Error::StsBadArg, - "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported"); - } + fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize, + std::vector(1, h), templateWindowSize, searchWindowSize); } void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst, int imgToDenoiseIndex, int temporalWindowSize, - float *h, int templateWindowSize, int searchWindowSize) + std::vector h, + int templateWindowSize, int searchWindowSize) { std::vector srcImgs; _srcImgs.getMatVector(srcImgs); @@ -385,6 +308,9 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds srcImgs, imgToDenoiseIndex, temporalWindowSize, templateWindowSize, searchWindowSize); + int hn = h.size(); + CV_Assert(hn == 1 || hn == CV_MAT_CN(srcImgs[0].type())); + _dst.create(srcImgs[0].size(), srcImgs[0].type()); Mat dst = _dst.getMat(); @@ -392,27 +318,45 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds { case CV_8U: parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC2: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC3: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC4: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; default: CV_Error(Error::StsBadArg, @@ -424,75 +368,14 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize) { - std::vector srcImgs; - _srcImgs.getMatVector(srcImgs); - - fastNlMeansDenoisingMultiCheckPreconditions( - srcImgs, imgToDenoiseIndex, - temporalWindowSize, templateWindowSize, searchWindowSize); - - _dst.create(srcImgs[0].size(), srcImgs[0].type()); - Mat dst = _dst.getMat(); - - switch (srcImgs[0].type()) - { - case CV_8U: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC2: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC3: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_8UC4: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16U: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16UC2: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, int>( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16UC3: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, int>( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - case CV_16UC4: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, int>( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, &h)); - break; - default: - CV_Error(Error::StsBadArg, - "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported"); - } + fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize, + std::vector(1, h), templateWindowSize, searchWindowSize); } void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst, int imgToDenoiseIndex, int temporalWindowSize, - float *h, int templateWindowSize, int searchWindowSize) + std::vector h, + int templateWindowSize, int searchWindowSize) { std::vector srcImgs; _srcImgs.getMatVector(srcImgs); @@ -501,6 +384,9 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray srcImgs, imgToDenoiseIndex, temporalWindowSize, templateWindowSize, searchWindowSize); + int hn = h.size(); + CV_Assert(hn == 1 || hn == CV_MAT_CN(srcImgs[0].type())); + _dst.create(srcImgs[0].size(), srcImgs[0].type()); Mat dst = _dst.getMat(); @@ -508,51 +394,87 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray { case CV_8U: parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC2: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC3: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_8UC4: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16U: parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker( srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16UC2: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec2i>( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, int>( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec2i>( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16UC3: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec3i>( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, int>( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec3i>( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; case CV_16UC4: - parallel_for_(cv::Range(0, srcImgs[0].rows), - FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec4i>( - srcImgs, imgToDenoiseIndex, temporalWindowSize, - dst, templateWindowSize, searchWindowSize, h)); + if (hn == 1) + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, int>( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); + else + parallel_for_(cv::Range(0, srcImgs[0].rows), + FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec4i>( + srcImgs, imgToDenoiseIndex, temporalWindowSize, + dst, templateWindowSize, searchWindowSize, &h[0])); break; default: CV_Error(Error::StsBadArg, diff --git a/modules/photo/test/ocl/test_denoising.cpp b/modules/photo/test/ocl/test_denoising.cpp index 3b6998f063..360c162968 100644 --- a/modules/photo/test/ocl/test_denoising.cpp +++ b/modules/photo/test/ocl/test_denoising.cpp @@ -16,7 +16,7 @@ namespace ocl { PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool) { int cn, templateWindowSize, searchWindowSize; - float h[4]; + std::vector h; bool use_roi, use_image; TEST_DECLARE_INPUT_PARAMETER(src); @@ -31,7 +31,7 @@ PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool) templateWindowSize = 7; searchWindowSize = 21; - ASSERT_TRUE(cn > 0 && cn <= 4); + h.resize(cn); for (int i=0; i 0 && cn <= 4); if (cn == 2) { int from_to[] = { 0,0, 1,1 }; src_roi.create(roiSize, type);