samples: use findFile() in "python"

pull/12354/head
Alexander Alekhin 6 years ago committed by Alexander Alekhin
parent 9ea8c775f8
commit c371df4aa2
  1. 8
      samples/python/asift.py
  2. 2
      samples/python/browse.py
  3. 2
      samples/python/calibrate.py
  4. 4
      samples/python/camera_calibration_show_extrinsics.py
  5. 4
      samples/python/coherence.py
  6. 2
      samples/python/color_histogram.py
  7. 10
      samples/python/deconvolution.py
  8. 10
      samples/python/dft.py
  9. 7
      samples/python/digits.py
  10. 5
      samples/python/distrans.py
  11. 4
      samples/python/facedetect.py
  12. 8
      samples/python/find_obj.py
  13. 4
      samples/python/floodfill.py
  14. 4
      samples/python/gabor_threads.py
  15. 6
      samples/python/grabcut.py
  16. 4
      samples/python/hist.py
  17. 6
      samples/python/houghcircles.py
  18. 6
      samples/python/houghlines.py
  19. 4
      samples/python/inpaint.py
  20. 8
      samples/python/letter_recog.py
  21. 4
      samples/python/logpolar.py
  22. 4
      samples/python/morphology.py
  23. 2
      samples/python/peopledetect.py
  24. 4
      samples/python/stereo_match.py
  25. 4
      samples/python/texture_flow.py
  26. 4
      samples/python/tst_scene_render.py
  27. 4
      samples/python/tutorial_code/Histograms_Matching/histogram_calculation/calcHist_Demo.py
  28. 4
      samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py
  29. 6
      samples/python/tutorial_code/ImgTrans/Filter2D/filter2D.py
  30. 4
      samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py
  31. 4
      samples/python/tutorial_code/ImgTrans/HoughLine/hough_lines.py
  32. 6
      samples/python/tutorial_code/ImgTrans/LaPlace/laplace_demo.py
  33. 6
      samples/python/tutorial_code/ImgTrans/MakeBorder/copy_make_border.py
  34. 4
      samples/python/tutorial_code/ImgTrans/canny_detector/CannyDetector_Demo.py
  35. 4
      samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py
  36. 4
      samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py
  37. 4
      samples/python/tutorial_code/ImgTrans/warp_affine/Geometric_Transforms_Demo.py
  38. 4
      samples/python/tutorial_code/ShapeDescriptors/bounding_rects_circles/generalContours_demo1.py
  39. 4
      samples/python/tutorial_code/ShapeDescriptors/bounding_rotated_ellipses/generalContours_demo2.py
  40. 4
      samples/python/tutorial_code/ShapeDescriptors/find_contours/findContours_demo.py
  41. 4
      samples/python/tutorial_code/ShapeDescriptors/hull/hull_demo.py
  42. 4
      samples/python/tutorial_code/ShapeDescriptors/moments/moments_demo.py
  43. 4
      samples/python/tutorial_code/TrackingMotion/corner_subpixels/cornerSubPix_Demo.py
  44. 4
      samples/python/tutorial_code/TrackingMotion/generic_corner_detector/cornerDetector_Demo.py
  45. 4
      samples/python/tutorial_code/TrackingMotion/good_features_to_track/goodFeaturesToTrack_Demo.py
  46. 4
      samples/python/tutorial_code/TrackingMotion/harris_detector/cornerHarris_Demo.py
  47. 4
      samples/python/tutorial_code/core/AddingImages/adding_images.py
  48. 6
      samples/python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py
  49. 6
      samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py
  50. 12
      samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py
  51. 8
      samples/python/tutorial_code/features2D/feature_description/SURF_matching_Demo.py
  52. 4
      samples/python/tutorial_code/features2D/feature_detection/SURF_detection_Demo.py
  53. 8
      samples/python/tutorial_code/features2D/feature_flann_matcher/SURF_FLANN_matching_Demo.py
  54. 8
      samples/python/tutorial_code/features2D/feature_homography/SURF_FLANN_matching_homography_Demo.py
  55. 8
      samples/python/tutorial_code/highgui/trackbar/AddingImagesTrackbar.py
  56. 4
      samples/python/tutorial_code/imgProc/Pyramids/pyramids.py
  57. 4
      samples/python/tutorial_code/imgProc/Smoothing/smoothing.py
  58. 4
      samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py
  59. 4
      samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.py
  60. 4
      samples/python/tutorial_code/imgProc/erosion_dilatation/morphology_1.py
  61. 2
      samples/python/tutorial_code/imgProc/hough_line_transform/hough_line_transform.py
  62. 2
      samples/python/tutorial_code/imgProc/hough_line_transform/probabilistic_hough_line_transform.py
  63. 4
      samples/python/tutorial_code/imgProc/opening_closing_hats/morphology_2.py
  64. 4
      samples/python/tutorial_code/imgProc/threshold/threshold.py
  65. 4
      samples/python/tutorial_code/ml/introduction_to_pca/introduction_to_pca.py
  66. 8
      samples/python/tutorial_code/objectDetection/cascade_classifier/objectDetection.py
  67. 4
      samples/python/tutorial_code/video/background_subtraction/bg_sub.py
  68. 20
      samples/python/video.py
  69. 4
      samples/python/watershed.py

@ -116,11 +116,11 @@ if __name__ == '__main__':
try:
fn1, fn2 = args
except:
fn1 = '../data/aero1.jpg'
fn2 = '../data/aero3.jpg'
fn1 = 'aero1.jpg'
fn2 = 'aero3.jpg'
img1 = cv.imread(fn1, 0)
img2 = cv.imread(fn2, 0)
img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE)
detector, matcher = init_feature(feature_name)
if img1 is None:

@ -32,7 +32,7 @@ if __name__ == '__main__':
print()
if len(sys.argv) > 1:
fn = sys.argv[1]
fn = cv.samples.findFile(sys.argv[1])
print('loading %s ...' % fn)
img = cv.imread(fn)
if img is None:

@ -53,7 +53,7 @@ if __name__ == '__main__':
obj_points = []
img_points = []
h, w = cv.imread(img_names[0], 0).shape[:2] # TODO: use imquery call to retrieve results
h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2] # TODO: use imquery call to retrieve results
def processImage(fn):
print('processing %s... ' % fn)

@ -160,7 +160,7 @@ def draw_camera_boards(ax, camera_matrix, cam_width, cam_height, scale_focal,
def main():
parser = argparse.ArgumentParser(description='Plot camera calibration extrinsics.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--calibration', type=str, default="../data/left_intrinsics.yml",
parser.add_argument('--calibration', type=str, default='left_intrinsics.yml',
help='YAML camera calibration file.')
parser.add_argument('--cam_width', type=float, default=0.064/2,
help='Width/2 of the displayed camera.')
@ -172,7 +172,7 @@ def main():
help='The calibration board is static and the camera is moving.')
args = parser.parse_args()
fs = cv.FileStorage(args.calibration, cv.FILE_STORAGE_READ)
fs = cv.FileStorage(cv.samples.findFile(args.calibration), cv.FILE_STORAGE_READ)
board_width = int(fs.getNode('board_width').real())
board_height = int(fs.getNode('board_height').real())
square_size = fs.getNode('square_size').real()

@ -51,9 +51,9 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except:
fn = '../data/baboon.jpg'
fn = 'baboon.jpg'
src = cv.imread(fn)
src = cv.imread(cv.samples.findFile(fn))
def nothing(*argv):
pass

@ -39,7 +39,7 @@ if __name__ == '__main__':
fn = sys.argv[1]
except:
fn = 0
cam = video.create_capture(fn, fallback='synth:bg=../data/baboon.jpg:class=chess:noise=0.05')
cam = video.create_capture(fn, fallback='synth:bg=baboon.jpg:class=chess:noise=0.05')
while True:
flag, frame = cam.read()

@ -19,11 +19,11 @@ Usage:
ESC - exit
Examples:
deconvolution.py --angle 135 --d 22 ../data/licenseplate_motion.jpg
deconvolution.py --angle 135 --d 22 licenseplate_motion.jpg
(image source: http://www.topazlabs.com/infocus/_images/licenseplate_compare.jpg)
deconvolution.py --angle 86 --d 31 ../data/text_motion.jpg
deconvolution.py --circle --d 19 ../data/text_defocus.jpg
deconvolution.py --angle 86 --d 31 text_motion.jpg
deconvolution.py --circle --d 19 text_defocus.jpg
(image source: compact digital photo camera, no artificial distortion)
@ -73,11 +73,11 @@ if __name__ == '__main__':
try:
fn = args[0]
except:
fn = '../data/licenseplate_motion.jpg'
fn = 'licenseplate_motion.jpg'
win = 'deconvolution'
img = cv.imread(fn, 0)
img = cv.imread(cv.samples.findFile(fn), cv.IMREAD_GRAYSCALE)
if img is None:
print('Failed to load file:', fn)
sys.exit(1)

@ -38,8 +38,8 @@ def shift_dft(src, dst=None):
h, w = src.shape[:2]
cx1 = cx2 = w/2
cy1 = cy2 = h/2
cx1 = cx2 = w // 2
cy1 = cy2 = h // 2
# if the size is odd, then adjust the bottom/right quadrants
if w % 2 != 0:
@ -65,11 +65,13 @@ def shift_dft(src, dst=None):
if __name__ == "__main__":
if len(sys.argv) > 1:
im = cv.imread(sys.argv[1])
fname = sys.argv[1]
else:
im = cv.imread('../data/baboon.jpg')
fname = 'baboon.jpg'
print("usage : python dft.py <image_file>")
im = cv.imread(cv.samples.findFile(fname))
# convert to grayscale
im = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
h, w = im.shape[:2]

@ -3,7 +3,7 @@
'''
SVM and KNearest digit recognition.
Sample loads a dataset of handwritten digits from '../data/digits.png'.
Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a SVM and KNearest classifiers on it and evaluates
their accuracy.
@ -42,7 +42,7 @@ from common import clock, mosaic
SZ = 20 # size of each digit is SZ x SZ
CLASS_N = 10
DIGITS_FN = '../data/digits.png'
DIGITS_FN = 'digits.png'
def split2d(img, cell_size, flatten=True):
h, w = img.shape[:2]
@ -54,8 +54,9 @@ def split2d(img, cell_size, flatten=True):
return cells
def load_digits(fn):
fn = cv.samples.findFile(fn)
print('loading "%s" ...' % fn)
digits_img = cv.imread(fn, 0)
digits_img = cv.imread(fn, cv.IMREAD_GRAYSCALE)
digits = split2d(digits_img, (SZ, SZ))
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
return digits, labels

@ -24,10 +24,11 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except:
fn = '../data/fruits.jpg'
fn = 'fruits.jpg'
print(__doc__)
img = cv.imread(fn, 0)
fn = cv.samples.findFile(fn)
img = cv.imread(fn, cv.IMREAD_GRAYSCALE)
if img is None:
print('Failed to load fn:', fn)
sys.exit(1)

@ -40,8 +40,8 @@ if __name__ == '__main__':
except:
video_src = 0
args = dict(args)
cascade_fn = args.get('--cascade', "../../data/haarcascades/haarcascade_frontalface_alt.xml")
nested_fn = args.get('--nested-cascade', "../../data/haarcascades/haarcascade_eye.xml")
cascade_fn = args.get('--cascade', "data/haarcascades/haarcascade_frontalface_alt.xml")
nested_fn = args.get('--nested-cascade', "data/haarcascades/haarcascade_eye.xml")
cascade = cv.CascadeClassifier(cv.samples.findFile(cascade_fn))
nested = cv.CascadeClassifier(cv.samples.findFile(nested_fn))

@ -147,11 +147,11 @@ if __name__ == '__main__':
try:
fn1, fn2 = args
except:
fn1 = '../data/box.png'
fn2 = '../data/box_in_scene.png'
fn1 = 'box.png'
fn2 = 'box_in_scene.png'
img1 = cv.imread(fn1, 0)
img2 = cv.imread(fn2, 0)
img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE)
detector, matcher = init_feature(feature_name)
if img1 is None:

@ -25,10 +25,10 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except:
fn = '../data/fruits.jpg'
fn = 'fruits.jpg'
print(__doc__)
img = cv.imread(fn, True)
img = cv.imread(cv.samples.findFile(fn))
if img is None:
print('Failed to load image file:', fn)
sys.exit(1)

@ -55,9 +55,9 @@ if __name__ == '__main__':
try:
img_fn = sys.argv[1]
except:
img_fn = '../data/baboon.jpg'
img_fn = 'baboon.jpg'
img = cv.imread(img_fn)
img = cv.imread(cv.samples.findFile(img_fn))
if img is None:
print('Failed to load image file:', img_fn)
sys.exit(1)

@ -107,11 +107,11 @@ if __name__ == '__main__':
if len(sys.argv) == 2:
filename = sys.argv[1] # for drawing purposes
else:
print("No input image given, so loading default image, ../data/lena.jpg \n")
print("No input image given, so loading default image, lena.jpg \n")
print("Correct Usage: python grabcut.py <filename> \n")
filename = '../data/lena.jpg'
filename = 'lena.jpg'
img = cv.imread(filename)
img = cv.imread(cv.samples.findFile(filename))
img2 = img.copy() # a copy of original image
mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG
output = np.zeros(img.shape,np.uint8) # output image to be shown

@ -60,10 +60,10 @@ if __name__ == '__main__':
if len(sys.argv)>1:
fname = sys.argv[1]
else :
fname = '../data/lena.jpg'
fname = 'lena.jpg'
print("usage : python hist.py <image_file>")
im = cv.imread(fname)
im = cv.imread(cv.samples.findFile(fname))
if im is None:
print('Failed to load image file:', fname)

@ -5,7 +5,7 @@ This example illustrates how to use cv.HoughCircles() function.
Usage:
houghcircles.py [<image_name>]
image argument defaults to ../data/board.jpg
image argument defaults to board.jpg
'''
# Python 2/3 compatibility
@ -21,9 +21,9 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except IndexError:
fn = "../data/board.jpg"
fn = 'board.jpg'
src = cv.imread(fn, 1)
src = cv.imread(cv.samples.findFile(fn))
img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
img = cv.medianBlur(img, 5)
cimg = src.copy() # numpy function

@ -5,7 +5,7 @@ This example illustrates how to use Hough Transform to find lines
Usage:
houghlines.py [<image_name>]
image argument defaults to ../data/pic1.png
image argument defaults to pic1.png
'''
# Python 2/3 compatibility
@ -22,9 +22,9 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except IndexError:
fn = "../data/pic1.png"
fn = 'pic1.png'
src = cv.imread(fn)
src = cv.imread(cv.samples.findFile(fn))
dst = cv.Canny(src, 50, 200)
cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR)

@ -27,11 +27,11 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except:
fn = '../data/fruits.jpg'
fn = 'fruits.jpg'
print(__doc__)
img = cv.imread(fn)
img = cv.imread(cv.samples.findFile(fn))
if img is None:
print('Failed to load image file:', fn)
sys.exit(1)

@ -158,10 +158,12 @@ if __name__ == '__main__':
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
args = dict(args)
args.setdefault('--model', 'svm')
args.setdefault('--data', '../data/letter-recognition.data')
args.setdefault('--data', 'letter-recognition.data')
print('loading data %s ...' % args['--data'])
samples, responses = load_base(args['--data'])
datafile = cv.samples.findFile(args['--data'])
print('loading data %s ...' % datafile)
samples, responses = load_base(datafile)
Model = models[args['--model']]
model = Model()

@ -22,9 +22,9 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except IndexError:
fn = '../data/fruits.jpg'
fn = 'fruits.jpg'
img = cv.imread(fn)
img = cv.imread(cv.samples.findFile(fn))
if img is None:
print('Failed to load image file:', fn)
sys.exit(1)

@ -31,9 +31,9 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except:
fn = '../data/baboon.jpg'
fn = 'baboon.jpg'
img = cv.imread(fn)
img = cv.imread(cv.samples.findFile(fn))
if img is None:
print('Failed to load image file:', fn)

@ -40,7 +40,7 @@ if __name__ == '__main__':
hog = cv.HOGDescriptor()
hog.setSVMDetector( cv.HOGDescriptor_getDefaultPeopleDetector() )
default = ['../data/basketball2.png '] if len(sys.argv[1:]) == 0 else []
default = [cv.samples.findFile('basketball2.png')] if len(sys.argv[1:]) == 0 else []
for fn in it.chain(*map(glob, default + sys.argv[1:])):
print(fn, ' - ',)

@ -35,8 +35,8 @@ def write_ply(fn, verts, colors):
if __name__ == '__main__':
print('loading images...')
imgL = cv.pyrDown( cv.imread('../data/aloeL.jpg') ) # downscale images for faster processing
imgR = cv.pyrDown( cv.imread('../data/aloeR.jpg') )
imgL = cv.pyrDown(cv.imread(cv.samples.findFile('aloeL.jpg'))) # downscale images for faster processing
imgR = cv.pyrDown(cv.imread(cv.samples.findFile('aloeR.jpg')))
# disparity range is tuned for 'aloe' image pair
window_size = 3

@ -21,9 +21,9 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except:
fn = '../data/starry_night.jpg'
fn = 'starry_night.jpg'
img = cv.imread(fn)
img = cv.imread(cv.samples.findFile(fn))
if img is None:
print('Failed to load image file:', fn)
sys.exit(1)

@ -98,8 +98,8 @@ class TestSceneRender():
if __name__ == '__main__':
backGr = cv.imread('../data/graf1.png')
fgr = cv.imread('../data/box.png')
backGr = cv.imread(cv.samples.findFile('graf1.png'))
fgr = cv.imread(cv.samples.findFile('box.png'))
render = TestSceneRender(backGr, fgr)

@ -6,10 +6,10 @@ import argparse
## [Load image]
parser = argparse.ArgumentParser(description='Code for Histogram Calculation tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -4,10 +4,10 @@ import argparse
## [Load image]
parser = argparse.ArgumentParser(description='Code for Histogram Equalization tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -11,15 +11,15 @@ def main(argv):
window_name = 'filter2D Demo'
## [load]
imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg"
imageName = argv[0] if len(argv) > 0 else 'lena.jpg'
# Loads an image
src = cv.imread(imageName, cv.IMREAD_COLOR)
src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: filter2D.py [image_name -- default ../data/lena.jpg] \n')
print ('Usage: filter2D.py [image_name -- default lena.jpg] \n')
return -1
## [load]
## [init_arguments]

@ -5,11 +5,11 @@ import numpy as np
def main(argv):
## [load]
default_file = "../../../../data/smarties.png"
default_file = 'smarties.png'
filename = argv[0] if len(argv) > 0 else default_file
# Loads an image
src = cv.imread(filename, cv.IMREAD_COLOR)
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:

@ -10,11 +10,11 @@ import numpy as np
def main(argv):
## [load]
default_file = "../../../../data/sudoku.png"
default_file = 'sudoku.png'
filename = argv[0] if len(argv) > 0 else default_file
# Loads an image
src = cv.imread(filename, cv.IMREAD_GRAYSCALE)
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_GRAYSCALE)
# Check if image is loaded fine
if src is None:

@ -14,14 +14,14 @@ def main(argv):
# [variables]
# [load]
imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg"
imageName = argv[0] if len(argv) > 0 else 'lena.jpg'
src = cv.imread(imageName, cv.IMREAD_COLOR) # Load an image
src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR) # Load an image
# Check if image is loaded fine
if src is None:
print ('Error opening image')
print ('Program Arguments: [image_name -- default ../data/lena.jpg]')
print ('Program Arguments: [image_name -- default lena.jpg]')
return -1
# [load]

@ -14,15 +14,15 @@ def main(argv):
window_name = "copyMakeBorder Demo"
## [variables]
## [load]
imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg"
imageName = argv[0] if len(argv) > 0 else 'lena.jpg'
# Loads an image
src = cv.imread(imageName, cv.IMREAD_COLOR)
src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: copy_make_border.py [image_name -- default ../data/lena.jpg] \n')
print ('Usage: copy_make_border.py [image_name -- default lena.jpg] \n')
return -1
## [load]
# Brief how-to for this program

@ -17,10 +17,10 @@ def CannyThreshold(val):
cv.imshow(window_name, dst)
parser = argparse.ArgumentParser(description='Code for Canny Edge Detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/fruits.jpg')
parser.add_argument('--input', help='Path to input image.', default='fruits.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)

@ -11,10 +11,10 @@ rng.seed(12345)
parser = argparse.ArgumentParser(description='Code for Image Segmentation with Distance Transform and Watershed Algorithm.\
Sample code showing how to segment overlapping objects using Laplacian filtering, \
in addition to Watershed and Distance Transformation')
parser.add_argument('--input', help='Path to input image.', default='../data/cards.png')
parser.add_argument('--input', help='Path to input image.', default='cards.png')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -32,11 +32,11 @@ def update_map(ind, map_x, map_y):
## [Update]
parser = argparse.ArgumentParser(description='Code for Remapping tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/chicky_512.png')
parser.add_argument('--input', help='Path to input image.', default='chicky_512.png')
args = parser.parse_args()
## [Load]
src = cv.imread(args.input, cv.IMREAD_COLOR)
src = cv.imread(cv.samples.findFile(args.input), cv.IMREAD_COLOR)
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)

@ -5,10 +5,10 @@ import argparse
## [Load the image]
parser = argparse.ArgumentParser(description='Code for Affine Transformations tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -53,10 +53,10 @@ def thresh_callback(val):
## [setup]
# Load source image
parser = argparse.ArgumentParser(description='Code for Creating Bounding boxes and circles for contours tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -53,10 +53,10 @@ def thresh_callback(val):
## [setup]
# Load source image
parser = argparse.ArgumentParser(description='Code for Creating Bounding rotated boxes and ellipses for contours tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -26,10 +26,10 @@ def thresh_callback(val):
# Load source image
parser = argparse.ArgumentParser(description='Code for Finding contours in your image tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/HappyFish.jpg')
parser.add_argument('--input', help='Path to input image.', default='HappyFish.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -33,10 +33,10 @@ def thresh_callback(val):
# Load source image
parser = argparse.ArgumentParser(description='Code for Convex Hull tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -54,10 +54,10 @@ def thresh_callback(val):
## [setup]
# Load source image
parser = argparse.ArgumentParser(description='Code for Image Moments tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -50,10 +50,10 @@ def goodFeaturesToTrack_Demo(val):
# Load source image and convert it to gray
parser = argparse.ArgumentParser(description='Code for Shi-Tomasi corner detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/pic3.png')
parser.add_argument('--input', help='Path to input image.', default='pic3.png')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -35,10 +35,10 @@ def myShiTomasi_function(val):
# Load source image and convert it to gray
parser = argparse.ArgumentParser(description='Code for Creating your own corner detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/building.jpg')
parser.add_argument('--input', help='Path to input image.', default='building.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -38,10 +38,10 @@ def goodFeaturesToTrack_Demo(val):
# Load source image and convert it to gray
parser = argparse.ArgumentParser(description='Code for Shi-Tomasi corner detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/pic3.png')
parser.add_argument('--input', help='Path to input image.', default='pic3.png')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -35,10 +35,10 @@ def cornerHarris_demo(val):
# Load source image and convert it to gray
parser = argparse.ArgumentParser(description='Code for Harris corner detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/building.jpg')
parser.add_argument('--input', help='Path to input image.', default='building.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -16,8 +16,8 @@ input_alpha = float(raw_input().strip())
if 0 <= alpha <= 1:
alpha = input_alpha
# [load]
src1 = cv.imread('../../../../data/LinuxLogo.jpg')
src2 = cv.imread('../../../../data/WindowsLogo.jpg')
src1 = cv.imread(cv.samples.findFile('LinuxLogo.jpg'))
src2 = cv.imread(cv.samples.findFile('WindowsLogo.jpg'))
# [load]
if src1 is None:
print("Error loading src1")

@ -10,16 +10,16 @@ def print_help():
This program demonstrated the use of the discrete Fourier transform (DFT).
The dft of an image is taken and it's power spectrum is displayed.
Usage:
discrete_fourier_transform.py [image_name -- default ../../../../data/lena.jpg]''')
discrete_fourier_transform.py [image_name -- default lena.jpg]''')
def main(argv):
print_help()
filename = argv[0] if len(argv) > 0 else "../../../../data/lena.jpg"
filename = argv[0] if len(argv) > 0 else 'lena.jpg'
I = cv.imread(filename, cv.IMREAD_GRAYSCALE)
I = cv.imread(cv.samples.findFile(filename), cv.IMREAD_GRAYSCALE)
if I is None:
print('Error opening image')
return -1

@ -45,7 +45,7 @@ def sharpen(my_image):
## [basic_method]
def main(argv):
filename = "../../../../data/lena.jpg"
filename = 'lena.jpg'
img_codec = cv.IMREAD_COLOR
if argv:
@ -53,12 +53,12 @@ def main(argv):
if len(argv) >= 2 and sys.argv[2] == "G":
img_codec = cv.IMREAD_GRAYSCALE
src = cv.imread(filename, img_codec)
src = cv.imread(cv.samples.findFile(filename), img_codec)
if src is None:
print("Can't open image [" + filename + "]")
print("Usage:")
print("mat_mask_operations.py [image_path -- default ../../../../data/lena.jpg] [G -- grayscale]")
print("mat_mask_operations.py [image_path -- default lena.jpg] [G -- grayscale]")
return -1
cv.namedWindow("Input", cv.WINDOW_AUTOSIZE)

@ -6,18 +6,18 @@ from math import sqrt
## [load]
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='../data/graf1.png')
parser.add_argument('--input2', help='Path to input image 2.', default='../data/graf3.png')
parser.add_argument('--homography', help='Path to the homography matrix.', default='../data/H1to3p.xml')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png')
parser.add_argument('--input2', help='Path to input image 2.', default='graf3.png')
parser.add_argument('--homography', help='Path to the homography matrix.', default='H1to3p.xml')
args = parser.parse_args()
img1 = cv.imread(args.input1, cv.IMREAD_GRAYSCALE)
img2 = cv.imread(args.input2, cv.IMREAD_GRAYSCALE)
img1 = cv.imread(cv.samples.findFile(args.input1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img1 is None or img2 is None:
print('Could not open or find the images!')
exit(0)
fs = cv.FileStorage(args.homography, cv.FILE_STORAGE_READ)
fs = cv.FileStorage(cv.samples.findFile(args.homography), cv.FILE_STORAGE_READ)
homography = fs.getFirstTopLevelNode().mat()
## [load]

@ -4,12 +4,12 @@ import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Detection tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='../data/box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='../data/box_in_scene.png')
parser.add_argument('--input1', help='Path to input image 1.', default='box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='box_in_scene.png')
args = parser.parse_args()
img1 = cv.imread(args.input1, cv.IMREAD_GRAYSCALE)
img2 = cv.imread(args.input2, cv.IMREAD_GRAYSCALE)
img1 = cv.imread(cv.samples.findFile(args.input1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img1 is None or img2 is None:
print('Could not open or find the images!')
exit(0)

@ -4,10 +4,10 @@ import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Detection tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/box.png')
parser.add_argument('--input', help='Path to input image.', default='box.png')
args = parser.parse_args()
src = cv.imread(args.input, cv.IMREAD_GRAYSCALE)
src = cv.imread(cv.samples.findFile(args.input), cv.IMREAD_GRAYSCALE)
if src is None:
print('Could not open or find the image:', args.input)
exit(0)

@ -4,12 +4,12 @@ import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Matching with FLANN tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='../data/box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='../data/box_in_scene.png')
parser.add_argument('--input1', help='Path to input image 1.', default='box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='box_in_scene.png')
args = parser.parse_args()
img1 = cv.imread(args.input1, cv.IMREAD_GRAYSCALE)
img2 = cv.imread(args.input2, cv.IMREAD_GRAYSCALE)
img1 = cv.imread(cv.samples.findFile(args.input1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img1 is None or img2 is None:
print('Could not open or find the images!')
exit(0)

@ -4,12 +4,12 @@ import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Matching with FLANN tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='../data/box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='../data/box_in_scene.png')
parser.add_argument('--input1', help='Path to input image 1.', default='box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='box_in_scene.png')
args = parser.parse_args()
img_object = cv.imread(args.input1, cv.IMREAD_GRAYSCALE)
img_scene = cv.imread(args.input2, cv.IMREAD_GRAYSCALE)
img_object = cv.imread(cv.samples.findFile(args.input1), cv.IMREAD_GRAYSCALE)
img_scene = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img_object is None or img_scene is None:
print('Could not open or find the images!')
exit(0)

@ -15,14 +15,14 @@ def on_trackbar(val):
## [on_trackbar]
parser = argparse.ArgumentParser(description='Code for Adding a Trackbar to our applications tutorial.')
parser.add_argument('--input1', help='Path to the first input image.', default='../data/LinuxLogo.jpg')
parser.add_argument('--input2', help='Path to the second input image.', default='../data/WindowsLogo.jpg')
parser.add_argument('--input1', help='Path to the first input image.', default='LinuxLogo.jpg')
parser.add_argument('--input2', help='Path to the second input image.', default='WindowsLogo.jpg')
args = parser.parse_args()
## [load]
# Read images ( both have to be of the same size and type )
src1 = cv.imread(args.input1)
src2 = cv.imread(args.input2)
src1 = cv.imread(cv.samples.findFile(args.input1))
src2 = cv.imread(cv.samples.findFile(args.input2))
## [load]
if src1 is None:
print('Could not open or find the image: ', args.input1)

@ -11,10 +11,10 @@ def main(argv):
* [ESC] -> Close program
""")
## [load]
filename = argv[0] if len(argv) > 0 else "../data/chicky_512.png"
filename = argv[0] if len(argv) > 0 else 'chicky_512.png'
# Load the image
src = cv.imread(filename)
src = cv.imread(cv.samples.findFile(filename))
# Check if image is loaded fine
if src is None:

@ -17,10 +17,10 @@ def main(argv):
cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)
# Load the source image
imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg"
imageName = argv[0] if len(argv) > 0 else 'lena.jpg'
global src
src = cv.imread(imageName, 1)
src = cv.imread(cv.samples.findFile(imageName))
if src is None:
print ('Error opening image')
print ('Usage: smoothing.py [image_name -- default ../data/lena.jpg] \n')

@ -7,10 +7,10 @@ import argparse
# Read image given by user
## [basic-linear-transform-load]
parser = argparse.ArgumentParser(description='Code for Changing the contrast and brightness of an image! tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
image = cv.imread(args.input)
image = cv.imread(cv.samples.findFile(args.input))
if image is None:
print('Could not open or find the image: ', args.input)
exit(0)

@ -44,10 +44,10 @@ def on_gamma_correction_trackbar(val):
gammaCorrection()
parser = argparse.ArgumentParser(description='Code for Changing the contrast and brightness of an image! tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
img_original = cv.imread(args.input)
img_original = cv.imread(cv.samples.findFile(args.input))
if img_original is None:
print('Could not open or find the image: ', args.input)
exit(0)

@ -42,10 +42,10 @@ def dilatation(val):
cv.imshow(title_dilatation_window, dilatation_dst)
parser = argparse.ArgumentParser(description='Code for Eroding and Dilating tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/LinuxLogo.jpg')
parser.add_argument('--input', help='Path to input image.', default='LinuxLogo.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)

@ -1,7 +1,7 @@
import cv2 as cv
import numpy as np
img = cv.imread('../data/sudoku.png')
img = cv.imread(cv.samples.findFile('sudoku.png'))
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,50,150,apertureSize = 3)

@ -1,7 +1,7 @@
import cv2 as cv
import numpy as np
img = cv.imread('../data/sudoku.png')
img = cv.imread(cv.samples.findFile('sudoku.png'))
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,50,150,apertureSize = 3)
lines = cv.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)

@ -31,10 +31,10 @@ def morphology_operations(val):
cv.imshow(title_window, dst)
parser = argparse.ArgumentParser(description='Code for More Morphology Transformations tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/LinuxLogo.jpg')
parser.add_argument('--input', help='Path to input image.', default='LinuxLogo.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)

@ -23,12 +23,12 @@ def Threshold_Demo(val):
## [Threshold_Demo]
parser = argparse.ArgumentParser(description='Code for Basic Thresholding Operations tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
parser.add_argument('--input', help='Path to input image.', default='stuff.jpg')
args = parser.parse_args()
## [load]
# Load an image
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)

@ -61,10 +61,10 @@ def getOrientation(pts, img):
# Load image
parser = argparse.ArgumentParser(description='Code for Introduction to Principal Component Analysis (PCA) tutorial.\
This program demonstrates how to use OpenCV PCA to extract the orientation of an object.')
parser.add_argument('--input', help='Path to input image.', default='../data/pca_test1.jpg')
parser.add_argument('--input', help='Path to input image.', default='pca_test1.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
src = cv.imread(cv.samples.findFile(args.input))
# Check if image is loaded successfully
if src is None:
print('Could not open or find the image: ', args.input)

@ -23,8 +23,8 @@ def detectAndDisplay(frame):
cv.imshow('Capture - Face detection', frame)
parser = argparse.ArgumentParser(description='Code for Cascade Classifier tutorial.')
parser.add_argument('--face_cascade', help='Path to face cascade.', default='../../data/haarcascades/haarcascade_frontalface_alt.xml')
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.', default='../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml')
parser.add_argument('--face_cascade', help='Path to face cascade.', default='data/haarcascades/haarcascade_frontalface_alt.xml')
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.', default='data/haarcascades/haarcascade_eye_tree_eyeglasses.xml')
parser.add_argument('--camera', help='Camera devide number.', type=int, default=0)
args = parser.parse_args()
@ -35,10 +35,10 @@ face_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()
#-- 1. Load the cascades
if not face_cascade.load(face_cascade_name):
if not face_cascade.load(cv.samples.findFile(face_cascade_name)):
print('--(!)Error loading face cascade')
exit(0)
if not eyes_cascade.load(eyes_cascade_name):
if not eyes_cascade.load(cv.samples.findFile(eyes_cascade_name)):
print('--(!)Error loading eyes cascade')
exit(0)

@ -4,7 +4,7 @@ import argparse
parser = argparse.ArgumentParser(description='This program shows how to use background subtraction methods provided by \
OpenCV. You can process both videos and images.')
parser.add_argument('--input', type=str, help='Path to a video or a sequence of image.', default='../data/vtest.avi')
parser.add_argument('--input', type=str, help='Path to a video or a sequence of image.', default='vtest.avi')
parser.add_argument('--algo', type=str, help='Background subtraction method (KNN, MOG2).', default='MOG2')
args = parser.parse_args()
@ -17,7 +17,7 @@ else:
## [create]
## [capture]
capture = cv.VideoCapture(args.input)
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input))
if not capture.isOpened:
print('Unable to open: ' + args.input)
exit(0)

@ -20,8 +20,8 @@ Usage:
- synth:<params> for procedural video
Synth examples:
synth:bg=../data/lena.jpg:noise=0.1
synth:class=chess:bg=../data/lena.jpg:noise=0.1:size=640x480
synth:bg=lena.jpg:noise=0.1
synth:class=chess:bg=lena.jpg:noise=0.1:size=640x480
Keys:
ESC - exit
@ -49,7 +49,7 @@ class VideoSynthBase(object):
self.bg = None
self.frame_size = (640, 480)
if bg is not None:
self.bg = cv.imread(bg, 1)
self.bg = cv.imread(cv.samples.findFile(bg))
h, w = self.bg.shape[:2]
self.frame_size = (w, h)
@ -85,8 +85,8 @@ class VideoSynthBase(object):
class Book(VideoSynthBase):
def __init__(self, **kw):
super(Book, self).__init__(**kw)
backGr = cv.imread('../data/graf1.png')
fgr = cv.imread('../data/box.png')
backGr = cv.imread(cv.samples.findFile('graf1.png'))
fgr = cv.imread(cv.samples.findFile('box.png'))
self.render = TestSceneRender(backGr, fgr, speed = 1)
def read(self, dst=None):
@ -98,7 +98,7 @@ class Book(VideoSynthBase):
class Cube(VideoSynthBase):
def __init__(self, **kw):
super(Cube, self).__init__(**kw)
self.render = TestSceneRender(cv.imread('../data/pca_test1.jpg'), deformation = True, speed = 1)
self.render = TestSceneRender(cv.imread(cv.samples.findFile('pca_test1.jpg')), deformation = True, speed = 1)
def read(self, dst=None):
noise = np.zeros(self.render.sceneBg.shape, np.int8)
@ -158,10 +158,10 @@ classes = dict(chess=Chess, book=Book, cube=Cube)
presets = dict(
empty = 'synth:',
lena = 'synth:bg=../data/lena.jpg:noise=0.1',
chess = 'synth:class=chess:bg=../data/lena.jpg:noise=0.1:size=640x480',
book = 'synth:class=book:bg=../data/graf1.png:noise=0.1:size=640x480',
cube = 'synth:class=cube:bg=../data/pca_test1.jpg:noise=0.0:size=640x480'
lena = 'synth:bg=lena.jpg:noise=0.1',
chess = 'synth:class=chess:bg=lena.jpg:noise=0.1:size=640x480',
book = 'synth:class=book:bg=graf1.png:noise=0.1:size=640x480',
cube = 'synth:class=cube:bg=pca_test1.jpg:noise=0.0:size=640x480'
)

@ -80,6 +80,6 @@ if __name__ == '__main__':
try:
fn = sys.argv[1]
except:
fn = '../data/fruits.jpg'
fn = 'fruits.jpg'
print(__doc__)
App(fn).run()
App(cv.samples.findFile(fn)).run()

Loading…
Cancel
Save