Merge pull request #930 from pengx17:2.4_haar_ext

pull/927/merge
Roman Donchenko 12 years ago committed by OpenCV Buildbot
commit c3f5e73769
  1. 2
      modules/ocl/include/opencv2/ocl/ocl.hpp
  2. 505
      modules/ocl/src/haar.cpp
  3. 250
      modules/ocl/src/opencl/haarobjectdetect.cl
  4. 88
      modules/ocl/src/opencl/haarobjectdetect_scaled2.cl
  5. 32
      modules/ocl/test/test_haar.cpp

@ -817,7 +817,7 @@ namespace cv
OclCascadeClassifierBuf() : OclCascadeClassifierBuf() :
m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {} m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {}
~OclCascadeClassifierBuf() {} ~OclCascadeClassifierBuf() { release(); }
void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces, void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,

@ -137,47 +137,22 @@ struct CvHidHaarClassifierCascade
}; };
typedef struct typedef struct
{ {
//int rows;
//int ystep;
int width_height; int width_height;
//int height;
int grpnumperline_totalgrp; int grpnumperline_totalgrp;
//int totalgrp;
int imgoff; int imgoff;
float factor; float factor;
} detect_piramid_info; } detect_piramid_info;
#ifdef WIN32
#if defined WIN32 && !defined __MINGW__ && !defined __MINGW32__
#define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT)) #define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT))
typedef _ALIGNED_ON(128) struct GpuHidHaarFeature
{
_ALIGNED_ON(32) struct
{
_ALIGNED_ON(4) int p0 ;
_ALIGNED_ON(4) int p1 ;
_ALIGNED_ON(4) int p2 ;
_ALIGNED_ON(4) int p3 ;
_ALIGNED_ON(4) float weight ;
}
/*_ALIGNED_ON(32)*/ rect[CV_HAAR_FEATURE_MAX] ;
}
GpuHidHaarFeature;
typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode
{ {
_ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4]; _ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4];
//_ALIGNED_ON(16) int p1[CV_HAAR_FEATURE_MAX] ;
//_ALIGNED_ON(16) int p2[CV_HAAR_FEATURE_MAX] ;
//_ALIGNED_ON(16) int p3[CV_HAAR_FEATURE_MAX] ;
/*_ALIGNED_ON(16)*/
float weight[CV_HAAR_FEATURE_MAX] ; float weight[CV_HAAR_FEATURE_MAX] ;
/*_ALIGNED_ON(4)*/
float threshold ; float threshold ;
_ALIGNED_ON(8) float alpha[2] ; _ALIGNED_ON(16) float alpha[3] ;
_ALIGNED_ON(4) int left ; _ALIGNED_ON(4) int left ;
_ALIGNED_ON(4) int right ; _ALIGNED_ON(4) int right ;
// GpuHidHaarFeature feature __attribute__((aligned (128)));
} }
GpuHidHaarTreeNode; GpuHidHaarTreeNode;
@ -185,7 +160,6 @@ GpuHidHaarTreeNode;
typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier
{ {
_ALIGNED_ON(4) int count; _ALIGNED_ON(4) int count;
//CvHaarFeature* orig_feature;
_ALIGNED_ON(8) GpuHidHaarTreeNode *node ; _ALIGNED_ON(8) GpuHidHaarTreeNode *node ;
_ALIGNED_ON(8) float *alpha ; _ALIGNED_ON(8) float *alpha ;
} }
@ -220,32 +194,16 @@ typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade
_ALIGNED_ON(4) int p2 ; _ALIGNED_ON(4) int p2 ;
_ALIGNED_ON(4) int p3 ; _ALIGNED_ON(4) int p3 ;
_ALIGNED_ON(4) float inv_window_area ; _ALIGNED_ON(4) float inv_window_area ;
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
} GpuHidHaarClassifierCascade; } GpuHidHaarClassifierCascade;
#else #else
#define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) )) #define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) ))
typedef struct _ALIGNED_ON(128) GpuHidHaarFeature
{
struct _ALIGNED_ON(32)
{
int p0 _ALIGNED_ON(4);
int p1 _ALIGNED_ON(4);
int p2 _ALIGNED_ON(4);
int p3 _ALIGNED_ON(4);
float weight _ALIGNED_ON(4);
}
rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32);
}
GpuHidHaarFeature;
typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode
{ {
int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64); int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64);
float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16); float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16);
float threshold;// _ALIGNED_ON(4); float threshold;// _ALIGNED_ON(4);
float alpha[2] _ALIGNED_ON(8); float alpha[3] _ALIGNED_ON(16);
int left _ALIGNED_ON(4); int left _ALIGNED_ON(4);
int right _ALIGNED_ON(4); int right _ALIGNED_ON(4);
} }
@ -288,7 +246,6 @@ typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade
int p2 _ALIGNED_ON(4); int p2 _ALIGNED_ON(4);
int p3 _ALIGNED_ON(4); int p3 _ALIGNED_ON(4);
float inv_window_area _ALIGNED_ON(4); float inv_window_area _ALIGNED_ON(4);
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
} GpuHidHaarClassifierCascade; } GpuHidHaarClassifierCascade;
#endif #endif
@ -296,36 +253,6 @@ const int icv_object_win_border = 1;
const float icv_stage_threshold_bias = 0.0001f; const float icv_stage_threshold_bias = 0.0001f;
double globaltime = 0; double globaltime = 0;
// static CvHaarClassifierCascade * gpuCreateHaarClassifierCascade( int stage_count )
// {
// CvHaarClassifierCascade *cascade = 0;
// int block_size = sizeof(*cascade) + stage_count * sizeof(*cascade->stage_classifier);
// if( stage_count <= 0 )
// CV_Error( CV_StsOutOfRange, "Number of stages should be positive" );
// cascade = (CvHaarClassifierCascade *)cvAlloc( block_size );
// memset( cascade, 0, block_size );
// cascade->stage_classifier = (CvHaarStageClassifier *)(cascade + 1);
// cascade->flags = CV_HAAR_MAGIC_VAL;
// cascade->count = stage_count;
// return cascade;
// }
//static int globalcounter = 0;
// static void gpuReleaseHidHaarClassifierCascade( GpuHidHaarClassifierCascade **_cascade )
// {
// if( _cascade && *_cascade )
// {
// cvFree( _cascade );
// }
// }
/* create more efficient internal representation of haar classifier cascade */ /* create more efficient internal representation of haar classifier cascade */
static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier) static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier)
{ {
@ -441,24 +368,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl
hid_stage_classifier->two_rects = 1; hid_stage_classifier->two_rects = 1;
haar_classifier_ptr += stage_classifier->count; haar_classifier_ptr += stage_classifier->count;
/*
hid_stage_classifier->parent = (stage_classifier->parent == -1)
? NULL : stage_classifier_ptr + stage_classifier->parent;
hid_stage_classifier->next = (stage_classifier->next == -1)
? NULL : stage_classifier_ptr + stage_classifier->next;
hid_stage_classifier->child = (stage_classifier->child == -1)
? NULL : stage_classifier_ptr + stage_classifier->child;
out->is_tree |= hid_stage_classifier->next != NULL;
*/
for( j = 0; j < stage_classifier->count; j++ ) for( j = 0; j < stage_classifier->count; j++ )
{ {
CvHaarClassifier *classifier = stage_classifier->classifier + j; CvHaarClassifier *classifier = stage_classifier->classifier + j;
GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j; GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j;
int node_count = classifier->count; int node_count = classifier->count;
// float* alpha_ptr = (float*)(haar_node_ptr + node_count);
float *alpha_ptr = &haar_node_ptr->alpha[0]; float *alpha_ptr = &haar_node_ptr->alpha[0];
hid_classifier->count = node_count; hid_classifier->count = node_count;
@ -485,16 +400,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl
node->p[2][3] = 0; node->p[2][3] = 0;
node->weight[2] = 0; node->weight[2] = 0;
} }
// memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
else else
hid_stage_classifier->two_rects = 0; hid_stage_classifier->two_rects = 0;
}
memcpy( alpha_ptr, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0]));
haar_node_ptr = haar_node_ptr + 1; haar_node_ptr = haar_node_ptr + 1;
// (GpuHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*)); }
// (GpuHidHaarTreeNode*)(alpha_ptr+node_count+1);
out->is_stump_based &= node_count == 1; out->is_stump_based &= node_count == 1;
} }
} }
@ -517,15 +428,9 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl
static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade, static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade,
/* const CvArr* _sum,
const CvArr* _sqsum,
const CvArr* _tilted_sum,*/
double scale, double scale,
int step) int step)
{ {
// CvMat sum_stub, *sum = (CvMat*)_sum;
// CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
// CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
GpuHidHaarClassifierCascade *cascade; GpuHidHaarClassifierCascade *cascade;
int coi0 = 0, coi1 = 0; int coi0 = 0, coi1 = 0;
int i; int i;
@ -541,61 +446,25 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
if( scale <= 0 ) if( scale <= 0 )
CV_Error( CV_StsOutOfRange, "Scale must be positive" ); CV_Error( CV_StsOutOfRange, "Scale must be positive" );
// sum = cvGetMat( sum, &sum_stub, &coi0 );
// sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 );
if( coi0 || coi1 ) if( coi0 || coi1 )
CV_Error( CV_BadCOI, "COI is not supported" ); CV_Error( CV_BadCOI, "COI is not supported" );
// if( !CV_ARE_SIZES_EQ( sum, sqsum ))
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
// if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
// CV_MAT_TYPE(sum->type) != CV_32SC1 )
// CV_Error( CV_StsUnsupportedFormat,
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
if( !_cascade->hid_cascade ) if( !_cascade->hid_cascade )
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1); stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1);
if( cascade->has_tilted_features )
{
// tilted = cvGetMat( tilted, &tilted_stub, &coi1 );
// if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
// CV_Error( CV_StsUnsupportedFormat,
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
// if( sum->step != tilted->step )
// CV_Error( CV_StsUnmatchedSizes,
// "Sum and tilted_sum must have the same stride (step, widthStep)" );
// if( !CV_ARE_SIZES_EQ( sum, tilted ))
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
// cascade->tilted = *tilted;
}
_cascade->scale = scale; _cascade->scale = scale;
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
//cascade->sum = *sum;
//cascade->sqsum = *sqsum;
equRect.x = equRect.y = cvRound(scale); equRect.x = equRect.y = cvRound(scale);
equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale); equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale);
equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale); equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale);
weight_scale = 1. / (equRect.width * equRect.height); weight_scale = 1. / (equRect.width * equRect.height);
cascade->inv_window_area = weight_scale; cascade->inv_window_area = weight_scale;
// cascade->pq0 = equRect.y * step + equRect.x;
// cascade->pq1 = equRect.y * step + equRect.x + equRect.width ;
// cascade->pq2 = (equRect.y + equRect.height)*step + equRect.x;
// cascade->pq3 = (equRect.y + equRect.height)*step + equRect.x + equRect.width ;
cascade->pq0 = equRect.x; cascade->pq0 = equRect.x;
cascade->pq1 = equRect.y; cascade->pq1 = equRect.y;
cascade->pq2 = equRect.x + equRect.width; cascade->pq2 = equRect.x + equRect.width;
@ -618,10 +487,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
{ {
CvHaarFeature *feature = CvHaarFeature *feature =
&_cascade->stage_classifier[i].classifier[j].haar_feature[l]; &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
/* GpuHidHaarClassifier* classifier =
cascade->stage_classifier[i].classifier + j; */
//GpuHidHaarFeature* hidfeature =
// &cascade->stage_classifier[i].classifier[j].node[l].feature;
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
double sum0 = 0, area0 = 0; double sum0 = 0, area0 = 0;
CvRect r[3]; CvRect r[3];
@ -636,8 +501,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
/* align blocks */ /* align blocks */
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
{ {
//if( !hidfeature->rect[k].p0 )
// break;
if(!hidnode->p[k][0]) if(!hidnode->p[k][0])
break; break;
r[k] = feature->rect[k].r; r[k] = feature->rect[k].r;
@ -717,15 +580,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
if( !feature->tilted ) if( !feature->tilted )
{ {
/* hidfeature->rect[k].p0 = tr.y * sum->cols + tr.x;
hidfeature->rect[k].p1 = tr.y * sum->cols + tr.x + tr.width;
hidfeature->rect[k].p2 = (tr.y + tr.height) * sum->cols + tr.x;
hidfeature->rect[k].p3 = (tr.y + tr.height) * sum->cols + tr.x + tr.width;
*/
/*hidnode->p0[k] = tr.y * step + tr.x;
hidnode->p1[k] = tr.y * step + tr.x + tr.width;
hidnode->p2[k] = (tr.y + tr.height) * step + tr.x;
hidnode->p3[k] = (tr.y + tr.height) * step + tr.x + tr.width;*/
hidnode->p[k][0] = tr.x; hidnode->p[k][0] = tr.x;
hidnode->p[k][1] = tr.y; hidnode->p[k][1] = tr.y;
hidnode->p[k][2] = tr.x + tr.width; hidnode->p[k][2] = tr.x + tr.width;
@ -733,37 +587,24 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
} }
else else
{ {
/* hidfeature->rect[k].p2 = (tr.y + tr.width) * tilted->cols + tr.x + tr.width;
hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * tilted->cols + tr.x + tr.width - tr.height;
hidfeature->rect[k].p0 = tr.y * tilted->cols + tr.x;
hidfeature->rect[k].p1 = (tr.y + tr.height) * tilted->cols + tr.x - tr.height;
*/
hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width; hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width;
hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height; hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height;
hidnode->p[k][0] = tr.y * step + tr.x; hidnode->p[k][0] = tr.y * step + tr.x;
hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height; hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height;
} }
//hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
if( k == 0 ) if( k == 0 )
area0 = tr.width * tr.height; area0 = tr.width * tr.height;
else else
//sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
sum0 += hidnode->weight[k] * tr.width * tr.height; sum0 += hidnode->weight[k] * tr.width * tr.height;
} }
// hidfeature->rect[0].weight = (float)(-sum0/area0);
hidnode->weight[0] = (float)(-sum0 / area0); hidnode->weight[0] = (float)(-sum0 / area0);
} /* l */ } /* l */
} /* j */ } /* j */
} }
} }
static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade)
/*double scale=0.0,*/
/*int step*/)
{ {
GpuHidHaarClassifierCascade *cascade; GpuHidHaarClassifierCascade *cascade;
int i; int i;
@ -817,10 +658,6 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade
if(!hidnode->p[k][0]) if(!hidnode->p[k][0])
break; break;
r[k] = feature->rect[k].r; r[k] = feature->rect[k].r;
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
} }
nr = k; nr = k;
@ -839,7 +676,6 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade
hidnode->p[k][3] = tr.height; hidnode->p[k][3] = tr.height;
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
} }
//hidnode->weight[0]=(float)(-sum0/area0);
} /* l */ } /* l */
} /* j */ } /* j */
} }
@ -852,7 +688,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
const double GROUP_EPS = 0.2; const double GROUP_EPS = 0.2;
CvSeq *result_seq = 0; CvSeq *result_seq = 0;
cv::Ptr<CvMemStorage> temp_storage;
cv::ConcurrentRectVector allCandidates; cv::ConcurrentRectVector allCandidates;
std::vector<cv::Rect> rectList; std::vector<cv::Rect> rectList;
@ -910,6 +745,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
if( gimg.cols < minSize.width || gimg.rows < minSize.height ) if( gimg.cols < minSize.width || gimg.rows < minSize.height )
CV_Error(CV_StsError, "Image too small"); CV_Error(CV_StsError, "Image too small");
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
if( (flags & CV_HAAR_SCALE_IMAGE) ) if( (flags & CV_HAAR_SCALE_IMAGE) )
{ {
CvSize winSize0 = cascade->orig_window_size; CvSize winSize0 = cascade->orig_window_size;
@ -952,7 +788,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
size_t blocksize = 8; size_t blocksize = 8;
size_t localThreads[3] = { blocksize, blocksize , 1 }; size_t localThreads[3] = { blocksize, blocksize , 1 };
size_t globalThreads[3] = { grp_per_CU * gsum.clCxt->computeUnits() *localThreads[0], size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->computeUnits()) *localThreads[0],
localThreads[1], 1 localThreads[1], 1
}; };
int outputsz = 256 * globalThreads[0] / localThreads[0]; int outputsz = 256 * globalThreads[0] / localThreads[0];
@ -997,7 +833,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count);
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode));
@ -1044,7 +879,9 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
@ -1059,6 +896,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
openCLSafeCall(clReleaseMemObject(nodebuffer)); openCLSafeCall(clReleaseMemObject(nodebuffer));
openCLSafeCall(clReleaseMemObject(candidatebuffer)); openCLSafeCall(clReleaseMemObject(candidatebuffer));
} }
else else
{ {
@ -1118,7 +956,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY,
nodenum * sizeof(GpuHidHaarTreeNode)); nodenum * sizeof(GpuHidHaarTreeNode));
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0,
nodenum * sizeof(GpuHidHaarTreeNode), nodenum * sizeof(GpuHidHaarTreeNode),
node, 0, NULL, NULL)); node, 0, NULL, NULL));
@ -1160,7 +997,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
size_t globalThreads2[3] = {nodenum, 1, 1}; size_t globalThreads2[3] = {nodenum, 1, 1};
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
} }
@ -1195,8 +1031,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer ));
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer ));
args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum ));
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status); candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status);
@ -1284,7 +1120,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
int blocksize = 8; int blocksize = 8;
int grp_per_CU = 12; int grp_per_CU = 12;
size_t localThreads[3] = { blocksize, blocksize, 1 }; size_t localThreads[3] = { blocksize, blocksize, 1 };
size_t globalThreads[3] = { grp_per_CU * Context::getContext()->computeUnits() * localThreads[0], size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->computeUnits() *localThreads[0],
localThreads[1], localThreads[1],
1 }; 1 };
int outputsz = 256 * globalThreads[0] / localThreads[0]; int outputsz = 256 * globalThreads[0] / localThreads[0];
@ -1300,8 +1136,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
CvHaarClassifierCascade *cascade = oldCascade; CvHaarClassifierCascade *cascade = oldCascade;
GpuHidHaarClassifierCascade *gcascade; GpuHidHaarClassifierCascade *gcascade;
GpuHidHaarStageClassifier *stage; GpuHidHaarStageClassifier *stage;
GpuHidHaarClassifier *classifier;
GpuHidHaarTreeNode *node;
if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
@ -1314,7 +1148,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
} }
int *candidate; int *candidate;
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
if( (flags & CV_HAAR_SCALE_IMAGE) ) if( (flags & CV_HAAR_SCALE_IMAGE) )
{ {
int indexy = 0; int indexy = 0;
@ -1340,19 +1174,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
node = (GpuHidHaarTreeNode *)(classifier->node);
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0,
sizeof(GpuHidHaarStageClassifier) * gcascade->count,
stage, 0, NULL, NULL));
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
m_nodenum * sizeof(GpuHidHaarTreeNode),
node, 0, NULL, NULL));
int startstage = 0; int startstage = 0;
int endstage = gcascade->count; int endstage = gcascade->count;
@ -1389,17 +1210,23 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
candidate = (int *)malloc(4 * sizeof(int) * outputsz); candidate = (int *)malloc(4 * sizeof(int) * outputsz);
memset(candidate, 0, 4 * sizeof(int) * outputsz); memset(candidate, 0, 4 * sizeof(int) * outputsz);
openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
for(int i = 0; i < outputsz; i++) for(int i = 0; i < outputsz; i++)
{
if(candidate[4 * i + 2] != 0) if(candidate[4 * i + 2] != 0)
{
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
candidate[4 * i + 2], candidate[4 * i + 3])); candidate[4 * i + 2], candidate[4 * i + 3]));
}
}
free((void *)candidate); free((void *)candidate);
candidate = NULL; candidate = NULL;
} }
@ -1407,56 +1234,14 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
{ {
cv::ocl::integral(gimg, gsum, gsqsum); cv::ocl::integral(gimg, gsum, gsqsum);
gpuSetHaarClassifierCascade(cascade);
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
node = (GpuHidHaarTreeNode *)(classifier->node);
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
m_nodenum * sizeof(GpuHidHaarTreeNode),
node, 0, NULL, NULL));
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount);
float *correction = (float *)malloc(sizeof(float) * m_loopcount);
int startstage = 0;
int endstage = gcascade->count;
double factor;
for(int i = 0; i < m_loopcount; i++)
{
factor = scalev[i];
int equRect_x = (int)(factor * gcascade->p0 + 0.5);
int equRect_y = (int)(factor * gcascade->p1 + 0.5);
int equRect_w = (int)(factor * gcascade->p3 + 0.5);
int equRect_h = (int)(factor * gcascade->p2 + 0.5);
p[i].s[0] = equRect_x;
p[i].s[1] = equRect_y;
p[i].s[2] = equRect_x + equRect_w;
p[i].s[3] = equRect_y + equRect_h;
correction[i] = 1. / (equRect_w * equRect_h);
int startnodenum = m_nodenum * i;
float factor2 = (float)factor;
vector<pair<size_t, const void *> > args1;
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 ));
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
size_t globalThreads2[3] = {m_nodenum, 1, 1};
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
}
int step = gsum.step / 4; int step = gsum.step / 4;
int startnode = 0; int startnode = 0;
int splitstage = 3; int splitstage = 3;
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); int startstage = 0;
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); int endstage = gcascade->count;
vector<pair<size_t, const void *> > args; vector<pair<size_t, const void *> > args;
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
@ -1477,7 +1262,8 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer ));
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum ));
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL); candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL);
@ -1487,12 +1273,8 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
candidate[4 * i + 2], candidate[4 * i + 3])); candidate[4 * i + 2], candidate[4 * i + 3]));
} }
free(p);
free(correction);
clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0); clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0);
} }
rectList.resize(allCandidates.size()); rectList.resize(allCandidates.size());
if(!allCandidates.empty()) if(!allCandidates.empty())
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
@ -1510,6 +1292,10 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
const int outputsz, const size_t localThreads[], const int outputsz, const size_t localThreads[],
CvSize minSize, CvSize maxSize) CvSize minSize, CvSize maxSize)
{ {
if(initialized)
{
return; // we only allow one time initialization
}
CvHaarClassifierCascade *cascade = oldCascade; CvHaarClassifierCascade *cascade = oldCascade;
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) if( !CV_IS_HAAR_CLASSIFIER(cascade) )
@ -1525,7 +1311,9 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
int totalclassifier=0; int totalclassifier=0;
if( !cascade->hid_cascade ) if( !cascade->hid_cascade )
{
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
}
if( maxSize.height == 0 || maxSize.width == 0 ) if( maxSize.height == 0 || maxSize.width == 0 )
{ {
@ -1547,6 +1335,78 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
m_minSize = minSize; m_minSize = minSize;
m_maxSize = maxSize; m_maxSize = maxSize;
// initialize nodes
GpuHidHaarClassifierCascade *gcascade;
GpuHidHaarStageClassifier *stage;
GpuHidHaarClassifier *classifier;
GpuHidHaarTreeNode *node;
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
if( (flags & CV_HAAR_SCALE_IMAGE) )
{
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
node = (GpuHidHaarTreeNode *)(classifier->node);
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0,
sizeof(GpuHidHaarStageClassifier) * gcascade->count,
stage, 0, NULL, NULL));
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
m_nodenum * sizeof(GpuHidHaarTreeNode),
node, 0, NULL, NULL));
}
else
{
gpuSetHaarClassifierCascade(cascade);
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
node = (GpuHidHaarTreeNode *)(classifier->node);
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
m_nodenum * sizeof(GpuHidHaarTreeNode),
node, 0, NULL, NULL));
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount);
float *correction = (float *)malloc(sizeof(float) * m_loopcount);
double factor;
for(int i = 0; i < m_loopcount; i++)
{
factor = scalev[i];
int equRect_x = (int)(factor * gcascade->p0 + 0.5);
int equRect_y = (int)(factor * gcascade->p1 + 0.5);
int equRect_w = (int)(factor * gcascade->p3 + 0.5);
int equRect_h = (int)(factor * gcascade->p2 + 0.5);
p[i].s[0] = equRect_x;
p[i].s[1] = equRect_y;
p[i].s[2] = equRect_x + equRect_w;
p[i].s[3] = equRect_y + equRect_h;
correction[i] = 1. / (equRect_w * equRect_h);
int startnodenum = m_nodenum * i;
float factor2 = (float)factor;
vector<pair<size_t, const void *> > args1;
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 ));
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
size_t globalThreads2[3] = {m_nodenum, 1, 1};
openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
}
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL));
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL));
free(p);
free(correction);
}
initialized = true; initialized = true;
} }
@ -1645,6 +1505,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
CvSize sz; CvSize sz;
CvSize winSize0 = oldCascade->orig_window_size; CvSize winSize0 = oldCascade->orig_window_size;
detect_piramid_info *scaleinfo; detect_piramid_info *scaleinfo;
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
if (flags & CV_HAAR_SCALE_IMAGE) if (flags & CV_HAAR_SCALE_IMAGE)
{ {
for(factor = 1.f;; factor *= scaleFactor) for(factor = 1.f;; factor *= scaleFactor)
@ -1746,7 +1607,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); ((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
} }
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)cv::ocl::Context::getContext()->oclCommandQueue(), ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0,
sizeof(detect_piramid_info)*loopcount, sizeof(detect_piramid_info)*loopcount,
scaleinfo, 0, NULL, NULL)); scaleinfo, 0, NULL, NULL));
free(scaleinfo); free(scaleinfo);
@ -1758,7 +1619,8 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& f
const std::vector<cv::Rect> &rectList, const std::vector<cv::Rect> &rectList,
const std::vector<int> &rweights) const std::vector<int> &rweights)
{ {
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), cvCreateMemStorage(0) ); MemStorage tempStorage(cvCreateMemStorage(0));
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage );
if( findBiggestObject && rectList.size() ) if( findBiggestObject && rectList.size() )
{ {
@ -1793,6 +1655,8 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& f
} }
void cv::ocl::OclCascadeClassifierBuf::release() void cv::ocl::OclCascadeClassifierBuf::release()
{
if(initialized)
{ {
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer));
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
@ -1812,149 +1676,10 @@ void cv::ocl::OclCascadeClassifierBuf::release()
free(buffers); free(buffers);
buffers = NULL; buffers = NULL;
initialized = false;
}
} }
#ifndef _MAX_PATH #ifndef _MAX_PATH
#define _MAX_PATH 1024 #define _MAX_PATH 1024
#endif #endif
/****************************************************************************************\
* Persistence functions *
\****************************************************************************************/
/* field names */
#define ICV_HAAR_SIZE_NAME "size"
#define ICV_HAAR_STAGES_NAME "stages"
#define ICV_HAAR_TREES_NAME "trees"
#define ICV_HAAR_FEATURE_NAME "feature"
#define ICV_HAAR_RECTS_NAME "rects"
#define ICV_HAAR_TILTED_NAME "tilted"
#define ICV_HAAR_THRESHOLD_NAME "threshold"
#define ICV_HAAR_LEFT_NODE_NAME "left_node"
#define ICV_HAAR_LEFT_VAL_NAME "left_val"
#define ICV_HAAR_RIGHT_NODE_NAME "right_node"
#define ICV_HAAR_RIGHT_VAL_NAME "right_val"
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
#define ICV_HAAR_PARENT_NAME "parent"
#define ICV_HAAR_NEXT_NAME "next"
static int gpuRunHaarClassifierCascade( /*const CvHaarClassifierCascade *_cascade, CvPoint pt, int start_stage */)
{
return 1;
}
namespace cv
{
namespace ocl
{
struct gpuHaarDetectObjects_ScaleImage_Invoker
{
gpuHaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade *_cascade,
int _stripSize, double _factor,
const Mat &_sum1, const Mat &_sqsum1, Mat *_norm1,
Mat *_mask1, Rect _equRect, ConcurrentRectVector &_vec )
{
cascade = _cascade;
stripSize = _stripSize;
factor = _factor;
sum1 = _sum1;
sqsum1 = _sqsum1;
norm1 = _norm1;
mask1 = _mask1;
equRect = _equRect;
vec = &_vec;
}
void operator()( const BlockedRange &range ) const
{
Size winSize0 = cascade->orig_window_size;
Size winSize(cvRound(winSize0.width * factor), cvRound(winSize0.height * factor));
int y1 = range.begin() * stripSize, y2 = min(range.end() * stripSize, sum1.rows - 1 - winSize0.height);
Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1);
int x, y, ystep = factor > 2 ? 1 : 2;
for( y = y1; y < y2; y += ystep )
for( x = 0; x < ssz.width; x += ystep )
{
if( gpuRunHaarClassifierCascade( /*cascade, cvPoint(x, y), 0*/ ) > 0 )
vec->push_back(Rect(cvRound(x * factor), cvRound(y * factor),
winSize.width, winSize.height));
}
}
const CvHaarClassifierCascade *cascade;
int stripSize;
double factor;
Mat sum1, sqsum1, *norm1, *mask1;
Rect equRect;
ConcurrentRectVector *vec;
};
struct gpuHaarDetectObjects_ScaleCascade_Invoker
{
gpuHaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade *_cascade,
Size _winsize, const Range &_xrange, double _ystep,
size_t _sumstep, const int **_p, const int **_pq,
ConcurrentRectVector &_vec )
{
cascade = _cascade;
winsize = _winsize;
xrange = _xrange;
ystep = _ystep;
sumstep = _sumstep;
p = _p;
pq = _pq;
vec = &_vec;
}
void operator()( const BlockedRange &range ) const
{
int iy, startY = range.begin(), endY = range.end();
const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3];
const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3];
bool doCannyPruning = p0 != 0;
int sstep = (int)(sumstep / sizeof(p0[0]));
for( iy = startY; iy < endY; iy++ )
{
int ix, y = cvRound(iy * ystep), ixstep = 1;
for( ix = xrange.start; ix < xrange.end; ix += ixstep )
{
int x = cvRound(ix * ystep); // it should really be ystep, not ixstep
if( doCannyPruning )
{
int offset = y * sstep + x;
int s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
if( s < 100 || sq < 20 )
{
ixstep = 2;
continue;
}
}
int result = gpuRunHaarClassifierCascade(/* cascade, cvPoint(x, y), 0 */);
if( result > 0 )
vec->push_back(Rect(x, y, winsize.width, winsize.height));
ixstep = result != 0 ? 1 : 2;
}
}
}
const CvHaarClassifierCascade *cascade;
double ystep;
size_t sumstep;
Size winsize;
Range xrange;
const int **p;
const int **pq;
ConcurrentRectVector *vec;
};
}
}

@ -10,6 +10,7 @@
// Wang Weiyan, wangweiyanster@gmail.com // Wang Weiyan, wangweiyanster@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com
// Nathan, liujun@multicorewareinc.com // Nathan, liujun@multicorewareinc.com
// Peng Xiao, pengxiao@outlook.com
// Redistribution and use in source and binary forms, with or without modification, // Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met: // are permitted provided that the following conditions are met:
// //
@ -45,27 +46,16 @@
typedef int sumtype; typedef int sumtype;
typedef float sqsumtype; typedef float sqsumtype;
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature #ifndef STUMP_BASED
{ #define STUMP_BASED 1
struct __attribute__((aligned (32))) #endif
{
int p0 __attribute__((aligned (4)));
int p1 __attribute__((aligned (4)));
int p2 __attribute__((aligned (4)));
int p3 __attribute__((aligned (4)));
float weight __attribute__((aligned (4)));
}
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
}
GpuHidHaarFeature;
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
{ {
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64))); int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/; float weight[CV_HAAR_FEATURE_MAX];
float threshold /*__attribute__((aligned (4)))*/; float threshold;
float alpha[2] __attribute__((aligned (8))); float alpha[3] __attribute__((aligned (16)));
int left __attribute__((aligned (4))); int left __attribute__((aligned (4)));
int right __attribute__((aligned (4))); int right __attribute__((aligned (4)));
} }
@ -111,7 +101,6 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
float inv_window_area __attribute__((aligned (4))); float inv_window_area __attribute__((aligned (4)));
} GpuHidHaarClassifierCascade; } GpuHidHaarClassifierCascade;
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade( __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(
global GpuHidHaarStageClassifier * stagecascadeptr, global GpuHidHaarStageClassifier * stagecascadeptr,
global int4 * info, global int4 * info,
@ -234,7 +223,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
float stage_sum = 0.f; float stage_sum = 0.f;
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop); int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
float stagethreshold = as_float(stageinfo.y); float stagethreshold = as_float(stageinfo.y);
for(int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++ ) for(int nodeloop = 0; nodeloop < stageinfo.x; )
{ {
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter); __global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
@ -242,7 +231,8 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0])); int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0])); float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0])); float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor; float nodethreshold = w.w * variance_norm_factor;
info1.x +=lcl_off; info1.x +=lcl_off;
@ -261,8 +251,34 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] - classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z; lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x; bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
stage_sum += passThres ? alpha3.y : alpha3.x;
nodecounter++; nodecounter++;
nodeloop++;
#else
bool isRootNode = (nodecounter & 1) == 0;
if(isRootNode)
{
if( (passThres && currentnodeptr->right) ||
(!passThres && currentnodeptr->left))
{
nodecounter ++;
}
else
{
stage_sum += alpha3.x;
nodecounter += 2;
nodeloop ++;
}
}
else
{
stage_sum += passThres ? alpha3.z : alpha3.y;
nodecounter ++;
nodeloop ++;
}
#endif
} }
result = (stage_sum >= stagethreshold); result = (stage_sum >= stagethreshold);
@ -301,18 +317,20 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
if(lcl_compute_win_id < queuecount) if(lcl_compute_win_id < queuecount)
{ {
int tempnodecounter = lcl_compute_id; int tempnodecounter = lcl_compute_id;
float part_sum = 0.f; float part_sum = 0.f;
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x; lcl_loop++) const int stump_factor = STUMP_BASED ? 1 : 2;
int root_offset = 0;
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;)
{ {
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter); __global GpuHidHaarTreeNode* currentnodeptr =
nodeptr + (nodecounter + tempnodecounter) * stump_factor + root_offset;
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0])); int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0])); int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0])); float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0])); float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor; float nodethreshold = w.w * variance_norm_factor;
info1.x +=queue_pixel; info1.x +=queue_pixel;
@ -332,8 +350,34 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] - classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z; lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x; bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
part_sum += passThres ? alpha3.y : alpha3.x;
tempnodecounter += lcl_compute_win; tempnodecounter += lcl_compute_win;
lcl_loop++;
#else
if(root_offset == 0)
{
if( (passThres && currentnodeptr->right) ||
(!passThres && currentnodeptr->left))
{
root_offset = 1;
}
else
{
part_sum += alpha3.x;
tempnodecounter += lcl_compute_win;
lcl_loop++;
}
}
else
{
part_sum += passThres ? alpha3.z : alpha3.y;
tempnodecounter += lcl_compute_win;
lcl_loop++;
root_offset = 0;
}
#endif
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++) }//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
partialsum[lcl_id]=part_sum; partialsum[lcl_id]=part_sum;
} }
@ -379,157 +423,3 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
} }
/*
if(stagecascade->two_rects)
{
#pragma unroll
for( n = 0; n < stagecascade->count; n++ )
{
t1 = *(node + counter);
t = t1.threshold * variance_norm_factor;
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
counter++;
}
}
else
{
#pragma unroll
for( n = 0; n < stagecascade->count; n++ )
{
t = node[counter].threshold*variance_norm_factor;
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
if( node[counter].p0[2] )
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
counter++;
}
}
*/
/*
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
constant GpuHidHaarClassifierCascade * _cascade,
global GpuHidHaarStageClassifier * stagecascadeptr,
//global GpuHidHaarClassifier * classifierptr,
global GpuHidHaarTreeNode * nodeptr,
global int * sum,
global float * sqsum,
global int * _candidate,
int pixel_step,
int cols,
int rows,
int start_stage,
int end_stage,
//int counts,
int nodenum,
int ystep,
int detect_width,
//int detect_height,
int loopcount,
int outputstep)
//float scalefactor)
{
unsigned int x1 = get_global_id(0);
unsigned int y1 = get_global_id(1);
int p_offset;
int m, n;
int result;
int counter;
float mean, variance_norm_factor;
for(int i=0;i<loopcount;i++)
{
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
global int * candidate = _candidate + i*outputstep;
int window_width = cascade->p1 - cascade->p0;
int window_height = window_width;
result = 1;
counter = 0;
unsigned int x = mul24(x1,ystep);
unsigned int y = mul24(y1,ystep);
if((x < cols - window_width - 1) && (y < rows - window_height -1))
{
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
//global GpuHidHaarClassifier *classifier = classifierptr;
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
p_offset = mad24(y, pixel_step, x);// modify
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
*cascade->inv_window_area;
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
// if( cascade->is_stump_based )
//{
for( m = start_stage; m < end_stage; m++ )
{
float stage_sum = 0.f;
float t, classsum;
GpuHidHaarTreeNode t1;
//#pragma unroll
for( n = 0; n < stagecascade->count; n++ )
{
t1 = *(node + counter);
t = t1.threshold * variance_norm_factor;
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
if((t1.p0[2]) && (!stagecascade->two_rects))
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
counter++;
}
if (stage_sum < stagecascade->threshold)
{
result = 0;
break;
}
stagecascade++;
}
if(result)
{
candidate[4 * (y1 * detect_width + x1)] = x;
candidate[4 * (y1 * detect_width + x1) + 1] = y;
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
}
//}
}
}
}
*/

@ -17,7 +17,7 @@
// @Authors // @Authors
// Wu Xinglong, wxl370@126.com // Wu Xinglong, wxl370@126.com
// Sen Liu, swjtuls1987@126.com // Sen Liu, swjtuls1987@126.com
// // Peng Xiao, pengxiao@outlook.com
// Redistribution and use in source and binary forms, with or without modification, // Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met: // are permitted provided that the following conditions are met:
// //
@ -49,25 +49,13 @@
#define CV_HAAR_FEATURE_MAX 3 #define CV_HAAR_FEATURE_MAX 3
typedef int sumtype; typedef int sumtype;
typedef float sqsumtype; typedef float sqsumtype;
typedef struct __attribute__((aligned(128))) GpuHidHaarFeature
{
struct __attribute__((aligned(32)))
{
int p0 __attribute__((aligned(4)));
int p1 __attribute__((aligned(4)));
int p2 __attribute__((aligned(4)));
int p3 __attribute__((aligned(4)));
float weight __attribute__((aligned(4)));
}
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned(32)));
}
GpuHidHaarFeature;
typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode
{ {
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64))); int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64)));
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/; float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
float threshold /*__attribute__((aligned (4)))*/; float threshold /*__attribute__((aligned (4)))*/;
float alpha[2] __attribute__((aligned(8))); float alpha[3] __attribute__((aligned(16)));
int left __attribute__((aligned(4))); int left __attribute__((aligned(4)));
int right __attribute__((aligned(4))); int right __attribute__((aligned(4)));
} }
@ -174,45 +162,83 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
const int p_offset = mad24(y, step, x); const int p_offset = mad24(y, step, x);
cascadeinfo.x += p_offset; cascadeinfo.x += p_offset;
cascadeinfo.z += p_offset; cascadeinfo.z += p_offset;
mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)]
sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]) - sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)]
+ sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)])
* correction_t; * correction_t;
variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)]
sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]; - sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)]
+ sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)];
variance_norm_factor = variance_norm_factor * correction_t - mean * mean; variance_norm_factor = variance_norm_factor * correction_t - mean * mean;
variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f; variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f;
bool result = true; bool result = true;
nodecounter = startnode + nodecount * scalei; nodecounter = startnode + nodecount * scalei;
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++) for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
{ {
float stage_sum = 0.f; float stage_sum = 0.f;
int stagecount = stagecascadeptr[stageloop].count; int stagecount = stagecascadeptr[stageloop].count;
for (int nodeloop = 0; nodeloop < stagecount; nodeloop++) for (int nodeloop = 0; nodeloop < stagecount;)
{ {
__global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter); __global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0])); int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0])); int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0])); int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0])); float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2 *)(&(currentnodeptr->alpha[0])); float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor; float nodethreshold = w.w * variance_norm_factor;
info1.x += p_offset; info1.x += p_offset;
info1.z += p_offset; info1.z += p_offset;
info2.x += p_offset; info2.x += p_offset;
info2.z += p_offset; info2.z += p_offset;
float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)] - sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] -
sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)] + sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x;
classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)] - sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] -
sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)] + sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y;
info3.x += p_offset; info3.x += p_offset;
info3.z += p_offset; info3.z += p_offset;
classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)] - sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] - float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)]
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] + sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z; - sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] -
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x; sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)]
+ sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x;
classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)]
- sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] -
sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)]
+ sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y;
classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)]
- sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] -
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
bool passThres = classsum >= nodethreshold;
#if STUMP_BASED
stage_sum += passThres ? alpha3.y : alpha3.x;
nodecounter++;
nodeloop++;
#else
bool isRootNode = (nodecounter & 1) == 0;
if(isRootNode)
{
if( (passThres && currentnodeptr->right) ||
(!passThres && currentnodeptr->left))
{
nodecounter ++;
}
else
{
stage_sum += alpha3.x;
nodecounter += 2;
nodeloop ++;
}
}
else
{
stage_sum += (passThres ? alpha3.z : alpha3.y);
nodecounter ++; nodecounter ++;
nodeloop ++;
}
#endif
} }
result = (bool)(stage_sum >= stagecascadeptr[stageloop].threshold); result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold);
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -222,7 +248,6 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
int queueindex = atomic_inc(lclcount); int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex] = (y << 16) | x; lcloutindex[queueindex] = (y << 16) | x;
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
int queuecount = lclcount[0]; int queuecount = lclcount[0];
@ -277,5 +302,6 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH
newnode[counter].threshold = t1.threshold; newnode[counter].threshold = t1.threshold;
newnode[counter].alpha[0] = t1.alpha[0]; newnode[counter].alpha[0] = t1.alpha[0];
newnode[counter].alpha[1] = t1.alpha[1]; newnode[counter].alpha[1] = t1.alpha[1];
newnode[counter].alpha[2] = t1.alpha[2];
} }

@ -55,6 +55,12 @@ using namespace testing;
using namespace std; using namespace std;
using namespace cv; using namespace cv;
extern string workdir; extern string workdir;
namespace
{
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
struct getRect struct getRect
{ {
Rect operator ()(const CvAvgComp &e) const Rect operator ()(const CvAvgComp &e) const
@ -62,23 +68,24 @@ struct getRect
return e.rect; return e.rect;
} }
}; };
}
PARAM_TEST_CASE(Haar, double, int) PARAM_TEST_CASE(Haar, double, int, CascadeName)
{ {
cv::ocl::OclCascadeClassifier cascade, nestedCascade; cv::ocl::OclCascadeClassifier cascade, nestedCascade;
cv::ocl::OclCascadeClassifierBuf cascadebuf;
cv::CascadeClassifier cpucascade, cpunestedCascade; cv::CascadeClassifier cpucascade, cpunestedCascade;
double scale; double scale;
int flags; int flags;
std::string cascadeName;
virtual void SetUp() virtual void SetUp()
{ {
scale = GET_PARAM(0); scale = GET_PARAM(0);
flags = GET_PARAM(1); flags = GET_PARAM(1);
string cascadeName = workdir + "../../data/haarcascades/haarcascade_frontalface_alt.xml"; cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(2));
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) || (!cascadebuf.load( cascadeName ))) if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
{ {
cout << "ERROR: Could not load classifier cascade" << endl; cout << "ERROR: Could not load classifier cascade" << endl;
return; return;
@ -136,7 +143,6 @@ TEST_P(Haar, FaceDetectUseBuf)
vector<Rect> faces, oclfaces; vector<Rect> faces, oclfaces;
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 ); Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
MemStorage storage(cvCreateMemStorage(0));
cvtColor( img, gray, CV_BGR2GRAY ); cvtColor( img, gray, CV_BGR2GRAY );
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
equalizeHist( smallImg, smallImg ); equalizeHist( smallImg, smallImg );
@ -144,19 +150,31 @@ TEST_P(Haar, FaceDetectUseBuf)
cv::ocl::oclMat image; cv::ocl::oclMat image;
image.upload(smallImg); image.upload(smallImg);
cv::ocl::OclCascadeClassifierBuf cascadebuf;
if( !cascadebuf.load( cascadeName ) )
{
cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << endl;
return;
}
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3, cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
flags, flags,
Size(30, 30), Size(0, 0) ); Size(30, 30), Size(0, 0) );
cascadebuf.release();
cpucascade.detectMultiScale( smallImg, faces, 1.1, 3, cpucascade.detectMultiScale( smallImg, faces, 1.1, 3,
flags, flags,
Size(30, 30), Size(0, 0) ); Size(30, 30), Size(0, 0) );
EXPECT_EQ(faces.size(), oclfaces.size()); EXPECT_EQ(faces.size(), oclfaces.size());
// intentionally run ocl facedetect again and check if it still works after the first run
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
flags,
Size(30, 30));
cascadebuf.release();
EXPECT_EQ(faces.size(), oclfaces.size());
} }
INSTANTIATE_TEST_CASE_P(FaceDetect, Haar, INSTANTIATE_TEST_CASE_P(FaceDetect, Haar,
Combine(Values(1.0), Combine(Values(1.0),
Values(CV_HAAR_SCALE_IMAGE, 0))); Values(CV_HAAR_SCALE_IMAGE, 0), Values(cascade_frontalface_alt, cascade_frontalface_alt2)));
#endif // HAVE_OPENCL #endif // HAVE_OPENCL

Loading…
Cancel
Save