|
|
|
@ -553,10 +553,10 @@ public: |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
Mat newWeights = blobs[0].reshape(1, outCn); |
|
|
|
|
Mat cvWeights = weightsMat.colRange(0, newWeights.cols); |
|
|
|
|
Mat newWeights; |
|
|
|
|
Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / outCn); |
|
|
|
|
cvWeights.copyTo(newWeights); |
|
|
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, blobs[0].data); |
|
|
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, newWeights.data); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -2033,9 +2033,9 @@ public: |
|
|
|
|
|
|
|
|
|
if (fusedWeights) |
|
|
|
|
{ |
|
|
|
|
int inpCn = blobs[0].size[0]; |
|
|
|
|
Mat newWeights = blobs[0].reshape(1, inpCn); |
|
|
|
|
Mat newWeights; |
|
|
|
|
transpose(weightsMat, newWeights); |
|
|
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, newWeights.data); |
|
|
|
|
} |
|
|
|
|
size_t batch = ieInpNode->get_shape()[0]; |
|
|
|
|
std::vector<size_t> out_shape = {batch, (size_t)numOutput}; |
|
|
|
|