soft cascade sample

pull/158/head
marina.kolpakova 12 years ago
parent ee4f003e72
commit c3e4a52fbe
  1. 4
      modules/gpu/src/softcascade.cpp
  2. 106
      samples/gpu/softcascade.cpp

@ -287,7 +287,8 @@ struct cv::gpu::SCascade::Fields
bool update(int fh, int fw, int shr)
{
if (fh == luv.rows && fh == luv.cols) return false;
if ((fh == luv.rows) && (fw == luv.cols)) return false;
plane.create(fh * (HOG_LUV_BINS + 1), fw, CV_8UC1);
fplane.create(fh * HOG_BINS, fw, CV_32FC1);
luv.create(fh, fw, CV_8UC3);
@ -297,6 +298,7 @@ struct cv::gpu::SCascade::Fields
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1);
hogluv.setTo(cv::Scalar::all(0));
return true;
}

@ -0,0 +1,106 @@
#include <opencv2/gpu/gpu.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
int main(int argc, char** argv)
{
const std::string keys =
"{help h usage ? | | print this message }"
"{cascade c | | path to configuration xml }"
"{frames f | | path to configuration xml }"
"{min_scale |0.4f | path to configuration xml }"
"{max_scale |5.0f | path to configuration xml }"
"{total_scales |55 | path to configuration xml }"
"{device d |0 | path to configuration xml }"
;
cv::CommandLineParser parser(argc, argv, keys);
parser.about("Soft cascade training application.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
if (!parser.check())
{
parser.printErrors();
return 1;
}
cv::gpu::setDevice(parser.get<int>("device"));
std::string cascadePath = parser.get<std::string>("cascade");
cv::FileStorage fs(cascadePath, cv::FileStorage::READ);
if(!fs.isOpened())
{
std::cout << "Soft Cascade file " << cascadePath << " can't be opened." << std::endl << std::flush;
return 1;
}
std::cout << "Read cascade from file " << cascadePath << std::endl;
float minScale = parser.get<float>("min_scale");
float maxScale = parser.get<float>("max_scale");
int scales = parser.get<int>("total_scales");
using cv::gpu::SCascade;
SCascade cascade(minScale, maxScale, scales);
if (!cascade.load(fs.getFirstTopLevelNode()))
{
std::cout << "Soft Cascade can't be parsed." << std::endl << std::flush;
return 1;
}
std::string frames = parser.get<std::string>("frames");
cv::VideoCapture capture(frames);
if(!capture.isOpened())
{
std::cout << "Frame source " << frames << " can't be opened." << std::endl << std::flush;
return 1;
}
cv::gpu::GpuMat objects(1, sizeof(SCascade::Detection) * 10000, CV_8UC1);
cv::gpu::printShortCudaDeviceInfo(parser.get<int>("device"));
for (;;)
{
cv::Mat frame;
if (!capture.read(frame))
{
std::cout << "Nothing to read. " << std::endl << std::flush;
return 0;
}
cv::gpu::GpuMat dframe(frame), roi(frame.rows, frame.cols, CV_8UC1), trois;
roi.setTo(cv::Scalar::all(1));
cascade.genRoi(roi, trois);
cascade.detect(dframe, trois, objects);
cv::Mat dt(objects);
typedef cv::gpu::SCascade::Detection Detection;
Detection* dts = ((Detection*)dt.data) + 1;
int* count = dt.ptr<int>(0);
std::cout << *count << std::endl;
cv::Mat result;
frame.copyTo(result);
for (int i = 0; i < *count; ++i)
{
Detection d = dts[i];
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
}
std::cout << "working..." << std::endl;
cv::imshow("Soft Cascade demo", result);
cv::waitKey(10);
}
return 0;
}
Loading…
Cancel
Save