diff --git a/modules/ocl/include/opencv2/ocl/ocl.hpp b/modules/ocl/include/opencv2/ocl/ocl.hpp index f9fb4b44e5..785248cfc5 100644 --- a/modules/ocl/include/opencv2/ocl/ocl.hpp +++ b/modules/ocl/include/opencv2/ocl/ocl.hpp @@ -817,7 +817,7 @@ namespace cv OclCascadeClassifierBuf() : m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {} - ~OclCascadeClassifierBuf() {} + ~OclCascadeClassifierBuf() { release(); } void detectMultiScale(oclMat &image, CV_OUT std::vector& faces, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, diff --git a/modules/ocl/src/haar.cpp b/modules/ocl/src/haar.cpp index 5afe5423ed..565270cdc1 100644 --- a/modules/ocl/src/haar.cpp +++ b/modules/ocl/src/haar.cpp @@ -137,47 +137,22 @@ struct CvHidHaarClassifierCascade }; typedef struct { - //int rows; - //int ystep; int width_height; - //int height; int grpnumperline_totalgrp; - //int totalgrp; int imgoff; float factor; } detect_piramid_info; - -#if defined WIN32 && !defined __MINGW__ && !defined __MINGW32__ +#ifdef WIN32 #define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT)) -typedef _ALIGNED_ON(128) struct GpuHidHaarFeature -{ - _ALIGNED_ON(32) struct - { - _ALIGNED_ON(4) int p0 ; - _ALIGNED_ON(4) int p1 ; - _ALIGNED_ON(4) int p2 ; - _ALIGNED_ON(4) int p3 ; - _ALIGNED_ON(4) float weight ; - } - /*_ALIGNED_ON(32)*/ rect[CV_HAAR_FEATURE_MAX] ; -} -GpuHidHaarFeature; - typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode { _ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4]; - //_ALIGNED_ON(16) int p1[CV_HAAR_FEATURE_MAX] ; - //_ALIGNED_ON(16) int p2[CV_HAAR_FEATURE_MAX] ; - //_ALIGNED_ON(16) int p3[CV_HAAR_FEATURE_MAX] ; - /*_ALIGNED_ON(16)*/ float weight[CV_HAAR_FEATURE_MAX] ; - /*_ALIGNED_ON(4)*/ float threshold ; - _ALIGNED_ON(8) float alpha[2] ; + _ALIGNED_ON(16) float alpha[3] ; _ALIGNED_ON(4) int left ; _ALIGNED_ON(4) int right ; - // GpuHidHaarFeature feature __attribute__((aligned (128))); } GpuHidHaarTreeNode; @@ -185,7 +160,6 @@ GpuHidHaarTreeNode; typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier { _ALIGNED_ON(4) int count; - //CvHaarFeature* orig_feature; _ALIGNED_ON(8) GpuHidHaarTreeNode *node ; _ALIGNED_ON(8) float *alpha ; } @@ -220,32 +194,16 @@ typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade _ALIGNED_ON(4) int p2 ; _ALIGNED_ON(4) int p3 ; _ALIGNED_ON(4) float inv_window_area ; - // GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8))); } GpuHidHaarClassifierCascade; #else #define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) )) -typedef struct _ALIGNED_ON(128) GpuHidHaarFeature -{ - struct _ALIGNED_ON(32) -{ - int p0 _ALIGNED_ON(4); - int p1 _ALIGNED_ON(4); - int p2 _ALIGNED_ON(4); - int p3 _ALIGNED_ON(4); - float weight _ALIGNED_ON(4); -} -rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32); -} -GpuHidHaarFeature; - - typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode { int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64); float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16); float threshold;// _ALIGNED_ON(4); - float alpha[2] _ALIGNED_ON(8); + float alpha[3] _ALIGNED_ON(16); int left _ALIGNED_ON(4); int right _ALIGNED_ON(4); } @@ -288,7 +246,6 @@ typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade int p2 _ALIGNED_ON(4); int p3 _ALIGNED_ON(4); float inv_window_area _ALIGNED_ON(4); - // GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8))); } GpuHidHaarClassifierCascade; #endif @@ -296,36 +253,6 @@ const int icv_object_win_border = 1; const float icv_stage_threshold_bias = 0.0001f; double globaltime = 0; - -// static CvHaarClassifierCascade * gpuCreateHaarClassifierCascade( int stage_count ) -// { -// CvHaarClassifierCascade *cascade = 0; - -// int block_size = sizeof(*cascade) + stage_count * sizeof(*cascade->stage_classifier); - -// if( stage_count <= 0 ) -// CV_Error( CV_StsOutOfRange, "Number of stages should be positive" ); - -// cascade = (CvHaarClassifierCascade *)cvAlloc( block_size ); -// memset( cascade, 0, block_size ); - -// cascade->stage_classifier = (CvHaarStageClassifier *)(cascade + 1); -// cascade->flags = CV_HAAR_MAGIC_VAL; -// cascade->count = stage_count; - -// return cascade; -// } - -//static int globalcounter = 0; - -// static void gpuReleaseHidHaarClassifierCascade( GpuHidHaarClassifierCascade **_cascade ) -// { -// if( _cascade && *_cascade ) -// { -// cvFree( _cascade ); -// } -// } - /* create more efficient internal representation of haar classifier cascade */ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier) { @@ -441,24 +368,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl hid_stage_classifier->two_rects = 1; haar_classifier_ptr += stage_classifier->count; - /* - hid_stage_classifier->parent = (stage_classifier->parent == -1) - ? NULL : stage_classifier_ptr + stage_classifier->parent; - hid_stage_classifier->next = (stage_classifier->next == -1) - ? NULL : stage_classifier_ptr + stage_classifier->next; - hid_stage_classifier->child = (stage_classifier->child == -1) - ? NULL : stage_classifier_ptr + stage_classifier->child; - - out->is_tree |= hid_stage_classifier->next != NULL; - */ - for( j = 0; j < stage_classifier->count; j++ ) { CvHaarClassifier *classifier = stage_classifier->classifier + j; GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j; int node_count = classifier->count; - // float* alpha_ptr = (float*)(haar_node_ptr + node_count); float *alpha_ptr = &haar_node_ptr->alpha[0]; hid_classifier->count = node_count; @@ -485,16 +400,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl node->p[2][3] = 0; node->weight[2] = 0; } - // memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) ); else hid_stage_classifier->two_rects = 0; - } - - memcpy( alpha_ptr, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); - haar_node_ptr = haar_node_ptr + 1; - // (GpuHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*)); - // (GpuHidHaarTreeNode*)(alpha_ptr+node_count+1); + memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); + haar_node_ptr = haar_node_ptr + 1; + } out->is_stump_based &= node_count == 1; } } @@ -507,25 +418,19 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl #define sum_elem_ptr(sum,row,col) \ - ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) + ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) #define sqsum_elem_ptr(sqsum,row,col) \ - ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) + ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) #define calc_sum(rect,offset) \ - ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) + ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade, - /* const CvArr* _sum, - const CvArr* _sqsum, - const CvArr* _tilted_sum,*/ double scale, int step) { - // CvMat sum_stub, *sum = (CvMat*)_sum; - // CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum; - // CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum; GpuHidHaarClassifierCascade *cascade; int coi0 = 0, coi1 = 0; int i; @@ -541,61 +446,25 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc if( scale <= 0 ) CV_Error( CV_StsOutOfRange, "Scale must be positive" ); - // sum = cvGetMat( sum, &sum_stub, &coi0 ); - // sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ); - if( coi0 || coi1 ) CV_Error( CV_BadCOI, "COI is not supported" ); - // if( !CV_ARE_SIZES_EQ( sum, sqsum )) - // CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); - - // if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 || - // CV_MAT_TYPE(sum->type) != CV_32SC1 ) - // CV_Error( CV_StsUnsupportedFormat, - // "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); - if( !_cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1); - if( cascade->has_tilted_features ) - { - // tilted = cvGetMat( tilted, &tilted_stub, &coi1 ); - - // if( CV_MAT_TYPE(tilted->type) != CV_32SC1 ) - // CV_Error( CV_StsUnsupportedFormat, - // "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); - - // if( sum->step != tilted->step ) - // CV_Error( CV_StsUnmatchedSizes, - // "Sum and tilted_sum must have the same stride (step, widthStep)" ); - - // if( !CV_ARE_SIZES_EQ( sum, tilted )) - // CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); - // cascade->tilted = *tilted; - } - _cascade->scale = scale; _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); - //cascade->sum = *sum; - //cascade->sqsum = *sqsum; - equRect.x = equRect.y = cvRound(scale); equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale); equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale); weight_scale = 1. / (equRect.width * equRect.height); cascade->inv_window_area = weight_scale; - // cascade->pq0 = equRect.y * step + equRect.x; - // cascade->pq1 = equRect.y * step + equRect.x + equRect.width ; - // cascade->pq2 = (equRect.y + equRect.height)*step + equRect.x; - // cascade->pq3 = (equRect.y + equRect.height)*step + equRect.x + equRect.width ; - cascade->pq0 = equRect.x; cascade->pq1 = equRect.y; cascade->pq2 = equRect.x + equRect.width; @@ -618,10 +487,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc { CvHaarFeature *feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l]; - /* GpuHidHaarClassifier* classifier = - cascade->stage_classifier[i].classifier + j; */ - //GpuHidHaarFeature* hidfeature = - // &cascade->stage_classifier[i].classifier[j].node[l].feature; GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; double sum0 = 0, area0 = 0; CvRect r[3]; @@ -636,8 +501,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc /* align blocks */ for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { - //if( !hidfeature->rect[k].p0 ) - // break; if(!hidnode->p[k][0]) break; r[k] = feature->rect[k].r; @@ -717,15 +580,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc if( !feature->tilted ) { - /* hidfeature->rect[k].p0 = tr.y * sum->cols + tr.x; - hidfeature->rect[k].p1 = tr.y * sum->cols + tr.x + tr.width; - hidfeature->rect[k].p2 = (tr.y + tr.height) * sum->cols + tr.x; - hidfeature->rect[k].p3 = (tr.y + tr.height) * sum->cols + tr.x + tr.width; - */ - /*hidnode->p0[k] = tr.y * step + tr.x; - hidnode->p1[k] = tr.y * step + tr.x + tr.width; - hidnode->p2[k] = (tr.y + tr.height) * step + tr.x; - hidnode->p3[k] = (tr.y + tr.height) * step + tr.x + tr.width;*/ hidnode->p[k][0] = tr.x; hidnode->p[k][1] = tr.y; hidnode->p[k][2] = tr.x + tr.width; @@ -733,37 +587,24 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc } else { - /* hidfeature->rect[k].p2 = (tr.y + tr.width) * tilted->cols + tr.x + tr.width; - hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * tilted->cols + tr.x + tr.width - tr.height; - hidfeature->rect[k].p0 = tr.y * tilted->cols + tr.x; - hidfeature->rect[k].p1 = (tr.y + tr.height) * tilted->cols + tr.x - tr.height; - */ - hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width; hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height; hidnode->p[k][0] = tr.y * step + tr.x; hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height; } - - //hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio); hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); if( k == 0 ) area0 = tr.width * tr.height; else - //sum0 += hidfeature->rect[k].weight * tr.width * tr.height; sum0 += hidnode->weight[k] * tr.width * tr.height; } - - // hidfeature->rect[0].weight = (float)(-sum0/area0); hidnode->weight[0] = (float)(-sum0 / area0); } /* l */ } /* j */ } } -static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade - /*double scale=0.0,*/ - /*int step*/) +static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade) { GpuHidHaarClassifierCascade *cascade; int i; @@ -817,11 +658,7 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade if(!hidnode->p[k][0]) break; r[k] = feature->rect[k].r; - // base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) ); - // base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) ); - // base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) ); - // base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) ); - } + } nr = k; for( k = 0; k < nr; k++ ) @@ -839,7 +676,6 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade hidnode->p[k][3] = tr.height; hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); } - //hidnode->weight[0]=(float)(-sum0/area0); } /* l */ } /* j */ } @@ -852,7 +688,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS const double GROUP_EPS = 0.2; CvSeq *result_seq = 0; - cv::Ptr temp_storage; cv::ConcurrentRectVector allCandidates; std::vector rectList; @@ -910,6 +745,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS if( gimg.cols < minSize.width || gimg.rows < minSize.height ) CV_Error(CV_StsError, "Image too small"); + cl_command_queue qu = reinterpret_cast(Context::getContext()->oclCommandQueue()); if( (flags & CV_HAAR_SCALE_IMAGE) ) { CvSize winSize0 = cascade->orig_window_size; @@ -952,7 +788,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS size_t blocksize = 8; size_t localThreads[3] = { blocksize, blocksize , 1 }; - size_t globalThreads[3] = { grp_per_CU * gsum.clCxt->computeUnits() *localThreads[0], + size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->computeUnits()) *localThreads[0], localThreads[1], 1 }; int outputsz = 256 * globalThreads[0] / localThreads[0]; @@ -997,7 +833,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); - cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); @@ -1044,7 +879,9 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); + const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; + + openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); @@ -1059,6 +896,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(nodebuffer)); openCLSafeCall(clReleaseMemObject(candidatebuffer)); + } else { @@ -1118,7 +956,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); - cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode), node, 0, NULL, NULL)); @@ -1160,7 +997,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); size_t globalThreads2[3] = {nodenum, 1, 1}; - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); } @@ -1195,8 +1031,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum )); - - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); + const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; + openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status); @@ -1284,7 +1120,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std int blocksize = 8; int grp_per_CU = 12; size_t localThreads[3] = { blocksize, blocksize, 1 }; - size_t globalThreads[3] = { grp_per_CU * Context::getContext()->computeUnits() * localThreads[0], + size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->computeUnits() *localThreads[0], localThreads[1], 1 }; int outputsz = 256 * globalThreads[0] / localThreads[0]; @@ -1300,8 +1136,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std CvHaarClassifierCascade *cascade = oldCascade; GpuHidHaarClassifierCascade *gcascade; GpuHidHaarStageClassifier *stage; - GpuHidHaarClassifier *classifier; - GpuHidHaarTreeNode *node; if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); @@ -1314,7 +1148,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std } int *candidate; - + cl_command_queue qu = reinterpret_cast(Context::getContext()->oclCommandQueue()); if( (flags & CV_HAAR_SCALE_IMAGE) ) { int indexy = 0; @@ -1340,19 +1174,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); stage = (GpuHidHaarStageClassifier *)(gcascade + 1); - classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); - node = (GpuHidHaarTreeNode *)(classifier->node); - - gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); - - cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, - sizeof(GpuHidHaarStageClassifier) * gcascade->count, - stage, 0, NULL, NULL)); - - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, - m_nodenum * sizeof(GpuHidHaarTreeNode), - node, 0, NULL, NULL)); int startstage = 0; int endstage = gcascade->count; @@ -1389,17 +1210,23 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); + const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; + + openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); candidate = (int *)malloc(4 * sizeof(int) * outputsz); memset(candidate, 0, 4 * sizeof(int) * outputsz); + openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); for(int i = 0; i < outputsz; i++) + { if(candidate[4 * i + 2] != 0) + { allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); - + } + } free((void *)candidate); candidate = NULL; } @@ -1407,56 +1234,14 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std { cv::ocl::integral(gimg, gsum, gsqsum); - gpuSetHaarClassifierCascade(cascade); - gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; - stage = (GpuHidHaarStageClassifier *)(gcascade + 1); - classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); - node = (GpuHidHaarTreeNode *)(classifier->node); - - cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, - m_nodenum * sizeof(GpuHidHaarTreeNode), - node, 0, NULL, NULL)); - - cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); - float *correction = (float *)malloc(sizeof(float) * m_loopcount); - int startstage = 0; - int endstage = gcascade->count; - double factor; - for(int i = 0; i < m_loopcount; i++) - { - factor = scalev[i]; - int equRect_x = (int)(factor * gcascade->p0 + 0.5); - int equRect_y = (int)(factor * gcascade->p1 + 0.5); - int equRect_w = (int)(factor * gcascade->p3 + 0.5); - int equRect_h = (int)(factor * gcascade->p2 + 0.5); - p[i].s[0] = equRect_x; - p[i].s[1] = equRect_y; - p[i].s[2] = equRect_x + equRect_w; - p[i].s[3] = equRect_y + equRect_h; - correction[i] = 1. / (equRect_w * equRect_h); - int startnodenum = m_nodenum * i; - float factor2 = (float)factor; - - vector > args1; - args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); - args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); - args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); - args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); - args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); - - size_t globalThreads2[3] = {m_nodenum, 1, 1}; - - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); - } int step = gsum.step / 4; int startnode = 0; int splitstage = 3; - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); + + int startstage = 0; + int endstage = gcascade->count; vector > args; args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); @@ -1477,7 +1262,8 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum )); - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); + const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; + openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL); @@ -1487,12 +1273,8 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); } - - free(p); - free(correction); clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0); } - rectList.resize(allCandidates.size()); if(!allCandidates.empty()) std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); @@ -1510,6 +1292,10 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, const int outputsz, const size_t localThreads[], CvSize minSize, CvSize maxSize) { + if(initialized) + { + return; // we only allow one time initialization + } CvHaarClassifierCascade *cascade = oldCascade; if( !CV_IS_HAAR_CLASSIFIER(cascade) ) @@ -1525,7 +1311,9 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, int totalclassifier=0; if( !cascade->hid_cascade ) + { gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); + } if( maxSize.height == 0 || maxSize.width == 0 ) { @@ -1547,6 +1335,78 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, m_minSize = minSize; m_maxSize = maxSize; + // initialize nodes + GpuHidHaarClassifierCascade *gcascade; + GpuHidHaarStageClassifier *stage; + GpuHidHaarClassifier *classifier; + GpuHidHaarTreeNode *node; + cl_command_queue qu = reinterpret_cast(Context::getContext()->oclCommandQueue()); + if( (flags & CV_HAAR_SCALE_IMAGE) ) + { + gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); + stage = (GpuHidHaarStageClassifier *)(gcascade + 1); + classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); + node = (GpuHidHaarTreeNode *)(classifier->node); + + gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); + + openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, + sizeof(GpuHidHaarStageClassifier) * gcascade->count, + stage, 0, NULL, NULL)); + + openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, + m_nodenum * sizeof(GpuHidHaarTreeNode), + node, 0, NULL, NULL)); + } + else + { + gpuSetHaarClassifierCascade(cascade); + + gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; + stage = (GpuHidHaarStageClassifier *)(gcascade + 1); + classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); + node = (GpuHidHaarTreeNode *)(classifier->node); + + openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, + m_nodenum * sizeof(GpuHidHaarTreeNode), + node, 0, NULL, NULL)); + + cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); + float *correction = (float *)malloc(sizeof(float) * m_loopcount); + double factor; + for(int i = 0; i < m_loopcount; i++) + { + factor = scalev[i]; + int equRect_x = (int)(factor * gcascade->p0 + 0.5); + int equRect_y = (int)(factor * gcascade->p1 + 0.5); + int equRect_w = (int)(factor * gcascade->p3 + 0.5); + int equRect_h = (int)(factor * gcascade->p2 + 0.5); + p[i].s[0] = equRect_x; + p[i].s[1] = equRect_y; + p[i].s[2] = equRect_x + equRect_w; + p[i].s[3] = equRect_y + equRect_h; + correction[i] = 1. / (equRect_w * equRect_h); + int startnodenum = m_nodenum * i; + float factor2 = (float)factor; + + vector > args1; + args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); + args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); + args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); + args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); + args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); + + size_t globalThreads2[3] = {m_nodenum, 1, 1}; + + openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); + } + openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); + openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); + openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); + + free(p); + free(correction); + } initialized = true; } @@ -1645,6 +1505,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( CvSize sz; CvSize winSize0 = oldCascade->orig_window_size; detect_piramid_info *scaleinfo; + cl_command_queue qu = reinterpret_cast(Context::getContext()->oclCommandQueue()); if (flags & CV_HAAR_SCALE_IMAGE) { for(factor = 1.f;; factor *= scaleFactor) @@ -1746,7 +1607,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( ((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); } - openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)cv::ocl::Context::getContext()->oclCommandQueue(), ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, + openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); free(scaleinfo); @@ -1758,7 +1619,8 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector& f const std::vector &rectList, const std::vector &rweights) { - CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), cvCreateMemStorage(0) ); + MemStorage tempStorage(cvCreateMemStorage(0)); + CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage ); if( findBiggestObject && rectList.size() ) { @@ -1794,167 +1656,30 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector& f void cv::ocl::OclCascadeClassifierBuf::release() { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); - - if( (m_flags & CV_HAAR_SCALE_IMAGE) ) - { - cvFree(&oldCascade->hid_cascade); - } - else + if(initialized) { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); - } + openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); + openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); + openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); + openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); + + if( (m_flags & CV_HAAR_SCALE_IMAGE) ) + { + cvFree(&oldCascade->hid_cascade); + } + else + { + openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); + openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); + openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); + } - free(buffers); - buffers = NULL; + free(buffers); + buffers = NULL; + initialized = false; + } } #ifndef _MAX_PATH #define _MAX_PATH 1024 #endif - - -/****************************************************************************************\ -* Persistence functions * -\****************************************************************************************/ - -/* field names */ - -#define ICV_HAAR_SIZE_NAME "size" -#define ICV_HAAR_STAGES_NAME "stages" -#define ICV_HAAR_TREES_NAME "trees" -#define ICV_HAAR_FEATURE_NAME "feature" -#define ICV_HAAR_RECTS_NAME "rects" -#define ICV_HAAR_TILTED_NAME "tilted" -#define ICV_HAAR_THRESHOLD_NAME "threshold" -#define ICV_HAAR_LEFT_NODE_NAME "left_node" -#define ICV_HAAR_LEFT_VAL_NAME "left_val" -#define ICV_HAAR_RIGHT_NODE_NAME "right_node" -#define ICV_HAAR_RIGHT_VAL_NAME "right_val" -#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold" -#define ICV_HAAR_PARENT_NAME "parent" -#define ICV_HAAR_NEXT_NAME "next" - -static int gpuRunHaarClassifierCascade( /*const CvHaarClassifierCascade *_cascade, CvPoint pt, int start_stage */) -{ - return 1; -} - -namespace cv -{ -namespace ocl -{ - -struct gpuHaarDetectObjects_ScaleImage_Invoker -{ - gpuHaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade *_cascade, - int _stripSize, double _factor, - const Mat &_sum1, const Mat &_sqsum1, Mat *_norm1, - Mat *_mask1, Rect _equRect, ConcurrentRectVector &_vec ) - { - cascade = _cascade; - stripSize = _stripSize; - factor = _factor; - sum1 = _sum1; - sqsum1 = _sqsum1; - norm1 = _norm1; - mask1 = _mask1; - equRect = _equRect; - vec = &_vec; - } - - void operator()( const BlockedRange &range ) const - { - Size winSize0 = cascade->orig_window_size; - Size winSize(cvRound(winSize0.width * factor), cvRound(winSize0.height * factor)); - int y1 = range.begin() * stripSize, y2 = min(range.end() * stripSize, sum1.rows - 1 - winSize0.height); - Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1); - int x, y, ystep = factor > 2 ? 1 : 2; - - for( y = y1; y < y2; y += ystep ) - for( x = 0; x < ssz.width; x += ystep ) - { - if( gpuRunHaarClassifierCascade( /*cascade, cvPoint(x, y), 0*/ ) > 0 ) - vec->push_back(Rect(cvRound(x * factor), cvRound(y * factor), - winSize.width, winSize.height)); - } - } - - const CvHaarClassifierCascade *cascade; - int stripSize; - double factor; - Mat sum1, sqsum1, *norm1, *mask1; - Rect equRect; - ConcurrentRectVector *vec; -}; - - -struct gpuHaarDetectObjects_ScaleCascade_Invoker -{ - gpuHaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade *_cascade, - Size _winsize, const Range &_xrange, double _ystep, - size_t _sumstep, const int **_p, const int **_pq, - ConcurrentRectVector &_vec ) - { - cascade = _cascade; - winsize = _winsize; - xrange = _xrange; - ystep = _ystep; - sumstep = _sumstep; - p = _p; - pq = _pq; - vec = &_vec; - } - - void operator()( const BlockedRange &range ) const - { - int iy, startY = range.begin(), endY = range.end(); - const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3]; - const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3]; - bool doCannyPruning = p0 != 0; - int sstep = (int)(sumstep / sizeof(p0[0])); - - for( iy = startY; iy < endY; iy++ ) - { - int ix, y = cvRound(iy * ystep), ixstep = 1; - for( ix = xrange.start; ix < xrange.end; ix += ixstep ) - { - int x = cvRound(ix * ystep); // it should really be ystep, not ixstep - - if( doCannyPruning ) - { - int offset = y * sstep + x; - int s = p0[offset] - p1[offset] - p2[offset] + p3[offset]; - int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset]; - if( s < 100 || sq < 20 ) - { - ixstep = 2; - continue; - } - } - - int result = gpuRunHaarClassifierCascade(/* cascade, cvPoint(x, y), 0 */); - if( result > 0 ) - vec->push_back(Rect(x, y, winsize.width, winsize.height)); - ixstep = result != 0 ? 1 : 2; - } - } - } - - const CvHaarClassifierCascade *cascade; - double ystep; - size_t sumstep; - Size winsize; - Range xrange; - const int **p; - const int **pq; - ConcurrentRectVector *vec; -}; - -} -} diff --git a/modules/ocl/src/opencl/haarobjectdetect.cl b/modules/ocl/src/opencl/haarobjectdetect.cl index e0ab8603b7..4873298af0 100644 --- a/modules/ocl/src/opencl/haarobjectdetect.cl +++ b/modules/ocl/src/opencl/haarobjectdetect.cl @@ -10,6 +10,7 @@ // Wang Weiyan, wangweiyanster@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Nathan, liujun@multicorewareinc.com +// Peng Xiao, pengxiao@outlook.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // @@ -45,27 +46,16 @@ typedef int sumtype; typedef float sqsumtype; -typedef struct __attribute__((aligned (128))) GpuHidHaarFeature -{ - struct __attribute__((aligned (32))) -{ - int p0 __attribute__((aligned (4))); - int p1 __attribute__((aligned (4))); - int p2 __attribute__((aligned (4))); - int p3 __attribute__((aligned (4))); - float weight __attribute__((aligned (4))); -} -rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32))); -} -GpuHidHaarFeature; - +#ifndef STUMP_BASED +#define STUMP_BASED 1 +#endif typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode { int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64))); - float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/; - float threshold /*__attribute__((aligned (4)))*/; - float alpha[2] __attribute__((aligned (8))); + float weight[CV_HAAR_FEATURE_MAX]; + float threshold; + float alpha[3] __attribute__((aligned (16))); int left __attribute__((aligned (4))); int right __attribute__((aligned (4))); } @@ -111,7 +101,6 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade float inv_window_area __attribute__((aligned (4))); } GpuHidHaarClassifierCascade; - __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade( global GpuHidHaarStageClassifier * stagecascadeptr, global int4 * info, @@ -234,7 +223,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa float stage_sum = 0.f; int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop); float stagethreshold = as_float(stageinfo.y); - for(int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++ ) + for(int nodeloop = 0; nodeloop < stageinfo.x; ) { __global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter); @@ -242,7 +231,8 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0])); float4 w = *(__global float4*)(&(currentnodeptr->weight[0])); - float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0])); + float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0])); + float nodethreshold = w.w * variance_norm_factor; info1.x +=lcl_off; @@ -261,8 +251,34 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] - lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z; - stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x; + bool passThres = classsum >= nodethreshold; +#if STUMP_BASED + stage_sum += passThres ? alpha3.y : alpha3.x; nodecounter++; + nodeloop++; +#else + bool isRootNode = (nodecounter & 1) == 0; + if(isRootNode) + { + if( (passThres && currentnodeptr->right) || + (!passThres && currentnodeptr->left)) + { + nodecounter ++; + } + else + { + stage_sum += alpha3.x; + nodecounter += 2; + nodeloop ++; + } + } + else + { + stage_sum += passThres ? alpha3.z : alpha3.y; + nodecounter ++; + nodeloop ++; + } +#endif } result = (stage_sum >= stagethreshold); @@ -301,18 +317,20 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa if(lcl_compute_win_id < queuecount) { - int tempnodecounter = lcl_compute_id; float part_sum = 0.f; - for(int lcl_loop=0; lcl_loopp[0][0])); int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0])); float4 w = *(__global float4*)(&(currentnodeptr->weight[0])); - float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0])); + float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0])); float nodethreshold = w.w * variance_norm_factor; info1.x +=queue_pixel; @@ -332,8 +350,34 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] - lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z; - part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x; - tempnodecounter +=lcl_compute_win; + bool passThres = classsum >= nodethreshold; +#if STUMP_BASED + part_sum += passThres ? alpha3.y : alpha3.x; + tempnodecounter += lcl_compute_win; + lcl_loop++; +#else + if(root_offset == 0) + { + if( (passThres && currentnodeptr->right) || + (!passThres && currentnodeptr->left)) + { + root_offset = 1; + } + else + { + part_sum += alpha3.x; + tempnodecounter += lcl_compute_win; + lcl_loop++; + } + } + else + { + part_sum += passThres ? alpha3.z : alpha3.y; + tempnodecounter += lcl_compute_win; + lcl_loop++; + root_offset = 0; + } +#endif }//end for(int lcl_loop=0;lcl_looptwo_rects) -{ - #pragma unroll - for( n = 0; n < stagecascade->count; n++ ) - { - t1 = *(node + counter); - t = t1.threshold * variance_norm_factor; - classsum = calc_sum1(t1,p_offset,0) * t1.weight[0]; - - classsum += calc_sum1(t1, p_offset,1) * t1.weight[1]; - stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0]; - - counter++; - } -} -else -{ - #pragma unroll - for( n = 0; n < stagecascade->count; n++ ) - { - t = node[counter].threshold*variance_norm_factor; - classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0]; - classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1]; - - if( node[counter].p0[2] ) - classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2]; - - stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify - - counter++; - } -} -*/ -/* -__kernel void gpuRunHaarClassifierCascade_ScaleWindow( - constant GpuHidHaarClassifierCascade * _cascade, - global GpuHidHaarStageClassifier * stagecascadeptr, - //global GpuHidHaarClassifier * classifierptr, - global GpuHidHaarTreeNode * nodeptr, - global int * sum, - global float * sqsum, - global int * _candidate, - int pixel_step, - int cols, - int rows, - int start_stage, - int end_stage, - //int counts, - int nodenum, - int ystep, - int detect_width, - //int detect_height, - int loopcount, - int outputstep) - //float scalefactor) -{ -unsigned int x1 = get_global_id(0); -unsigned int y1 = get_global_id(1); -int p_offset; -int m, n; -int result; -int counter; -float mean, variance_norm_factor; -for(int i=0;ip1 - cascade->p0; -int window_height = window_width; -result = 1; -counter = 0; -unsigned int x = mul24(x1,ystep); -unsigned int y = mul24(y1,ystep); -if((x < cols - window_width - 1) && (y < rows - window_height -1)) -{ -global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage; -//global GpuHidHaarClassifier *classifier = classifierptr; -global GpuHidHaarTreeNode *node = nodeptr + nodenum*i; - -p_offset = mad24(y, pixel_step, x);// modify - -mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) - - *(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3)) - *cascade->inv_window_area; - -variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) - - *(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset); -variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean; -variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify - -// if( cascade->is_stump_based ) -//{ -for( m = start_stage; m < end_stage; m++ ) -{ -float stage_sum = 0.f; -float t, classsum; -GpuHidHaarTreeNode t1; - -//#pragma unroll -for( n = 0; n < stagecascade->count; n++ ) -{ - t1 = *(node + counter); - t = t1.threshold * variance_norm_factor; - classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1]; - - if((t1.p0[2]) && (!stagecascade->two_rects)) - classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2]; - - stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify - counter++; -} - -if (stage_sum < stagecascade->threshold) -{ - result = 0; - break; -} - -stagecascade++; - -} -if(result) -{ - candidate[4 * (y1 * detect_width + x1)] = x; - candidate[4 * (y1 * detect_width + x1) + 1] = y; - candidate[4 * (y1 * detect_width + x1)+2] = window_width; - candidate[4 * (y1 * detect_width + x1) + 3] = window_height; -} -//} -} -} -} -*/ - - - - diff --git a/modules/ocl/src/opencl/haarobjectdetect_scaled2.cl b/modules/ocl/src/opencl/haarobjectdetect_scaled2.cl index 44877f3860..8507972ff2 100644 --- a/modules/ocl/src/opencl/haarobjectdetect_scaled2.cl +++ b/modules/ocl/src/opencl/haarobjectdetect_scaled2.cl @@ -17,7 +17,7 @@ // @Authors // Wu Xinglong, wxl370@126.com // Sen Liu, swjtuls1987@126.com -// +// Peng Xiao, pengxiao@outlook.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // @@ -49,25 +49,13 @@ #define CV_HAAR_FEATURE_MAX 3 typedef int sumtype; typedef float sqsumtype; -typedef struct __attribute__((aligned(128))) GpuHidHaarFeature -{ - struct __attribute__((aligned(32))) -{ - int p0 __attribute__((aligned(4))); - int p1 __attribute__((aligned(4))); - int p2 __attribute__((aligned(4))); - int p3 __attribute__((aligned(4))); - float weight __attribute__((aligned(4))); -} -rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned(32))); -} -GpuHidHaarFeature; + typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode { int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64))); float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/; float threshold /*__attribute__((aligned (4)))*/; - float alpha[2] __attribute__((aligned(8))); + float alpha[3] __attribute__((aligned(16))); int left __attribute__((aligned(4))); int right __attribute__((aligned(4))); } @@ -174,45 +162,83 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( const int p_offset = mad24(y, step, x); cascadeinfo.x += p_offset; cascadeinfo.z += p_offset; - mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - - sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]) + mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] + - sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - + sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + + sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]) * correction_t; - variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - - sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]; + variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] + - sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - + sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + + sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]; variance_norm_factor = variance_norm_factor * correction_t - mean * mean; variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f; bool result = true; nodecounter = startnode + nodecount * scalei; - for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++) { float stage_sum = 0.f; int stagecount = stagecascadeptr[stageloop].count; - for (int nodeloop = 0; nodeloop < stagecount; nodeloop++) + for (int nodeloop = 0; nodeloop < stagecount;) { __global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter); int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0])); int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0])); int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0])); float4 w = *(__global float4 *)(&(currentnodeptr->weight[0])); - float2 alpha2 = *(__global float2 *)(&(currentnodeptr->alpha[0])); + float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0])); float nodethreshold = w.w * variance_norm_factor; + info1.x += p_offset; info1.z += p_offset; info2.x += p_offset; info2.z += p_offset; - float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)] - sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] - - sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)] + sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x; - classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)] - sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] - - sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)] + sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y; info3.x += p_offset; info3.z += p_offset; - classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)] - sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] - - sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] + sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z; - stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x; + float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)] + - sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] - + sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)] + + sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x; + classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)] + - sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] - + sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)] + + sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y; + classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)] + - sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] - + sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] + + sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z; + + bool passThres = classsum >= nodethreshold; + +#if STUMP_BASED + stage_sum += passThres ? alpha3.y : alpha3.x; nodecounter++; + nodeloop++; +#else + bool isRootNode = (nodecounter & 1) == 0; + if(isRootNode) + { + if( (passThres && currentnodeptr->right) || + (!passThres && currentnodeptr->left)) + { + nodecounter ++; + } + else + { + stage_sum += alpha3.x; + nodecounter += 2; + nodeloop ++; + } + } + else + { + stage_sum += (passThres ? alpha3.z : alpha3.y); + nodecounter ++; + nodeloop ++; + } +#endif } - result = (bool)(stage_sum >= stagecascadeptr[stageloop].threshold); + result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold); } barrier(CLK_LOCAL_MEM_FENCE); @@ -222,7 +248,6 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( int queueindex = atomic_inc(lclcount); lcloutindex[queueindex] = (y << 16) | x; } - barrier(CLK_LOCAL_MEM_FENCE); int queuecount = lclcount[0]; @@ -277,5 +302,6 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH newnode[counter].threshold = t1.threshold; newnode[counter].alpha[0] = t1.alpha[0]; newnode[counter].alpha[1] = t1.alpha[1]; + newnode[counter].alpha[2] = t1.alpha[2]; } diff --git a/modules/ocl/test/test_haar.cpp b/modules/ocl/test/test_haar.cpp index 96f721146b..52ddbb7c6a 100644 --- a/modules/ocl/test/test_haar.cpp +++ b/modules/ocl/test/test_haar.cpp @@ -55,6 +55,12 @@ using namespace testing; using namespace std; using namespace cv; extern string workdir; + +namespace +{ +IMPLEMENT_PARAM_CLASS(CascadeName, std::string); +CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml")); +CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml")); struct getRect { Rect operator ()(const CvAvgComp &e) const @@ -62,23 +68,24 @@ struct getRect return e.rect; } }; +} -PARAM_TEST_CASE(Haar, double, int) +PARAM_TEST_CASE(Haar, double, int, CascadeName) { cv::ocl::OclCascadeClassifier cascade, nestedCascade; - cv::ocl::OclCascadeClassifierBuf cascadebuf; cv::CascadeClassifier cpucascade, cpunestedCascade; double scale; int flags; + std::string cascadeName; virtual void SetUp() { scale = GET_PARAM(0); flags = GET_PARAM(1); - string cascadeName = workdir + "../../data/haarcascades/haarcascade_frontalface_alt.xml"; + cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(2)); - if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) || (!cascadebuf.load( cascadeName ))) + if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) ) { cout << "ERROR: Could not load classifier cascade" << endl; return; @@ -115,7 +122,7 @@ TEST_P(Haar, FaceDetect) Seq(_objects).copyTo(vecAvgComp); oclfaces.resize(vecAvgComp.size()); std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect()); - + cpucascade.detectMultiScale( smallImg, faces, 1.1, 3, flags, Size(30, 30), Size(0, 0) ); @@ -136,7 +143,6 @@ TEST_P(Haar, FaceDetectUseBuf) vector faces, oclfaces; Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 ); - MemStorage storage(cvCreateMemStorage(0)); cvtColor( img, gray, CV_BGR2GRAY ); resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); equalizeHist( smallImg, smallImg ); @@ -144,19 +150,31 @@ TEST_P(Haar, FaceDetectUseBuf) cv::ocl::oclMat image; image.upload(smallImg); + cv::ocl::OclCascadeClassifierBuf cascadebuf; + if( !cascadebuf.load( cascadeName ) ) + { + cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << endl; + return; + } cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3, flags, Size(30, 30), Size(0, 0) ); - cascadebuf.release(); cpucascade.detectMultiScale( smallImg, faces, 1.1, 3, flags, Size(30, 30), Size(0, 0) ); EXPECT_EQ(faces.size(), oclfaces.size()); + + // intentionally run ocl facedetect again and check if it still works after the first run + cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3, + flags, + Size(30, 30)); + cascadebuf.release(); + EXPECT_EQ(faces.size(), oclfaces.size()); } INSTANTIATE_TEST_CASE_P(FaceDetect, Haar, Combine(Values(1.0), - Values(CV_HAAR_SCALE_IMAGE, 0))); + Values(CV_HAAR_SCALE_IMAGE, 0), Values(cascade_frontalface_alt, cascade_frontalface_alt2))); #endif // HAVE_OPENCL