mirror of https://github.com/opencv/opencv.git
Merge pull request #1283 from melody-rain:new_mog_mog2
commit
c42d61e464
8 changed files with 1733 additions and 3 deletions
@ -0,0 +1,638 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
extern const char* bgfg_mog; |
||||
|
||||
typedef struct _contant_struct |
||||
{ |
||||
cl_float c_Tb; |
||||
cl_float c_TB; |
||||
cl_float c_Tg; |
||||
cl_float c_varInit; |
||||
cl_float c_varMin; |
||||
cl_float c_varMax; |
||||
cl_float c_tau; |
||||
cl_uchar c_shadowVal; |
||||
}contant_struct; |
||||
|
||||
cl_mem cl_constants = NULL; |
||||
float c_TB; |
||||
} |
||||
} |
||||
|
||||
#if defined _MSC_VER |
||||
#define snprintf sprintf_s |
||||
#endif |
||||
|
||||
namespace cv { namespace ocl { namespace device |
||||
{ |
||||
namespace mog |
||||
{ |
||||
void mog_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, |
||||
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma); |
||||
|
||||
void getBackgroundImage_ocl(int cn, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures, float backgroundRatio); |
||||
|
||||
void loadConstants(float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, |
||||
unsigned char shadowVal); |
||||
|
||||
void mog2_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& modesUsed, oclMat& weight, oclMat& variance, oclMat& mean, |
||||
float alphaT, float prune, bool detectShadows, int nmixtures); |
||||
|
||||
void getBackgroundImage2_ocl(int cn, const oclMat& modesUsed, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures); |
||||
} |
||||
}}} |
||||
|
||||
namespace mog |
||||
{ |
||||
const int defaultNMixtures = 5; |
||||
const int defaultHistory = 200; |
||||
const float defaultBackgroundRatio = 0.7f; |
||||
const float defaultVarThreshold = 2.5f * 2.5f; |
||||
const float defaultNoiseSigma = 30.0f * 0.5f; |
||||
const float defaultInitialWeight = 0.05f; |
||||
} |
||||
void cv::ocl::BackgroundSubtractor::operator()(const oclMat&, oclMat&, float) |
||||
{ |
||||
|
||||
} |
||||
cv::ocl::BackgroundSubtractor::~BackgroundSubtractor() |
||||
{ |
||||
|
||||
} |
||||
|
||||
cv::ocl::MOG::MOG(int nmixtures) : |
||||
frameSize_(0, 0), frameType_(0), nframes_(0) |
||||
{ |
||||
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : mog::defaultNMixtures, 8); |
||||
history = mog::defaultHistory; |
||||
varThreshold = mog::defaultVarThreshold; |
||||
backgroundRatio = mog::defaultBackgroundRatio; |
||||
noiseSigma = mog::defaultNoiseSigma; |
||||
} |
||||
|
||||
void cv::ocl::MOG::initialize(cv::Size frameSize, int frameType) |
||||
{ |
||||
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); |
||||
|
||||
frameSize_ = frameSize; |
||||
frameType_ = frameType; |
||||
|
||||
int ch = CV_MAT_CN(frameType); |
||||
int work_ch = ch; |
||||
|
||||
// for each gaussian mixture of each pixel bg model we store
|
||||
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
|
||||
// the mean (nchannels values) and
|
||||
// the diagonal covariance matrix (another nchannels values)
|
||||
|
||||
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
||||
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
||||
|
||||
weight_.setTo(cv::Scalar::all(0)); |
||||
sortKey_.setTo(cv::Scalar::all(0)); |
||||
mean_.setTo(cv::Scalar::all(0)); |
||||
var_.setTo(cv::Scalar::all(0)); |
||||
|
||||
nframes_ = 0; |
||||
} |
||||
|
||||
void cv::ocl::MOG::operator()(const cv::ocl::oclMat& frame, cv::ocl::oclMat& fgmask, float learningRate) |
||||
{ |
||||
using namespace cv::ocl::device::mog; |
||||
|
||||
CV_Assert(frame.depth() == CV_8U); |
||||
|
||||
int ch = frame.oclchannels(); |
||||
int work_ch = ch; |
||||
|
||||
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.oclchannels()) |
||||
initialize(frame.size(), frame.type()); |
||||
|
||||
fgmask.create(frameSize_, CV_8UC1); |
||||
|
||||
++nframes_; |
||||
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(nframes_, history); |
||||
CV_Assert(learningRate >= 0.0f); |
||||
|
||||
mog_ocl(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_, |
||||
varThreshold, learningRate, backgroundRatio, noiseSigma); |
||||
} |
||||
|
||||
void cv::ocl::MOG::getBackgroundImage(oclMat& backgroundImage) const |
||||
{ |
||||
using namespace cv::ocl::device::mog; |
||||
|
||||
backgroundImage.create(frameSize_, frameType_); |
||||
|
||||
cv::ocl::device::mog::getBackgroundImage_ocl(backgroundImage.oclchannels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio); |
||||
} |
||||
|
||||
void cv::ocl::MOG::release() |
||||
{ |
||||
frameSize_ = Size(0, 0); |
||||
frameType_ = 0; |
||||
nframes_ = 0; |
||||
|
||||
weight_.release(); |
||||
sortKey_.release(); |
||||
mean_.release(); |
||||
var_.release(); |
||||
clReleaseMemObject(cl_constants); |
||||
} |
||||
|
||||
static void mog_withoutLearning(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& mean, oclMat& var, |
||||
int nmixtures, float varThreshold, float backgroundRatio) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {frame.cols, frame.rows, 1}; |
||||
|
||||
int frame_step = (int)(frame.step/frame.elemSize()); |
||||
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); |
||||
int weight_step = (int)(weight.step/weight.elemSize()); |
||||
int mean_step = (int)(mean.step/mean.elemSize()); |
||||
int var_step = (int)(var.step/var.elemSize()); |
||||
|
||||
int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); |
||||
int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); |
||||
fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); |
||||
|
||||
int frame_offset_y = (int)(frame.offset/frame.step); |
||||
int frame_offset_x = (int)(frame.offset%frame.step); |
||||
frame_offset_x = frame_offset_x/(int)frame.elemSize(); |
||||
|
||||
char build_option[50]; |
||||
if(cn == 1) |
||||
{ |
||||
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
||||
}else |
||||
{ |
||||
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
||||
} |
||||
|
||||
String kernel_name = "mog_withoutLearning_kernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&frame.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&fgmask.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&var.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.cols)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&var_step)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&varThreshold)); |
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&backgroundRatio)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_x)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_y)); |
||||
|
||||
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
||||
} |
||||
|
||||
|
||||
static void mog_withLearning(const oclMat& frame, int cn, oclMat& fgmask_raw, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, |
||||
int nmixtures, float varThreshold, float backgroundRatio, float learningRate, float minVar) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {frame.cols, frame.rows, 1}; |
||||
|
||||
oclMat fgmask(fgmask_raw.size(), CV_32SC1); |
||||
|
||||
int frame_step = (int)(frame.step/frame.elemSize()); |
||||
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); |
||||
int weight_step = (int)(weight.step/weight.elemSize()); |
||||
int sortKey_step = (int)(sortKey.step/sortKey.elemSize()); |
||||
int mean_step = (int)(mean.step/mean.elemSize()); |
||||
int var_step = (int)(var.step/var.elemSize()); |
||||
|
||||
int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); |
||||
int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); |
||||
fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); |
||||
|
||||
int frame_offset_y = (int)(frame.offset/frame.step); |
||||
int frame_offset_x = (int)(frame.offset%frame.step); |
||||
frame_offset_x = frame_offset_x/(int)frame.elemSize(); |
||||
|
||||
char build_option[50]; |
||||
if(cn == 1) |
||||
{ |
||||
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
||||
}else |
||||
{ |
||||
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
||||
} |
||||
|
||||
String kernel_name = "mog_withLearning_kernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&frame.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&fgmask.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&sortKey.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&var.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.cols)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&sortKey_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&var_step)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&varThreshold)); |
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&backgroundRatio)); |
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&learningRate)); |
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&minVar)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_x)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_y)); |
||||
|
||||
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
||||
fgmask.convertTo(fgmask, CV_8U); |
||||
fgmask.copyTo(fgmask_raw); |
||||
} |
||||
|
||||
void cv::ocl::device::mog::mog_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, |
||||
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma) |
||||
{ |
||||
const float minVar = noiseSigma * noiseSigma; |
||||
|
||||
if(learningRate > 0.0f) |
||||
mog_withLearning(frame, cn, fgmask, weight, sortKey, mean, var, nmixtures, |
||||
varThreshold, backgroundRatio, learningRate, minVar); |
||||
else |
||||
mog_withoutLearning(frame, cn, fgmask, weight, mean, var, nmixtures, varThreshold, backgroundRatio); |
||||
} |
||||
|
||||
void cv::ocl::device::mog::getBackgroundImage_ocl(int cn, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures, float backgroundRatio) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {dst.cols, dst.rows, 1}; |
||||
|
||||
int weight_step = (int)(weight.step/weight.elemSize()); |
||||
int mean_step = (int)(mean.step/mean.elemSize()); |
||||
int dst_step = (int)(dst.step/dst.elemSize()); |
||||
|
||||
char build_option[50]; |
||||
if(cn == 1) |
||||
{ |
||||
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
||||
}else |
||||
{ |
||||
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
||||
} |
||||
|
||||
String kernel_name = "getBackgroundImage_kernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst.cols)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&backgroundRatio)); |
||||
|
||||
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
||||
} |
||||
|
||||
void cv::ocl::device::mog::loadConstants(float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal) |
||||
{ |
||||
varMin = cv::min(varMin, varMax); |
||||
varMax = cv::max(varMin, varMax); |
||||
|
||||
c_TB = TB; |
||||
|
||||
_contant_struct *constants = new _contant_struct; |
||||
constants->c_Tb = Tb; |
||||
constants->c_TB = TB; |
||||
constants->c_Tg = Tg; |
||||
constants->c_varInit = varInit; |
||||
constants->c_varMin = varMin; |
||||
constants->c_varMax = varMax; |
||||
constants->c_tau = tau; |
||||
constants->c_shadowVal = shadowVal; |
||||
|
||||
cl_constants = load_constant(*((cl_context*)getoclContext()), *((cl_command_queue*)getoclCommandQueue()), |
||||
(void *)constants, sizeof(_contant_struct)); |
||||
} |
||||
|
||||
void cv::ocl::device::mog::mog2_ocl(const oclMat& frame, int cn, oclMat& fgmaskRaw, oclMat& modesUsed, oclMat& weight, oclMat& variance, |
||||
oclMat& mean, float alphaT, float prune, bool detectShadows, int nmixtures) |
||||
{ |
||||
oclMat fgmask(fgmaskRaw.size(), CV_32SC1); |
||||
|
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
const float alpha1 = 1.0f - alphaT; |
||||
|
||||
cl_int detectShadows_flag = 0; |
||||
if(detectShadows) |
||||
detectShadows_flag = 1; |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {frame.cols, frame.rows, 1}; |
||||
|
||||
int frame_step = (int)(frame.step/frame.elemSize()); |
||||
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); |
||||
int weight_step = (int)(weight.step/weight.elemSize()); |
||||
int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize()); |
||||
int mean_step = (int)(mean.step/mean.elemSize()); |
||||
int var_step = (int)(variance.step/variance.elemSize()); |
||||
|
||||
int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); |
||||
int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); |
||||
fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); |
||||
|
||||
int frame_offset_y = (int)(frame.offset/frame.step); |
||||
int frame_offset_x = (int)(frame.offset%frame.step); |
||||
frame_offset_x = frame_offset_x/(int)frame.elemSize(); |
||||
|
||||
String kernel_name = "mog2_kernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
char build_option[50]; |
||||
if(cn == 1) |
||||
{ |
||||
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
||||
}else |
||||
{ |
||||
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
||||
} |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&frame.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&fgmask.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&modesUsed.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&variance.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.cols)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&var_step)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&alphaT)); |
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&alpha1)); |
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&prune)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&detectShadows_flag)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_x)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_y)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&cl_constants)); |
||||
|
||||
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
||||
|
||||
fgmask.convertTo(fgmask, CV_8U); |
||||
fgmask.copyTo(fgmaskRaw); |
||||
} |
||||
|
||||
void cv::ocl::device::mog::getBackgroundImage2_ocl(int cn, const oclMat& modesUsed, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {modesUsed.cols, modesUsed.rows, 1}; |
||||
|
||||
int weight_step = (int)(weight.step/weight.elemSize()); |
||||
int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize()); |
||||
int mean_step = (int)(mean.step/mean.elemSize()); |
||||
int dst_step = (int)(dst.step/dst.elemSize()); |
||||
|
||||
int dst_y = (int)(dst.offset/dst.step); |
||||
int dst_x = (int)(dst.offset%dst.step); |
||||
dst_x = dst_x/(int)dst.elemSize(); |
||||
|
||||
String kernel_name = "getBackgroundImage2_kernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
char build_option[50]; |
||||
if(cn == 1) |
||||
{ |
||||
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
||||
}else |
||||
{ |
||||
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
||||
} |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&modesUsed.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data)); |
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&c_TB)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed.cols)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_x)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_y)); |
||||
|
||||
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// MOG2
|
||||
|
||||
namespace mog2 |
||||
{ |
||||
// default parameters of gaussian background detection algorithm
|
||||
const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2
|
||||
const float defaultVarThreshold = 4.0f * 4.0f; |
||||
const int defaultNMixtures = 5; // maximal number of Gaussians in mixture
|
||||
const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test
|
||||
const float defaultVarThresholdGen = 3.0f * 3.0f; |
||||
const float defaultVarInit = 15.0f; // initial variance for new components
|
||||
const float defaultVarMax = 5.0f * defaultVarInit; |
||||
const float defaultVarMin = 4.0f; |
||||
|
||||
// additional parameters
|
||||
const float defaultfCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
|
||||
const unsigned char defaultnShadowDetection = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
|
||||
const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
|
||||
} |
||||
|
||||
cv::ocl::MOG2::MOG2(int nmixtures) : frameSize_(0, 0), frameType_(0), nframes_(0) |
||||
{ |
||||
nmixtures_ = nmixtures > 0 ? nmixtures : mog2::defaultNMixtures; |
||||
|
||||
history = mog2::defaultHistory; |
||||
varThreshold = mog2::defaultVarThreshold; |
||||
bShadowDetection = true; |
||||
|
||||
backgroundRatio = mog2::defaultBackgroundRatio; |
||||
fVarInit = mog2::defaultVarInit; |
||||
fVarMax = mog2::defaultVarMax; |
||||
fVarMin = mog2::defaultVarMin; |
||||
|
||||
varThresholdGen = mog2::defaultVarThresholdGen; |
||||
fCT = mog2::defaultfCT; |
||||
nShadowDetection = mog2::defaultnShadowDetection; |
||||
fTau = mog2::defaultfTau; |
||||
} |
||||
|
||||
void cv::ocl::MOG2::initialize(cv::Size frameSize, int frameType) |
||||
{ |
||||
using namespace cv::ocl::device::mog; |
||||
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); |
||||
|
||||
frameSize_ = frameSize; |
||||
frameType_ = frameType; |
||||
nframes_ = 0; |
||||
|
||||
int ch = CV_MAT_CN(frameType); |
||||
int work_ch = ch; |
||||
|
||||
// for each gaussian mixture of each pixel bg model we store ...
|
||||
// the mixture weight (w),
|
||||
// the mean (nchannels values) and
|
||||
// the covariance
|
||||
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
weight_.setTo(Scalar::all(0)); |
||||
|
||||
variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
variance_.setTo(Scalar::all(0)); |
||||
|
||||
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); //4 channels
|
||||
mean_.setTo(Scalar::all(0)); |
||||
|
||||
//make the array for keeping track of the used modes per pixel - all zeros at start
|
||||
bgmodelUsedModes_.create(frameSize_, CV_32FC1); |
||||
bgmodelUsedModes_.setTo(cv::Scalar::all(0)); |
||||
|
||||
loadConstants(varThreshold, backgroundRatio, varThresholdGen, fVarInit, fVarMin, fVarMax, fTau, nShadowDetection); |
||||
} |
||||
|
||||
void cv::ocl::MOG2::operator()(const oclMat& frame, oclMat& fgmask, float learningRate) |
||||
{ |
||||
using namespace cv::ocl::device::mog; |
||||
|
||||
int ch = frame.oclchannels(); |
||||
int work_ch = ch; |
||||
|
||||
if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.oclchannels()) |
||||
initialize(frame.size(), frame.type()); |
||||
|
||||
fgmask.create(frameSize_, CV_8UC1); |
||||
fgmask.setTo(cv::Scalar::all(0)); |
||||
|
||||
++nframes_; |
||||
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history); |
||||
CV_Assert(learningRate >= 0.0f); |
||||
|
||||
mog2_ocl(frame, frame.oclchannels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, nmixtures_); |
||||
} |
||||
|
||||
void cv::ocl::MOG2::getBackgroundImage(oclMat& backgroundImage) const |
||||
{ |
||||
using namespace cv::ocl::device::mog; |
||||
|
||||
backgroundImage.create(frameSize_, frameType_); |
||||
|
||||
cv::ocl::device::mog::getBackgroundImage2_ocl(backgroundImage.oclchannels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, nmixtures_); |
||||
} |
||||
|
||||
void cv::ocl::MOG2::release() |
||||
{ |
||||
frameSize_ = Size(0, 0); |
||||
frameType_ = 0; |
||||
nframes_ = 0; |
||||
|
||||
weight_.release(); |
||||
variance_.release(); |
||||
mean_.release(); |
||||
|
||||
bgmodelUsedModes_.release(); |
||||
} |
@ -0,0 +1,535 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved. |
||||
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Jin Ma jin@multicorewareinc.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other oclMaterials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if defined (CN1) |
||||
#define T_FRAME uchar |
||||
#define T_MEAN_VAR float |
||||
#define CONVERT_TYPE convert_uchar_sat |
||||
#define F_ZERO (0.0f) |
||||
float cvt(uchar val) |
||||
{ |
||||
return val; |
||||
} |
||||
|
||||
float sqr(float val) |
||||
{ |
||||
return val * val; |
||||
} |
||||
|
||||
float sum(float val) |
||||
{ |
||||
return val; |
||||
} |
||||
|
||||
float clamp1(float var, float learningRate, float diff, float minVar) |
||||
{ |
||||
return fmax(var + learningRate * (diff * diff - var), minVar); |
||||
} |
||||
#else |
||||
#define T_FRAME uchar4 |
||||
#define T_MEAN_VAR float4 |
||||
#define CONVERT_TYPE convert_uchar4_sat |
||||
#define F_ZERO (0.0f, 0.0f, 0.0f, 0.0f) |
||||
float4 cvt(const uchar4 val) |
||||
{ |
||||
float4 result; |
||||
result.x = val.x; |
||||
result.y = val.y; |
||||
result.z = val.z; |
||||
result.w = val.w; |
||||
|
||||
return result; |
||||
} |
||||
|
||||
float sqr(const float4 val) |
||||
{ |
||||
return val.x * val.x + val.y * val.y + val.z * val.z; |
||||
} |
||||
|
||||
float sum(const float4 val) |
||||
{ |
||||
return (val.x + val.y + val.z); |
||||
} |
||||
|
||||
float4 clamp1(const float4 var, float learningRate, const float4 diff, float minVar) |
||||
{ |
||||
float4 result; |
||||
result.x = fmax(var.x + learningRate * (diff.x * diff.x - var.x), minVar); |
||||
result.y = fmax(var.y + learningRate * (diff.y * diff.y - var.y), minVar); |
||||
result.z = fmax(var.z + learningRate * (diff.z * diff.z - var.z), minVar); |
||||
result.w = 0.0f; |
||||
return result; |
||||
} |
||||
#endif |
||||
|
||||
typedef struct |
||||
{ |
||||
float c_Tb; |
||||
float c_TB; |
||||
float c_Tg; |
||||
float c_varInit; |
||||
float c_varMin; |
||||
float c_varMax; |
||||
float c_tau; |
||||
uchar c_shadowVal; |
||||
}con_srtuct_t; |
||||
|
||||
void swap(__global float* ptr, int x, int y, int k, int rows, int ptr_step) |
||||
{ |
||||
float val = ptr[(k * rows + y) * ptr_step + x]; |
||||
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x]; |
||||
ptr[((k + 1) * rows + y) * ptr_step + x] = val; |
||||
} |
||||
|
||||
void swap4(__global float4* ptr, int x, int y, int k, int rows, int ptr_step) |
||||
{ |
||||
float4 val = ptr[(k * rows + y) * ptr_step + x]; |
||||
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x]; |
||||
ptr[((k + 1) * rows + y) * ptr_step + x] = val; |
||||
} |
||||
|
||||
__kernel void mog_withoutLearning_kernel(__global T_FRAME* frame, __global uchar* fgmask, |
||||
__global float* weight, __global T_MEAN_VAR* mean, __global T_MEAN_VAR* var, |
||||
int frame_row, int frame_col, int frame_step, int fgmask_step, |
||||
int weight_step, int mean_step, int var_step, |
||||
float varThreshold, float backgroundRatio, int fgmask_offset_x, |
||||
int fgmask_offset_y, int frame_offset_x, int frame_offset_y) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if (x < frame_col && y < frame_row) |
||||
{ |
||||
T_MEAN_VAR pix = cvt(frame[(y + frame_offset_y) * frame_step + (x + frame_offset_x)]); |
||||
|
||||
int kHit = -1; |
||||
int kForeground = -1; |
||||
|
||||
for (int k = 0; k < (NMIXTURES); ++k) |
||||
{ |
||||
if (weight[(k * frame_row + y) * weight_step + x] < 1.192092896e-07f) |
||||
break; |
||||
|
||||
T_MEAN_VAR mu = mean[(k * frame_row + y) * mean_step + x]; |
||||
T_MEAN_VAR _var = var[(k * frame_row + y) + var_step + x]; |
||||
|
||||
T_MEAN_VAR diff = pix - mu; |
||||
|
||||
if (sqr(diff) < varThreshold * sum(_var)) |
||||
{ |
||||
kHit = k; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
if (kHit >= 0) |
||||
{ |
||||
float wsum = 0.0f; |
||||
for (int k = 0; k < (NMIXTURES); ++k) |
||||
{ |
||||
wsum += weight[(k * frame_row + y) * weight_step + x]; |
||||
|
||||
if (wsum > backgroundRatio) |
||||
{ |
||||
kForeground = k + 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
if(kHit < 0 || kHit >= kForeground) |
||||
fgmask[(y + fgmask_offset_y) * fgmask_step + (x + fgmask_offset_x)] = (uchar) (-1); |
||||
else |
||||
fgmask[(y + fgmask_offset_y) * fgmask_step + (x + fgmask_offset_x)] = (uchar) (0); |
||||
} |
||||
} |
||||
|
||||
__kernel void mog_withLearning_kernel(__global T_FRAME* frame, __global int* fgmask, |
||||
__global float* weight, __global float* sortKey, __global T_MEAN_VAR* mean, |
||||
__global T_MEAN_VAR* var, int frame_row, int frame_col, int frame_step, int fgmask_step, |
||||
int weight_step, int sortKey_step, int mean_step, int var_step, |
||||
float varThreshold, float backgroundRatio, float learningRate, float minVar, |
||||
int fgmask_offset_x, int fgmask_offset_y, int frame_offset_x, int frame_offset_y) |
||||
{ |
||||
const float w0 = 0.05f; |
||||
const float sk0 = w0 / 30.0f; |
||||
const float var0 = 900.f; |
||||
|
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x >= frame_col || y >= frame_row) return; |
||||
float wsum = 0.0f; |
||||
int kHit = -1; |
||||
int kForeground = -1; |
||||
int k = 0; |
||||
|
||||
T_MEAN_VAR pix = cvt(frame[(y + frame_offset_y) * frame_step + (x + frame_offset_x)]); |
||||
|
||||
for (; k < (NMIXTURES); ++k) |
||||
{ |
||||
float w = weight[(k * frame_row + y) * weight_step + x]; |
||||
wsum += w; |
||||
|
||||
if (w < 1.192092896e-07f) |
||||
break; |
||||
|
||||
T_MEAN_VAR mu = mean[(k * frame_row + y) * mean_step + x]; |
||||
T_MEAN_VAR _var = var[(k * frame_row + y) * var_step + x]; |
||||
|
||||
float sortKey_prev, weight_prev; |
||||
T_MEAN_VAR mean_prev, var_prev; |
||||
if (sqr(pix - mu) < varThreshold * sum(_var)) |
||||
{ |
||||
wsum -= w; |
||||
float dw = learningRate * (1.0f - w); |
||||
|
||||
_var = clamp1(_var, learningRate, pix - mu, minVar); |
||||
|
||||
sortKey_prev = w / sqr(sum(_var)); |
||||
sortKey[(k * frame_row + y) * sortKey_step + x] = sortKey_prev; |
||||
|
||||
weight_prev = w + dw; |
||||
weight[(k * frame_row + y) * weight_step + x] = weight_prev; |
||||
|
||||
mean_prev = mu + learningRate * (pix - mu); |
||||
mean[(k * frame_row + y) * mean_step + x] = mean_prev; |
||||
|
||||
var_prev = _var; |
||||
var[(k * frame_row + y) * var_step + x] = var_prev; |
||||
} |
||||
|
||||
int k1 = k - 1; |
||||
|
||||
if (k1 >= 0 && sqr(pix - mu) < varThreshold * sum(_var)) |
||||
{ |
||||
float sortKey_next = sortKey[(k1 * frame_row + y) * sortKey_step + x]; |
||||
float weight_next = weight[(k1 * frame_row + y) * weight_step + x]; |
||||
T_MEAN_VAR mean_next = mean[(k1 * frame_row + y) * mean_step + x]; |
||||
T_MEAN_VAR var_next = var[(k1 * frame_row + y) * var_step + x]; |
||||
|
||||
for (; sortKey_next < sortKey_prev && k1 >= 0; --k1) |
||||
{ |
||||
sortKey[(k1 * frame_row + y) * sortKey_step + x] = sortKey_prev; |
||||
sortKey[((k1 + 1) * frame_row + y) * sortKey_step + x] = sortKey_next; |
||||
|
||||
weight[(k1 * frame_row + y) * weight_step + x] = weight_prev; |
||||
weight[((k1 + 1) * frame_row + y) * weight_step + x] = weight_next; |
||||
|
||||
mean[(k1 * frame_row + y) * mean_step + x] = mean_prev; |
||||
mean[((k1 + 1) * frame_row + y) * mean_step + x] = mean_next; |
||||
|
||||
var[(k1 * frame_row + y) * var_step + x] = var_prev; |
||||
var[((k1 + 1) * frame_row + y) * var_step + x] = var_next; |
||||
|
||||
sortKey_prev = sortKey_next; |
||||
sortKey_next = k1 > 0 ? sortKey[((k1 - 1) * frame_row + y) * sortKey_step + x] : 0.0f; |
||||
|
||||
weight_prev = weight_next; |
||||
weight_next = k1 > 0 ? weight[((k1 - 1) * frame_row + y) * weight_step + x] : 0.0f; |
||||
|
||||
mean_prev = mean_next; |
||||
mean_next = k1 > 0 ? mean[((k1 - 1) * frame_row + y) * mean_step + x] : (T_MEAN_VAR)F_ZERO; |
||||
|
||||
var_prev = var_next; |
||||
var_next = k1 > 0 ? var[((k1 - 1) * frame_row + y) * var_step + x] : (T_MEAN_VAR)F_ZERO; |
||||
} |
||||
} |
||||
|
||||
kHit = k1 + 1; |
||||
break; |
||||
} |
||||
|
||||
if (kHit < 0) |
||||
{ |
||||
kHit = k = k < ((NMIXTURES) - 1) ? k : ((NMIXTURES) - 1); |
||||
wsum += w0 - weight[(k * frame_row + y) * weight_step + x]; |
||||
|
||||
weight[(k * frame_row + y) * weight_step + x] = w0; |
||||
mean[(k * frame_row + y) * mean_step + x] = pix; |
||||
#if defined (CN1) |
||||
var[(k * frame_row + y) * var_step + x] = (T_MEAN_VAR)(var0); |
||||
#else |
||||
var[(k * frame_row + y) * var_step + x] = (T_MEAN_VAR)(var0, var0, var0, var0); |
||||
#endif |
||||
sortKey[(k * frame_row + y) * sortKey_step + x] = sk0; |
||||
} |
||||
else |
||||
{ |
||||
for( ; k < (NMIXTURES); k++) |
||||
wsum += weight[(k * frame_row + y) * weight_step + x]; |
||||
} |
||||
|
||||
float wscale = 1.0f / wsum; |
||||
wsum = 0; |
||||
for (k = 0; k < (NMIXTURES); ++k) |
||||
{ |
||||
float w = weight[(k * frame_row + y) * weight_step + x]; |
||||
w *= wscale; |
||||
wsum += w; |
||||
|
||||
weight[(k * frame_row + y) * weight_step + x] = w; |
||||
sortKey[(k * frame_row + y) * sortKey_step + x] *= wscale; |
||||
|
||||
kForeground = select(kForeground, k + 1, wsum > backgroundRatio && kForeground < 0); |
||||
} |
||||
fgmask[(y + fgmask_offset_y) * fgmask_step + (x + fgmask_offset_x)] = (uchar)(-(kHit >= kForeground)); |
||||
} |
||||
|
||||
|
||||
__kernel void getBackgroundImage_kernel(__global float* weight, __global T_MEAN_VAR* mean, __global T_FRAME* dst, |
||||
int dst_row, int dst_col, int weight_step, int mean_step, int dst_step, |
||||
float backgroundRatio) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < dst_col && y < dst_row) |
||||
{ |
||||
T_MEAN_VAR meanVal = (T_MEAN_VAR)F_ZERO; |
||||
float totalWeight = 0.0f; |
||||
|
||||
for (int mode = 0; mode < (NMIXTURES); ++mode) |
||||
{ |
||||
float _weight = weight[(mode * dst_row + y) * weight_step + x]; |
||||
|
||||
T_MEAN_VAR _mean = mean[(mode * dst_row + y) * mean_step + x]; |
||||
meanVal = meanVal + _weight * _mean; |
||||
|
||||
totalWeight += _weight; |
||||
|
||||
if(totalWeight > backgroundRatio) |
||||
break; |
||||
} |
||||
meanVal = meanVal * (1.f / totalWeight); |
||||
dst[y * dst_step + x] = CONVERT_TYPE(meanVal); |
||||
} |
||||
} |
||||
|
||||
__kernel void mog2_kernel(__global T_FRAME * frame, __global int* fgmask, __global float* weight, __global T_MEAN_VAR * mean, |
||||
__global int* modesUsed, __global float* variance, int frame_row, int frame_col, int frame_step, |
||||
int fgmask_step, int weight_step, int mean_step, int modesUsed_step, int var_step, float alphaT, float alpha1, float prune, |
||||
int detectShadows_flag, int fgmask_offset_x, int fgmask_offset_y, int frame_offset_x, int frame_offset_y, __constant con_srtuct_t* constants) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < frame_col && y < frame_row) |
||||
{ |
||||
T_MEAN_VAR pix = cvt(frame[(y + frame_offset_y) * frame_step + x + frame_offset_x]); |
||||
|
||||
bool background = false; // true - the pixel classified as background |
||||
|
||||
bool fitsPDF = false; //if it remains zero a new GMM mode will be added |
||||
|
||||
int nmodes = modesUsed[y * modesUsed_step + x]; |
||||
int nNewModes = nmodes; //current number of modes in GMM |
||||
|
||||
float totalWeight = 0.0f; |
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
{ |
||||
float _weight = alpha1 * weight[(mode * frame_row + y) * weight_step + x] + prune; |
||||
|
||||
if (!fitsPDF) |
||||
{ |
||||
float var = variance[(mode * frame_row + y) * var_step + x]; |
||||
|
||||
T_MEAN_VAR _mean = mean[(mode * frame_row + y) * mean_step + x]; |
||||
|
||||
T_MEAN_VAR diff = _mean - pix; |
||||
float dist2 = sqr(diff); |
||||
|
||||
if (totalWeight < constants -> c_TB && dist2 < constants -> c_Tb * var) |
||||
background = true; |
||||
|
||||
if (dist2 < constants -> c_Tg * var) |
||||
{ |
||||
fitsPDF = true; |
||||
_weight += alphaT; |
||||
float k = alphaT / _weight; |
||||
mean[(mode * frame_row + y) * mean_step + x] = _mean - k * diff; |
||||
float varnew = var + k * (dist2 - var); |
||||
varnew = fmax(varnew, constants -> c_varMin); |
||||
varnew = fmin(varnew, constants -> c_varMax); |
||||
|
||||
variance[(mode * frame_row + y) * var_step + x] = varnew; |
||||
for (int i = mode; i > 0; --i) |
||||
{ |
||||
if (_weight < weight[((i - 1) * frame_row + y) * weight_step + x]) |
||||
break; |
||||
swap(weight, x, y, i - 1, frame_row, weight_step); |
||||
swap(variance, x, y, i - 1, frame_row, var_step); |
||||
#if defined (CN1) |
||||
swap(mean, x, y, i - 1, frame_row, mean_step); |
||||
#else |
||||
swap4(mean, x, y, i - 1, frame_row, mean_step); |
||||
#endif |
||||
} |
||||
} |
||||
} // !fitsPDF |
||||
|
||||
if (_weight < -prune) |
||||
{ |
||||
_weight = 0.0; |
||||
nmodes--; |
||||
} |
||||
|
||||
weight[(mode * frame_row + y) * weight_step + x] = _weight; //update weight by the calculated value |
||||
totalWeight += _weight; |
||||
} |
||||
|
||||
totalWeight = 1.f / totalWeight; |
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
weight[(mode * frame_row + y) * weight_step + x] *= totalWeight; |
||||
|
||||
nmodes = nNewModes; |
||||
|
||||
if (!fitsPDF) |
||||
{ |
||||
int mode = nmodes == (NMIXTURES) ? (NMIXTURES) - 1 : nmodes++; |
||||
|
||||
if (nmodes == 1) |
||||
weight[(mode * frame_row + y) * weight_step + x] = 1.f; |
||||
else |
||||
{ |
||||
weight[(mode * frame_row + y) * weight_step + x] = alphaT; |
||||
|
||||
for (int i = 0; i < nmodes - 1; ++i) |
||||
weight[(i * frame_row + y) * weight_step + x] *= alpha1; |
||||
} |
||||
|
||||
mean[(mode * frame_row + y) * mean_step + x] = pix; |
||||
variance[(mode * frame_row + y) * var_step + x] = constants -> c_varInit; |
||||
|
||||
for (int i = nmodes - 1; i > 0; --i) |
||||
{ |
||||
// check one up |
||||
if (alphaT < weight[((i - 1) * frame_row + y) * weight_step + x]) |
||||
break; |
||||
|
||||
swap(weight, x, y, i - 1, frame_row, weight_step); |
||||
swap(variance, x, y, i - 1, frame_row, var_step); |
||||
#if defined (CN1) |
||||
swap(mean, x, y, i - 1, frame_row, mean_step); |
||||
#else |
||||
swap4(mean, x, y, i - 1, frame_row, mean_step); |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
modesUsed[y * modesUsed_step + x] = nmodes; |
||||
|
||||
bool isShadow = false; |
||||
if (detectShadows_flag && !background) |
||||
{ |
||||
float tWeight = 0.0f; |
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
{ |
||||
T_MEAN_VAR _mean = mean[(mode * frame_row + y) * mean_step + x]; |
||||
|
||||
T_MEAN_VAR pix_mean = pix * _mean; |
||||
|
||||
float numerator = sum(pix_mean); |
||||
float denominator = sqr(_mean); |
||||
|
||||
if (denominator == 0) |
||||
break; |
||||
|
||||
if (numerator <= denominator && numerator >= constants -> c_tau * denominator) |
||||
{ |
||||
float a = numerator / denominator; |
||||
|
||||
T_MEAN_VAR dD = a * _mean - pix; |
||||
|
||||
if (sqr(dD) < constants -> c_Tb * variance[(mode * frame_row + y) * var_step + x] * a * a) |
||||
{ |
||||
isShadow = true; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
tWeight += weight[(mode * frame_row + y) * weight_step + x]; |
||||
if (tWeight > constants -> c_TB) |
||||
break; |
||||
} |
||||
} |
||||
|
||||
fgmask[(y + fgmask_offset_y) * fgmask_step + x + fgmask_offset_x] = background ? 0 : isShadow ? constants -> c_shadowVal : 255; |
||||
} |
||||
} |
||||
|
||||
__kernel void getBackgroundImage2_kernel(__global int* modesUsed, __global float* weight, __global T_MEAN_VAR* mean, |
||||
__global T_FRAME* dst, float c_TB, int modesUsed_row, int modesUsed_col, int modesUsed_step, int weight_step, |
||||
int mean_step, int dst_step, int dst_x, int dst_y) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < modesUsed_col && y < modesUsed_row) |
||||
{ |
||||
int nmodes = modesUsed[y * modesUsed_step + x]; |
||||
|
||||
T_MEAN_VAR meanVal = (T_MEAN_VAR)F_ZERO; |
||||
|
||||
float totalWeight = 0.0f; |
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
{ |
||||
float _weight = weight[(mode * modesUsed_row + y) * weight_step + x]; |
||||
|
||||
T_MEAN_VAR _mean = mean[(mode * modesUsed_row + y) * mean_step + x]; |
||||
meanVal = meanVal + _weight * _mean; |
||||
|
||||
totalWeight += _weight; |
||||
|
||||
if(totalWeight > c_TB) |
||||
break; |
||||
} |
||||
|
||||
meanVal = meanVal * (1.f / totalWeight); |
||||
dst[(y + dst_y) * dst_step + x + dst_x] = CONVERT_TYPE(meanVal); |
||||
} |
||||
} |
@ -0,0 +1,232 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
|
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
using namespace cvtest; |
||||
using namespace testing; |
||||
using namespace std; |
||||
|
||||
extern string workdir; |
||||
//////////////////////////////////////////////////////
|
||||
// MOG
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(UseGray, bool) |
||||
IMPLEMENT_PARAM_CLASS(LearningRate, double) |
||||
} |
||||
|
||||
PARAM_TEST_CASE(mog, UseGray, LearningRate, bool) |
||||
{ |
||||
bool useGray; |
||||
double learningRate; |
||||
bool useRoi; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
useGray = GET_PARAM(0); |
||||
|
||||
learningRate = GET_PARAM(1); |
||||
|
||||
useRoi = GET_PARAM(2); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(mog, Update) |
||||
{ |
||||
std::string inputFile = string(cvtest::TS::ptr()->get_data_path()) + "gpu/768x576.avi"; |
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
cv::ocl::MOG mog; |
||||
cv::ocl::oclMat foreground = createMat_ocl(frame.size(), CV_8UC1, useRoi); |
||||
|
||||
cv::BackgroundSubtractorMOG mog_gold; |
||||
cv::Mat foreground_gold; |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (useGray) |
||||
{ |
||||
cv::Mat temp; |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
mog(loadMat_ocl(frame, useRoi), foreground, (float)learningRate); |
||||
|
||||
mog_gold(frame, foreground_gold, learningRate); |
||||
|
||||
EXPECT_MAT_NEAR(foreground_gold, foreground, 0.0); |
||||
} |
||||
} |
||||
INSTANTIATE_TEST_CASE_P(OCL_Video, mog, testing::Combine( |
||||
testing::Values(UseGray(false), UseGray(true)), |
||||
testing::Values(LearningRate(0.0), LearningRate(0.01)), |
||||
Values(true, false))); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// MOG2
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(DetectShadow, bool) |
||||
} |
||||
|
||||
PARAM_TEST_CASE(mog2, UseGray, DetectShadow, bool) |
||||
{ |
||||
bool useGray; |
||||
bool detectShadow; |
||||
bool useRoi; |
||||
virtual void SetUp() |
||||
{ |
||||
useGray = GET_PARAM(0); |
||||
detectShadow = GET_PARAM(1); |
||||
useRoi = GET_PARAM(2); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(mog2, Update) |
||||
{ |
||||
std::string inputFile = string(cvtest::TS::ptr()->get_data_path()) + "gpu/768x576.avi"; |
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
cv::ocl::MOG2 mog2; |
||||
mog2.bShadowDetection = detectShadow; |
||||
cv::ocl::oclMat foreground = createMat_ocl(frame.size(), CV_8UC1, useRoi); |
||||
|
||||
cv::BackgroundSubtractorMOG2 mog2_gold; |
||||
mog2_gold.set("detectShadows", detectShadow); |
||||
cv::Mat foreground_gold; |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (useGray) |
||||
{ |
||||
cv::Mat temp; |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
mog2(loadMat_ocl(frame, useRoi), foreground); |
||||
|
||||
mog2_gold(frame, foreground_gold); |
||||
|
||||
if (detectShadow) |
||||
{ |
||||
|
||||
EXPECT_MAT_SIMILAR(foreground_gold, foreground, 1e-2); |
||||
} |
||||
else |
||||
{ |
||||
EXPECT_MAT_NEAR(foreground_gold, foreground, 0); |
||||
} |
||||
} |
||||
} |
||||
|
||||
TEST_P(mog2, getBackgroundImage) |
||||
{ |
||||
if (useGray) |
||||
return; |
||||
|
||||
std::string inputFile = string(cvtest::TS::ptr()->get_data_path()) + "video/768x576.avi"; |
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
|
||||
cv::ocl::MOG2 mog2; |
||||
mog2.bShadowDetection = detectShadow; |
||||
cv::ocl::oclMat foreground; |
||||
|
||||
cv::BackgroundSubtractorMOG2 mog2_gold; |
||||
mog2_gold.set("detectShadows", detectShadow); |
||||
cv::Mat foreground_gold; |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
mog2(loadMat_ocl(frame, useRoi), foreground); |
||||
|
||||
mog2_gold(frame, foreground_gold); |
||||
} |
||||
|
||||
cv::ocl::oclMat background = createMat_ocl(frame.size(), frame.type(), useRoi); |
||||
mog2.getBackgroundImage(background); |
||||
|
||||
cv::Mat background_gold; |
||||
mog2_gold.getBackgroundImage(background_gold); |
||||
|
||||
EXPECT_MAT_NEAR(background_gold, background, 1.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_Video, mog2, testing::Combine( |
||||
testing::Values(UseGray(true), UseGray(false)), |
||||
testing::Values(DetectShadow(true), DetectShadow(false)), |
||||
Values(true, false))); |
||||
|
||||
#endif |
@ -0,0 +1,135 @@ |
||||
#include <iostream> |
||||
#include <string> |
||||
|
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/ocl/ocl.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
|
||||
#define M_MOG 1 |
||||
#define M_MOG2 2 |
||||
|
||||
int main(int argc, const char** argv) |
||||
{ |
||||
|
||||
cv::CommandLineParser cmd(argc, argv, |
||||
"{ c | camera | false | use camera }" |
||||
"{ f | file | 768x576.avi | input video file }" |
||||
"{ m | method | mog | method (mog, mog2) }" |
||||
"{ h | help | false | print help message }"); |
||||
|
||||
if (cmd.get<bool>("help")) |
||||
{ |
||||
cout << "Usage : bgfg_segm [options]" << endl; |
||||
cout << "Avaible options:" << endl; |
||||
cmd.printParams(); |
||||
return 0; |
||||
} |
||||
|
||||
bool useCamera = cmd.get<bool>("camera"); |
||||
string file = cmd.get<string>("file"); |
||||
string method = cmd.get<string>("method"); |
||||
|
||||
if (method != "mog" && method != "mog2") |
||||
{ |
||||
cerr << "Incorrect method" << endl; |
||||
return -1; |
||||
} |
||||
|
||||
int m = method == "mog" ? M_MOG : M_MOG2; |
||||
|
||||
VideoCapture cap; |
||||
|
||||
if (useCamera) |
||||
cap.open(0); |
||||
else |
||||
cap.open(file); |
||||
|
||||
if (!cap.isOpened()) |
||||
{ |
||||
cerr << "can not open camera or video file" << endl; |
||||
return -1; |
||||
} |
||||
|
||||
std::vector<cv::ocl::Info>info; |
||||
cv::ocl::getDevice(info); |
||||
|
||||
Mat frame; |
||||
cap >> frame; |
||||
|
||||
oclMat d_frame(frame); |
||||
|
||||
cv::ocl::MOG mog; |
||||
cv::ocl::MOG2 mog2; |
||||
|
||||
oclMat d_fgmask; |
||||
oclMat d_fgimg; |
||||
oclMat d_bgimg; |
||||
|
||||
d_fgimg.create(d_frame.size(), d_frame.type()); |
||||
|
||||
Mat fgmask; |
||||
Mat fgimg; |
||||
Mat bgimg; |
||||
|
||||
switch (m) |
||||
{ |
||||
case M_MOG: |
||||
mog(d_frame, d_fgmask, 0.01f); |
||||
break; |
||||
|
||||
case M_MOG2: |
||||
mog2(d_frame, d_fgmask); |
||||
break; |
||||
} |
||||
|
||||
for(;;) |
||||
{ |
||||
cap >> frame; |
||||
if (frame.empty()) |
||||
break; |
||||
d_frame.upload(frame); |
||||
|
||||
int64 start = cv::getTickCount(); |
||||
|
||||
//update the model
|
||||
switch (m) |
||||
{ |
||||
case M_MOG: |
||||
mog(d_frame, d_fgmask, 0.01f); |
||||
mog.getBackgroundImage(d_bgimg); |
||||
break; |
||||
|
||||
case M_MOG2: |
||||
mog2(d_frame, d_fgmask); |
||||
mog2.getBackgroundImage(d_bgimg); |
||||
break; |
||||
} |
||||
|
||||
double fps = cv::getTickFrequency() / (cv::getTickCount() - start); |
||||
std::cout << "FPS : " << fps << std::endl; |
||||
|
||||
d_fgimg.setTo(Scalar::all(0)); |
||||
d_frame.copyTo(d_fgimg, d_fgmask); |
||||
|
||||
d_fgmask.download(fgmask); |
||||
d_fgimg.download(fgimg); |
||||
if (!d_bgimg.empty()) |
||||
d_bgimg.download(bgimg); |
||||
|
||||
imshow("image", frame); |
||||
imshow("foreground mask", fgmask); |
||||
imshow("foreground image", fgimg); |
||||
if (!bgimg.empty()) |
||||
imshow("mean background image", bgimg); |
||||
|
||||
int key = waitKey(30); |
||||
if (key == 27) |
||||
break; |
||||
} |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue