|
|
|
@ -137,47 +137,22 @@ struct CvHidHaarClassifierCascade |
|
|
|
|
}; |
|
|
|
|
typedef struct
|
|
|
|
|
{ |
|
|
|
|
//int rows;
|
|
|
|
|
//int ystep;
|
|
|
|
|
int width_height; |
|
|
|
|
//int height;
|
|
|
|
|
int grpnumperline_totalgrp; |
|
|
|
|
//int totalgrp;
|
|
|
|
|
int imgoff; |
|
|
|
|
float factor; |
|
|
|
|
} detect_piramid_info; |
|
|
|
|
|
|
|
|
|
#if defined WIN32 && !defined __MINGW__ && !defined __MINGW32__ |
|
|
|
|
#ifdef WIN32 |
|
|
|
|
#define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT)) |
|
|
|
|
typedef _ALIGNED_ON(128) struct GpuHidHaarFeature |
|
|
|
|
{ |
|
|
|
|
_ALIGNED_ON(32) struct
|
|
|
|
|
{ |
|
|
|
|
_ALIGNED_ON(4) int p0 ; |
|
|
|
|
_ALIGNED_ON(4) int p1 ; |
|
|
|
|
_ALIGNED_ON(4) int p2 ; |
|
|
|
|
_ALIGNED_ON(4) int p3 ; |
|
|
|
|
_ALIGNED_ON(4) float weight ; |
|
|
|
|
} |
|
|
|
|
/*_ALIGNED_ON(32)*/ rect[CV_HAAR_FEATURE_MAX] ; |
|
|
|
|
} |
|
|
|
|
GpuHidHaarFeature; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode |
|
|
|
|
{ |
|
|
|
|
_ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4]; |
|
|
|
|
//_ALIGNED_ON(16) int p1[CV_HAAR_FEATURE_MAX] ;
|
|
|
|
|
//_ALIGNED_ON(16) int p2[CV_HAAR_FEATURE_MAX] ;
|
|
|
|
|
//_ALIGNED_ON(16) int p3[CV_HAAR_FEATURE_MAX] ;
|
|
|
|
|
/*_ALIGNED_ON(16)*/ |
|
|
|
|
float weight[CV_HAAR_FEATURE_MAX] ; |
|
|
|
|
/*_ALIGNED_ON(4)*/ |
|
|
|
|
float threshold ; |
|
|
|
|
_ALIGNED_ON(8) float alpha[2] ; |
|
|
|
|
_ALIGNED_ON(16) float alpha[3] ; |
|
|
|
|
_ALIGNED_ON(4) int left ; |
|
|
|
|
_ALIGNED_ON(4) int right ; |
|
|
|
|
// GpuHidHaarFeature feature __attribute__((aligned (128)));
|
|
|
|
|
} |
|
|
|
|
GpuHidHaarTreeNode; |
|
|
|
|
|
|
|
|
@ -185,7 +160,6 @@ GpuHidHaarTreeNode; |
|
|
|
|
typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier |
|
|
|
|
{ |
|
|
|
|
_ALIGNED_ON(4) int count; |
|
|
|
|
//CvHaarFeature* orig_feature;
|
|
|
|
|
_ALIGNED_ON(8) GpuHidHaarTreeNode *node ; |
|
|
|
|
_ALIGNED_ON(8) float *alpha ; |
|
|
|
|
} |
|
|
|
@ -220,32 +194,16 @@ typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade |
|
|
|
|
_ALIGNED_ON(4) int p2 ; |
|
|
|
|
_ALIGNED_ON(4) int p3 ; |
|
|
|
|
_ALIGNED_ON(4) float inv_window_area ; |
|
|
|
|
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
|
|
|
|
|
} GpuHidHaarClassifierCascade; |
|
|
|
|
#else |
|
|
|
|
#define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) )) |
|
|
|
|
|
|
|
|
|
typedef struct _ALIGNED_ON(128) GpuHidHaarFeature |
|
|
|
|
{ |
|
|
|
|
struct _ALIGNED_ON(32) |
|
|
|
|
{ |
|
|
|
|
int p0 _ALIGNED_ON(4); |
|
|
|
|
int p1 _ALIGNED_ON(4); |
|
|
|
|
int p2 _ALIGNED_ON(4); |
|
|
|
|
int p3 _ALIGNED_ON(4); |
|
|
|
|
float weight _ALIGNED_ON(4); |
|
|
|
|
} |
|
|
|
|
rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32); |
|
|
|
|
} |
|
|
|
|
GpuHidHaarFeature; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode |
|
|
|
|
{ |
|
|
|
|
int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64); |
|
|
|
|
float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16);
|
|
|
|
|
float threshold;// _ALIGNED_ON(4);
|
|
|
|
|
float alpha[2] _ALIGNED_ON(8); |
|
|
|
|
float alpha[3] _ALIGNED_ON(16); |
|
|
|
|
int left _ALIGNED_ON(4); |
|
|
|
|
int right _ALIGNED_ON(4); |
|
|
|
|
} |
|
|
|
@ -288,7 +246,6 @@ typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade |
|
|
|
|
int p2 _ALIGNED_ON(4); |
|
|
|
|
int p3 _ALIGNED_ON(4); |
|
|
|
|
float inv_window_area _ALIGNED_ON(4); |
|
|
|
|
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
|
|
|
|
|
} GpuHidHaarClassifierCascade; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
@ -296,36 +253,6 @@ const int icv_object_win_border = 1; |
|
|
|
|
const float icv_stage_threshold_bias = 0.0001f; |
|
|
|
|
double globaltime = 0; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// static CvHaarClassifierCascade * gpuCreateHaarClassifierCascade( int stage_count )
|
|
|
|
|
// {
|
|
|
|
|
// CvHaarClassifierCascade *cascade = 0;
|
|
|
|
|
|
|
|
|
|
// int block_size = sizeof(*cascade) + stage_count * sizeof(*cascade->stage_classifier);
|
|
|
|
|
|
|
|
|
|
// if( stage_count <= 0 )
|
|
|
|
|
// CV_Error( CV_StsOutOfRange, "Number of stages should be positive" );
|
|
|
|
|
|
|
|
|
|
// cascade = (CvHaarClassifierCascade *)cvAlloc( block_size );
|
|
|
|
|
// memset( cascade, 0, block_size );
|
|
|
|
|
|
|
|
|
|
// cascade->stage_classifier = (CvHaarStageClassifier *)(cascade + 1);
|
|
|
|
|
// cascade->flags = CV_HAAR_MAGIC_VAL;
|
|
|
|
|
// cascade->count = stage_count;
|
|
|
|
|
|
|
|
|
|
// return cascade;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
//static int globalcounter = 0;
|
|
|
|
|
|
|
|
|
|
// static void gpuReleaseHidHaarClassifierCascade( GpuHidHaarClassifierCascade **_cascade )
|
|
|
|
|
// {
|
|
|
|
|
// if( _cascade && *_cascade )
|
|
|
|
|
// {
|
|
|
|
|
// cvFree( _cascade );
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
/* create more efficient internal representation of haar classifier cascade */ |
|
|
|
|
static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier) |
|
|
|
|
{ |
|
|
|
@ -441,24 +368,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl |
|
|
|
|
hid_stage_classifier->two_rects = 1; |
|
|
|
|
haar_classifier_ptr += stage_classifier->count; |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
hid_stage_classifier->parent = (stage_classifier->parent == -1) |
|
|
|
|
? NULL : stage_classifier_ptr + stage_classifier->parent; |
|
|
|
|
hid_stage_classifier->next = (stage_classifier->next == -1) |
|
|
|
|
? NULL : stage_classifier_ptr + stage_classifier->next; |
|
|
|
|
hid_stage_classifier->child = (stage_classifier->child == -1) |
|
|
|
|
? NULL : stage_classifier_ptr + stage_classifier->child; |
|
|
|
|
|
|
|
|
|
out->is_tree |= hid_stage_classifier->next != NULL; |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
for( j = 0; j < stage_classifier->count; j++ ) |
|
|
|
|
{ |
|
|
|
|
CvHaarClassifier *classifier = stage_classifier->classifier + j; |
|
|
|
|
GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j; |
|
|
|
|
int node_count = classifier->count; |
|
|
|
|
|
|
|
|
|
// float* alpha_ptr = (float*)(haar_node_ptr + node_count);
|
|
|
|
|
float *alpha_ptr = &haar_node_ptr->alpha[0]; |
|
|
|
|
|
|
|
|
|
hid_classifier->count = node_count; |
|
|
|
@ -485,16 +400,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl |
|
|
|
|
node->p[2][3] = 0; |
|
|
|
|
node->weight[2] = 0; |
|
|
|
|
} |
|
|
|
|
// memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
|
|
|
|
|
else |
|
|
|
|
hid_stage_classifier->two_rects = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
memcpy( alpha_ptr, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); |
|
|
|
|
haar_node_ptr = haar_node_ptr + 1; |
|
|
|
|
// (GpuHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
|
|
|
|
|
// (GpuHidHaarTreeNode*)(alpha_ptr+node_count+1);
|
|
|
|
|
|
|
|
|
|
memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); |
|
|
|
|
haar_node_ptr = haar_node_ptr + 1; |
|
|
|
|
} |
|
|
|
|
out->is_stump_based &= node_count == 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -507,25 +418,19 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define sum_elem_ptr(sum,row,col) \ |
|
|
|
|
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) |
|
|
|
|
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) |
|
|
|
|
|
|
|
|
|
#define sqsum_elem_ptr(sqsum,row,col) \ |
|
|
|
|
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) |
|
|
|
|
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) |
|
|
|
|
|
|
|
|
|
#define calc_sum(rect,offset) \ |
|
|
|
|
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) |
|
|
|
|
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade, |
|
|
|
|
/* const CvArr* _sum,
|
|
|
|
|
const CvArr* _sqsum, |
|
|
|
|
const CvArr* _tilted_sum,*/ |
|
|
|
|
double scale, |
|
|
|
|
int step) |
|
|
|
|
{ |
|
|
|
|
// CvMat sum_stub, *sum = (CvMat*)_sum;
|
|
|
|
|
// CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
|
|
|
|
|
// CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
|
|
|
|
|
GpuHidHaarClassifierCascade *cascade; |
|
|
|
|
int coi0 = 0, coi1 = 0; |
|
|
|
|
int i; |
|
|
|
@ -541,61 +446,25 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc |
|
|
|
|
if( scale <= 0 ) |
|
|
|
|
CV_Error( CV_StsOutOfRange, "Scale must be positive" ); |
|
|
|
|
|
|
|
|
|
// sum = cvGetMat( sum, &sum_stub, &coi0 );
|
|
|
|
|
// sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 );
|
|
|
|
|
|
|
|
|
|
if( coi0 || coi1 ) |
|
|
|
|
CV_Error( CV_BadCOI, "COI is not supported" ); |
|
|
|
|
|
|
|
|
|
// if( !CV_ARE_SIZES_EQ( sum, sqsum ))
|
|
|
|
|
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
|
|
|
|
|
|
|
|
|
// if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
|
|
|
|
|
// CV_MAT_TYPE(sum->type) != CV_32SC1 )
|
|
|
|
|
// CV_Error( CV_StsUnsupportedFormat,
|
|
|
|
|
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
|
|
|
|
|
|
|
|
|
if( !_cascade->hid_cascade ) |
|
|
|
|
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); |
|
|
|
|
|
|
|
|
|
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; |
|
|
|
|
stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1); |
|
|
|
|
|
|
|
|
|
if( cascade->has_tilted_features ) |
|
|
|
|
{ |
|
|
|
|
// tilted = cvGetMat( tilted, &tilted_stub, &coi1 );
|
|
|
|
|
|
|
|
|
|
// if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
|
|
|
|
|
// CV_Error( CV_StsUnsupportedFormat,
|
|
|
|
|
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
|
|
|
|
|
|
|
|
|
// if( sum->step != tilted->step )
|
|
|
|
|
// CV_Error( CV_StsUnmatchedSizes,
|
|
|
|
|
// "Sum and tilted_sum must have the same stride (step, widthStep)" );
|
|
|
|
|
|
|
|
|
|
// if( !CV_ARE_SIZES_EQ( sum, tilted ))
|
|
|
|
|
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
|
|
|
|
// cascade->tilted = *tilted;
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
_cascade->scale = scale; |
|
|
|
|
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); |
|
|
|
|
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); |
|
|
|
|
|
|
|
|
|
//cascade->sum = *sum;
|
|
|
|
|
//cascade->sqsum = *sqsum;
|
|
|
|
|
|
|
|
|
|
equRect.x = equRect.y = cvRound(scale); |
|
|
|
|
equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale); |
|
|
|
|
equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale); |
|
|
|
|
weight_scale = 1. / (equRect.width * equRect.height); |
|
|
|
|
cascade->inv_window_area = weight_scale; |
|
|
|
|
|
|
|
|
|
// cascade->pq0 = equRect.y * step + equRect.x;
|
|
|
|
|
// cascade->pq1 = equRect.y * step + equRect.x + equRect.width ;
|
|
|
|
|
// cascade->pq2 = (equRect.y + equRect.height)*step + equRect.x;
|
|
|
|
|
// cascade->pq3 = (equRect.y + equRect.height)*step + equRect.x + equRect.width ;
|
|
|
|
|
|
|
|
|
|
cascade->pq0 = equRect.x; |
|
|
|
|
cascade->pq1 = equRect.y; |
|
|
|
|
cascade->pq2 = equRect.x + equRect.width; |
|
|
|
@ -618,10 +487,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc |
|
|
|
|
{ |
|
|
|
|
CvHaarFeature *feature = |
|
|
|
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l]; |
|
|
|
|
/* GpuHidHaarClassifier* classifier =
|
|
|
|
|
cascade->stage_classifier[i].classifier + j; */ |
|
|
|
|
//GpuHidHaarFeature* hidfeature =
|
|
|
|
|
// &cascade->stage_classifier[i].classifier[j].node[l].feature;
|
|
|
|
|
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; |
|
|
|
|
double sum0 = 0, area0 = 0; |
|
|
|
|
CvRect r[3]; |
|
|
|
@ -636,8 +501,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc |
|
|
|
|
/* align blocks */ |
|
|
|
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
|
|
|
{ |
|
|
|
|
//if( !hidfeature->rect[k].p0 )
|
|
|
|
|
// break;
|
|
|
|
|
if(!hidnode->p[k][0]) |
|
|
|
|
break; |
|
|
|
|
r[k] = feature->rect[k].r; |
|
|
|
@ -717,15 +580,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc |
|
|
|
|
|
|
|
|
|
if( !feature->tilted ) |
|
|
|
|
{ |
|
|
|
|
/* hidfeature->rect[k].p0 = tr.y * sum->cols + tr.x;
|
|
|
|
|
hidfeature->rect[k].p1 = tr.y * sum->cols + tr.x + tr.width; |
|
|
|
|
hidfeature->rect[k].p2 = (tr.y + tr.height) * sum->cols + tr.x; |
|
|
|
|
hidfeature->rect[k].p3 = (tr.y + tr.height) * sum->cols + tr.x + tr.width; |
|
|
|
|
*/ |
|
|
|
|
/*hidnode->p0[k] = tr.y * step + tr.x;
|
|
|
|
|
hidnode->p1[k] = tr.y * step + tr.x + tr.width; |
|
|
|
|
hidnode->p2[k] = (tr.y + tr.height) * step + tr.x; |
|
|
|
|
hidnode->p3[k] = (tr.y + tr.height) * step + tr.x + tr.width;*/ |
|
|
|
|
hidnode->p[k][0] = tr.x; |
|
|
|
|
hidnode->p[k][1] = tr.y; |
|
|
|
|
hidnode->p[k][2] = tr.x + tr.width; |
|
|
|
@ -733,37 +587,24 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
/* hidfeature->rect[k].p2 = (tr.y + tr.width) * tilted->cols + tr.x + tr.width;
|
|
|
|
|
hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * tilted->cols + tr.x + tr.width - tr.height; |
|
|
|
|
hidfeature->rect[k].p0 = tr.y * tilted->cols + tr.x; |
|
|
|
|
hidfeature->rect[k].p1 = (tr.y + tr.height) * tilted->cols + tr.x - tr.height; |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width; |
|
|
|
|
hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height; |
|
|
|
|
hidnode->p[k][0] = tr.y * step + tr.x; |
|
|
|
|
hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
|
|
|
|
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); |
|
|
|
|
if( k == 0 ) |
|
|
|
|
area0 = tr.width * tr.height; |
|
|
|
|
else |
|
|
|
|
//sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
|
|
|
|
|
sum0 += hidnode->weight[k] * tr.width * tr.height; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// hidfeature->rect[0].weight = (float)(-sum0/area0);
|
|
|
|
|
hidnode->weight[0] = (float)(-sum0 / area0); |
|
|
|
|
} /* l */ |
|
|
|
|
} /* j */ |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade |
|
|
|
|
/*double scale=0.0,*/ |
|
|
|
|
/*int step*/) |
|
|
|
|
static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade) |
|
|
|
|
{ |
|
|
|
|
GpuHidHaarClassifierCascade *cascade; |
|
|
|
|
int i; |
|
|
|
@ -817,11 +658,7 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade |
|
|
|
|
if(!hidnode->p[k][0]) |
|
|
|
|
break; |
|
|
|
|
r[k] = feature->rect[k].r; |
|
|
|
|
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
|
|
|
|
|
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
|
|
|
|
|
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
|
|
|
|
|
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
nr = k; |
|
|
|
|
for( k = 0; k < nr; k++ ) |
|
|
|
@ -839,7 +676,6 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade |
|
|
|
|
hidnode->p[k][3] = tr.height; |
|
|
|
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); |
|
|
|
|
} |
|
|
|
|
//hidnode->weight[0]=(float)(-sum0/area0);
|
|
|
|
|
} /* l */ |
|
|
|
|
} /* j */ |
|
|
|
|
} |
|
|
|
@ -852,7 +688,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
|
|
|
|
|
const double GROUP_EPS = 0.2; |
|
|
|
|
CvSeq *result_seq = 0; |
|
|
|
|
cv::Ptr<CvMemStorage> temp_storage; |
|
|
|
|
|
|
|
|
|
cv::ConcurrentRectVector allCandidates; |
|
|
|
|
std::vector<cv::Rect> rectList; |
|
|
|
@ -910,6 +745,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
if( gimg.cols < minSize.width || gimg.rows < minSize.height ) |
|
|
|
|
CV_Error(CV_StsError, "Image too small"); |
|
|
|
|
|
|
|
|
|
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue()); |
|
|
|
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
CvSize winSize0 = cascade->orig_window_size; |
|
|
|
@ -952,7 +788,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
|
|
|
|
|
size_t blocksize = 8; |
|
|
|
|
size_t localThreads[3] = { blocksize, blocksize , 1 }; |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU * gsum.clCxt->computeUnits() *localThreads[0], |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->computeUnits()) *localThreads[0], |
|
|
|
|
localThreads[1], 1 |
|
|
|
|
}; |
|
|
|
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
|
|
@ -997,7 +833,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); |
|
|
|
|
|
|
|
|
|
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); |
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
@ -1044,7 +879,9 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
|
|
|
|
|
|
openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
|
|
|
|
|
|
|
@ -1059,6 +896,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(nodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(candidatebuffer)); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
@ -1118,7 +956,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); |
|
|
|
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, |
|
|
|
|
nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, |
|
|
|
|
nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
@ -1160,7 +997,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); |
|
|
|
|
|
|
|
|
|
size_t globalThreads2[3] = {nodenum, 1, 1}; |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1195,8 +1031,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
|
|
|
|
|
|
candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status); |
|
|
|
|
|
|
|
|
@ -1284,7 +1120,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
int blocksize = 8; |
|
|
|
|
int grp_per_CU = 12; |
|
|
|
|
size_t localThreads[3] = { blocksize, blocksize, 1 }; |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU * Context::getContext()->computeUnits() * localThreads[0], |
|
|
|
|
size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->computeUnits() *localThreads[0], |
|
|
|
|
localThreads[1], |
|
|
|
|
1 }; |
|
|
|
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
|
|
@ -1300,8 +1136,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
|
GpuHidHaarClassifierCascade *gcascade; |
|
|
|
|
GpuHidHaarStageClassifier *stage; |
|
|
|
|
GpuHidHaarClassifier *classifier; |
|
|
|
|
GpuHidHaarTreeNode *node; |
|
|
|
|
|
|
|
|
|
if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) |
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); |
|
|
|
@ -1314,7 +1148,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int *candidate; |
|
|
|
|
|
|
|
|
|
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue()); |
|
|
|
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
int indexy = 0; |
|
|
|
@ -1340,19 +1174,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
|
|
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); |
|
|
|
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
|
|
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); |
|
|
|
|
|
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, |
|
|
|
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count, |
|
|
|
|
stage, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
|
|
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
int startstage = 0; |
|
|
|
|
int endstage = gcascade->count; |
|
|
|
@ -1389,17 +1210,23 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
|
|
|
|
|
|
candidate = (int *)malloc(4 * sizeof(int) * outputsz); |
|
|
|
|
memset(candidate, 0, 4 * sizeof(int) * outputsz); |
|
|
|
|
|
|
|
|
|
openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < outputsz; i++) |
|
|
|
|
{ |
|
|
|
|
if(candidate[4 * i + 2] != 0) |
|
|
|
|
{ |
|
|
|
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
|
|
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
free((void *)candidate); |
|
|
|
|
candidate = NULL; |
|
|
|
|
} |
|
|
|
@ -1407,56 +1234,14 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
{ |
|
|
|
|
cv::ocl::integral(gimg, gsum, gsqsum); |
|
|
|
|
|
|
|
|
|
gpuSetHaarClassifierCascade(cascade); |
|
|
|
|
|
|
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
|
|
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
|
|
|
|
|
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue(); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
|
|
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); |
|
|
|
|
float *correction = (float *)malloc(sizeof(float) * m_loopcount); |
|
|
|
|
int startstage = 0; |
|
|
|
|
int endstage = gcascade->count; |
|
|
|
|
double factor; |
|
|
|
|
for(int i = 0; i < m_loopcount; i++) |
|
|
|
|
{ |
|
|
|
|
factor = scalev[i]; |
|
|
|
|
int equRect_x = (int)(factor * gcascade->p0 + 0.5); |
|
|
|
|
int equRect_y = (int)(factor * gcascade->p1 + 0.5); |
|
|
|
|
int equRect_w = (int)(factor * gcascade->p3 + 0.5); |
|
|
|
|
int equRect_h = (int)(factor * gcascade->p2 + 0.5); |
|
|
|
|
p[i].s[0] = equRect_x; |
|
|
|
|
p[i].s[1] = equRect_y; |
|
|
|
|
p[i].s[2] = equRect_x + equRect_w; |
|
|
|
|
p[i].s[3] = equRect_y + equRect_h; |
|
|
|
|
correction[i] = 1. / (equRect_w * equRect_h); |
|
|
|
|
int startnodenum = m_nodenum * i; |
|
|
|
|
float factor2 = (float)factor; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args1; |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); |
|
|
|
|
|
|
|
|
|
size_t globalThreads2[3] = {m_nodenum, 1, 1}; |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int step = gsum.step / 4; |
|
|
|
|
int startnode = 0; |
|
|
|
|
int splitstage = 3; |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
int startstage = 0; |
|
|
|
|
int endstage = gcascade->count; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args; |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); |
|
|
|
@ -1477,7 +1262,8 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer )); |
|
|
|
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); |
|
|
|
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
|
|
|
|
|
|
candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL); |
|
|
|
|
|
|
|
|
@ -1487,12 +1273,8 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std |
|
|
|
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
|
|
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
free(p); |
|
|
|
|
free(correction); |
|
|
|
|
clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rectList.resize(allCandidates.size()); |
|
|
|
|
if(!allCandidates.empty()) |
|
|
|
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
@ -1510,6 +1292,10 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, |
|
|
|
|
const int outputsz, const size_t localThreads[], |
|
|
|
|
CvSize minSize, CvSize maxSize) |
|
|
|
|
{ |
|
|
|
|
if(initialized) |
|
|
|
|
{ |
|
|
|
|
return; // we only allow one time initialization
|
|
|
|
|
} |
|
|
|
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
|
|
|
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
|
|
@ -1525,7 +1311,9 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, |
|
|
|
|
int totalclassifier=0; |
|
|
|
|
|
|
|
|
|
if( !cascade->hid_cascade ) |
|
|
|
|
{ |
|
|
|
|
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( maxSize.height == 0 || maxSize.width == 0 ) |
|
|
|
|
{ |
|
|
|
@ -1547,6 +1335,78 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, |
|
|
|
|
m_minSize = minSize; |
|
|
|
|
m_maxSize = maxSize; |
|
|
|
|
|
|
|
|
|
// initialize nodes
|
|
|
|
|
GpuHidHaarClassifierCascade *gcascade; |
|
|
|
|
GpuHidHaarStageClassifier *stage; |
|
|
|
|
GpuHidHaarClassifier *classifier; |
|
|
|
|
GpuHidHaarTreeNode *node; |
|
|
|
|
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue()); |
|
|
|
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); |
|
|
|
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
|
|
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, |
|
|
|
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count, |
|
|
|
|
stage, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
|
|
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
gpuSetHaarClassifierCascade(cascade); |
|
|
|
|
|
|
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
|
|
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
|
|
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
|
|
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
|
|
|
node, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); |
|
|
|
|
float *correction = (float *)malloc(sizeof(float) * m_loopcount); |
|
|
|
|
double factor; |
|
|
|
|
for(int i = 0; i < m_loopcount; i++) |
|
|
|
|
{ |
|
|
|
|
factor = scalev[i]; |
|
|
|
|
int equRect_x = (int)(factor * gcascade->p0 + 0.5); |
|
|
|
|
int equRect_y = (int)(factor * gcascade->p1 + 0.5); |
|
|
|
|
int equRect_w = (int)(factor * gcascade->p3 + 0.5); |
|
|
|
|
int equRect_h = (int)(factor * gcascade->p2 + 0.5); |
|
|
|
|
p[i].s[0] = equRect_x; |
|
|
|
|
p[i].s[1] = equRect_y; |
|
|
|
|
p[i].s[2] = equRect_x + equRect_w; |
|
|
|
|
p[i].s[3] = equRect_y + equRect_h; |
|
|
|
|
correction[i] = 1. / (equRect_w * equRect_h); |
|
|
|
|
int startnodenum = m_nodenum * i; |
|
|
|
|
float factor2 = (float)factor; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t, const void *> > args1; |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); |
|
|
|
|
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); |
|
|
|
|
|
|
|
|
|
size_t globalThreads2[3] = {m_nodenum, 1, 1}; |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
|
|
|
} |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); |
|
|
|
|
|
|
|
|
|
free(p); |
|
|
|
|
free(correction); |
|
|
|
|
} |
|
|
|
|
initialized = true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1645,6 +1505,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( |
|
|
|
|
CvSize sz; |
|
|
|
|
CvSize winSize0 = oldCascade->orig_window_size; |
|
|
|
|
detect_piramid_info *scaleinfo; |
|
|
|
|
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue()); |
|
|
|
|
if (flags & CV_HAAR_SCALE_IMAGE) |
|
|
|
|
{ |
|
|
|
|
for(factor = 1.f;; factor *= scaleFactor) |
|
|
|
@ -1746,7 +1607,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( |
|
|
|
|
((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)cv::ocl::Context::getContext()->oclCommandQueue(), ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, |
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, |
|
|
|
|
sizeof(detect_piramid_info)*loopcount, |
|
|
|
|
scaleinfo, 0, NULL, NULL)); |
|
|
|
|
free(scaleinfo); |
|
|
|
@ -1758,7 +1619,8 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& f |
|
|
|
|
const std::vector<cv::Rect> &rectList, |
|
|
|
|
const std::vector<int> &rweights) |
|
|
|
|
{ |
|
|
|
|
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), cvCreateMemStorage(0) ); |
|
|
|
|
MemStorage tempStorage(cvCreateMemStorage(0)); |
|
|
|
|
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage ); |
|
|
|
|
|
|
|
|
|
if( findBiggestObject && rectList.size() ) |
|
|
|
|
{ |
|
|
|
@ -1794,167 +1656,30 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& f |
|
|
|
|
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::release() |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); |
|
|
|
|
|
|
|
|
|
if( (m_flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
cvFree(&oldCascade->hid_cascade); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
if(initialized) |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
|
|
|
} |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); |
|
|
|
|
|
|
|
|
|
if( (m_flags & CV_HAAR_SCALE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
cvFree(&oldCascade->hid_cascade); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
|
|
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
free(buffers); |
|
|
|
|
buffers = NULL; |
|
|
|
|
free(buffers); |
|
|
|
|
buffers = NULL; |
|
|
|
|
initialized = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifndef _MAX_PATH |
|
|
|
|
#define _MAX_PATH 1024 |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
|
* Persistence functions * |
|
|
|
|
\****************************************************************************************/ |
|
|
|
|
|
|
|
|
|
/* field names */ |
|
|
|
|
|
|
|
|
|
#define ICV_HAAR_SIZE_NAME "size" |
|
|
|
|
#define ICV_HAAR_STAGES_NAME "stages" |
|
|
|
|
#define ICV_HAAR_TREES_NAME "trees" |
|
|
|
|
#define ICV_HAAR_FEATURE_NAME "feature" |
|
|
|
|
#define ICV_HAAR_RECTS_NAME "rects" |
|
|
|
|
#define ICV_HAAR_TILTED_NAME "tilted" |
|
|
|
|
#define ICV_HAAR_THRESHOLD_NAME "threshold" |
|
|
|
|
#define ICV_HAAR_LEFT_NODE_NAME "left_node" |
|
|
|
|
#define ICV_HAAR_LEFT_VAL_NAME "left_val" |
|
|
|
|
#define ICV_HAAR_RIGHT_NODE_NAME "right_node" |
|
|
|
|
#define ICV_HAAR_RIGHT_VAL_NAME "right_val" |
|
|
|
|
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold" |
|
|
|
|
#define ICV_HAAR_PARENT_NAME "parent" |
|
|
|
|
#define ICV_HAAR_NEXT_NAME "next" |
|
|
|
|
|
|
|
|
|
static int gpuRunHaarClassifierCascade( /*const CvHaarClassifierCascade *_cascade, CvPoint pt, int start_stage */) |
|
|
|
|
{ |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
|
namespace ocl |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
struct gpuHaarDetectObjects_ScaleImage_Invoker |
|
|
|
|
{ |
|
|
|
|
gpuHaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade *_cascade, |
|
|
|
|
int _stripSize, double _factor, |
|
|
|
|
const Mat &_sum1, const Mat &_sqsum1, Mat *_norm1, |
|
|
|
|
Mat *_mask1, Rect _equRect, ConcurrentRectVector &_vec ) |
|
|
|
|
{ |
|
|
|
|
cascade = _cascade; |
|
|
|
|
stripSize = _stripSize; |
|
|
|
|
factor = _factor; |
|
|
|
|
sum1 = _sum1; |
|
|
|
|
sqsum1 = _sqsum1; |
|
|
|
|
norm1 = _norm1; |
|
|
|
|
mask1 = _mask1; |
|
|
|
|
equRect = _equRect; |
|
|
|
|
vec = &_vec; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void operator()( const BlockedRange &range ) const |
|
|
|
|
{ |
|
|
|
|
Size winSize0 = cascade->orig_window_size; |
|
|
|
|
Size winSize(cvRound(winSize0.width * factor), cvRound(winSize0.height * factor)); |
|
|
|
|
int y1 = range.begin() * stripSize, y2 = min(range.end() * stripSize, sum1.rows - 1 - winSize0.height); |
|
|
|
|
Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1); |
|
|
|
|
int x, y, ystep = factor > 2 ? 1 : 2; |
|
|
|
|
|
|
|
|
|
for( y = y1; y < y2; y += ystep ) |
|
|
|
|
for( x = 0; x < ssz.width; x += ystep ) |
|
|
|
|
{ |
|
|
|
|
if( gpuRunHaarClassifierCascade( /*cascade, cvPoint(x, y), 0*/ ) > 0 ) |
|
|
|
|
vec->push_back(Rect(cvRound(x * factor), cvRound(y * factor), |
|
|
|
|
winSize.width, winSize.height)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const CvHaarClassifierCascade *cascade; |
|
|
|
|
int stripSize; |
|
|
|
|
double factor; |
|
|
|
|
Mat sum1, sqsum1, *norm1, *mask1; |
|
|
|
|
Rect equRect; |
|
|
|
|
ConcurrentRectVector *vec; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct gpuHaarDetectObjects_ScaleCascade_Invoker |
|
|
|
|
{ |
|
|
|
|
gpuHaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade *_cascade, |
|
|
|
|
Size _winsize, const Range &_xrange, double _ystep, |
|
|
|
|
size_t _sumstep, const int **_p, const int **_pq, |
|
|
|
|
ConcurrentRectVector &_vec ) |
|
|
|
|
{ |
|
|
|
|
cascade = _cascade; |
|
|
|
|
winsize = _winsize; |
|
|
|
|
xrange = _xrange; |
|
|
|
|
ystep = _ystep; |
|
|
|
|
sumstep = _sumstep; |
|
|
|
|
p = _p; |
|
|
|
|
pq = _pq; |
|
|
|
|
vec = &_vec; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void operator()( const BlockedRange &range ) const |
|
|
|
|
{ |
|
|
|
|
int iy, startY = range.begin(), endY = range.end(); |
|
|
|
|
const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3]; |
|
|
|
|
const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3]; |
|
|
|
|
bool doCannyPruning = p0 != 0; |
|
|
|
|
int sstep = (int)(sumstep / sizeof(p0[0])); |
|
|
|
|
|
|
|
|
|
for( iy = startY; iy < endY; iy++ ) |
|
|
|
|
{ |
|
|
|
|
int ix, y = cvRound(iy * ystep), ixstep = 1; |
|
|
|
|
for( ix = xrange.start; ix < xrange.end; ix += ixstep ) |
|
|
|
|
{ |
|
|
|
|
int x = cvRound(ix * ystep); // it should really be ystep, not ixstep
|
|
|
|
|
|
|
|
|
|
if( doCannyPruning ) |
|
|
|
|
{ |
|
|
|
|
int offset = y * sstep + x; |
|
|
|
|
int s = p0[offset] - p1[offset] - p2[offset] + p3[offset]; |
|
|
|
|
int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset]; |
|
|
|
|
if( s < 100 || sq < 20 ) |
|
|
|
|
{ |
|
|
|
|
ixstep = 2; |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int result = gpuRunHaarClassifierCascade(/* cascade, cvPoint(x, y), 0 */); |
|
|
|
|
if( result > 0 ) |
|
|
|
|
vec->push_back(Rect(x, y, winsize.width, winsize.height)); |
|
|
|
|
ixstep = result != 0 ? 1 : 2; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const CvHaarClassifierCascade *cascade; |
|
|
|
|
double ystep; |
|
|
|
|
size_t sumstep; |
|
|
|
|
Size winsize; |
|
|
|
|
Range xrange; |
|
|
|
|
const int **p; |
|
|
|
|
const int **pq; |
|
|
|
|
ConcurrentRectVector *vec; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|