Merge pull request #6119 from mshabunin:hal_filter2d

pull/6249/head
Vadim Pisarevsky 9 years ago
commit c186f424c5
  1. 51
      modules/imgproc/include/opencv2/imgproc/hal/hal.hpp
  2. 8
      modules/imgproc/src/deriv.cpp
  3. 716
      modules/imgproc/src/filter.cpp
  4. 12
      modules/imgproc/src/filterengine.hpp
  5. 26
      modules/imgproc/src/hal_replacement.hpp
  6. 19
      modules/imgproc/src/morph.cpp
  7. 1
      modules/imgproc/src/precomp.hpp
  8. 12
      modules/imgproc/src/smooth.cpp

@ -0,0 +1,51 @@
#ifndef CV_IMGPROC_HAL_HPP
#define CV_IMGPROC_HAL_HPP
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
#include "opencv2/core/hal/interface.h"
namespace cv { namespace hal {
//! @addtogroup core_hal_functions
//! @{
struct CV_EXPORTS Filter2D
{
static Ptr<hal::Filter2D> create(uchar * kernel_data, size_t kernel_step, int kernel_type,
int kernel_width, int kernel_height,
int max_width, int max_height,
int stype, int dtype,
int borderType, double delta,
int anchor_x, int anchor_y,
bool isSubmatrix, bool isInplace);
virtual void apply(uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y) = 0;
virtual ~Filter2D() {}
};
struct CV_EXPORTS SepFilter2D
{
static Ptr<hal::SepFilter2D> create(int stype, int dtype, int ktype,
uchar * kernelx_data, size_t kernelx_step,
int kernelx_width, int kernelx_height,
uchar * kernely_data, size_t kernely_step,
int kernely_width, int kernely_height,
int anchor_x, int anchor_y,
double delta, int borderType);
virtual void apply(uchar * src_data, size_t src_step,
uchar * dst_data, size_t dst_step,
int width, int height,
int full_width, int full_height,
int offset_x, int offset_y) = 0;
virtual ~SepFilter2D() {}
};
//! @}
}}
#endif // CV_IMGPROC_HAL_HPP

@ -856,8 +856,12 @@ void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
Mat src = _src.getMat(), dst = _dst.getMat();
int y = fx->start(src), dsty = 0, dy = 0;
fy->start(src);
Point ofs;
Size wsz(src.cols, src.rows);
src.locateROI( wsz, ofs );
int y = fx->start(src, wsz, ofs), dsty = 0, dy = 0;
fy->start(src, wsz, ofs);
const uchar* sptr = src.ptr() + src.step[0] * y;
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(CV_ELEM_SIZE(stype)*src.cols)), 1), src.rows);

@ -41,7 +41,9 @@
//M*/
#include "precomp.hpp"
#include "opencv2/core/opencl/ocl_defs.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "hal_replacement.hpp"
/****************************************************************************************\
Base Image Filter
@ -158,12 +160,12 @@ void FilterEngine::init( const Ptr<BaseFilter>& _filter2D,
#define VEC_ALIGN CV_MALLOC_ALIGN
int FilterEngine::start(Size _wholeSize, Rect _roi, int _maxBufRows)
int FilterEngine::start(const Size &_wholeSize, const Size &sz, const Point &ofs)
{
int i, j;
wholeSize = _wholeSize;
roi = _roi;
roi = Rect(ofs, sz);
CV_Assert( roi.x >= 0 && roi.y >= 0 && roi.width >= 0 && roi.height >= 0 &&
roi.x + roi.width <= wholeSize.width &&
roi.y + roi.height <= wholeSize.height );
@ -172,9 +174,9 @@ int FilterEngine::start(Size _wholeSize, Rect _roi, int _maxBufRows)
int bufElemSize = (int)getElemSize(bufType);
const uchar* constVal = !constBorderValue.empty() ? &constBorderValue[0] : 0;
if( _maxBufRows < 0 )
_maxBufRows = ksize.height + 3;
_maxBufRows = std::max(_maxBufRows, std::max(anchor.y, ksize.height-anchor.y-1)*2+1);
int _maxBufRows = std::max(ksize.height + 3,
std::max(anchor.y,
ksize.height-anchor.y-1)*2+1);
if( maxWidth < roi.width || _maxBufRows != (int)rows.size() )
{
@ -260,29 +262,12 @@ int FilterEngine::start(Size _wholeSize, Rect _roi, int _maxBufRows)
}
int FilterEngine::start(const Mat& src, const Rect& _srcRoi,
bool isolated, int maxBufRows)
int FilterEngine::start(const Mat& src, const Size &wsz, const Point &ofs)
{
Rect srcRoi = _srcRoi;
if( srcRoi == Rect(0,0,-1,-1) )
srcRoi = Rect(0,0,src.cols,src.rows);
CV_Assert( srcRoi.x >= 0 && srcRoi.y >= 0 &&
srcRoi.width >= 0 && srcRoi.height >= 0 &&
srcRoi.x + srcRoi.width <= src.cols &&
srcRoi.y + srcRoi.height <= src.rows );
Point ofs;
Size wsz(src.cols, src.rows);
if( !isolated )
src.locateROI( wsz, ofs );
start( wsz, srcRoi + ofs, maxBufRows );
start( wsz, src.size(), ofs);
return startY - ofs.y;
}
int FilterEngine::remainingInputRows() const
{
return endY - startY - rowCount;
@ -392,28 +377,16 @@ int FilterEngine::proceed( const uchar* src, int srcstep, int count,
return dy;
}
void FilterEngine::apply(const Mat& src, Mat& dst,
const Rect& _srcRoi, Point dstOfs, bool isolated)
void FilterEngine::apply(const Mat& src, Mat& dst, const Size & wsz, const Point & ofs)
{
CV_Assert( src.type() == srcType && dst.type() == dstType );
Rect srcRoi = _srcRoi;
if( srcRoi == Rect(0,0,-1,-1) )
srcRoi = Rect(0,0,src.cols,src.rows);
if( srcRoi.area() == 0 )
return;
CV_Assert( dstOfs.x >= 0 && dstOfs.y >= 0 &&
dstOfs.x + srcRoi.width <= dst.cols &&
dstOfs.y + srcRoi.height <= dst.rows );
int y = start(src, srcRoi, isolated);
proceed( src.ptr() + y*src.step + srcRoi.x*src.elemSize(),
(int)src.step, endY - startY,
dst.ptr(dstOfs.y) +
dstOfs.x*dst.elemSize(), (int)dst.step );
int y = start(src, wsz, ofs);
proceed(src.ptr() + y*src.step,
(int)src.step,
endY - startY,
dst.ptr(),
(int)dst.step );
}
}
@ -4555,222 +4528,522 @@ cv::Ptr<cv::FilterEngine> cv::createLinearFilter( int _srcType, int _dstType,
_rowBorderType, _columnBorderType, _borderValue );
}
#ifdef HAVE_IPP
namespace cv
{
static bool ipp_filter2D( InputArray _src, OutputArray _dst, int ddepth,
InputArray _kernel, Point anchor0,
double delta, int borderType )
{
#if !HAVE_ICV
Mat src = _src.getMat(), kernel = _kernel.getMat();
if( ddepth < 0 )
ddepth = src.depth();
//================================================================
// HAL interface
//================================================================
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
Mat dst = _dst.getMat();
Point anchor = normalizeAnchor(anchor0, kernel.size());
using namespace cv;
typedef IppStatus (CV_STDCALL * ippiFilterBorder)(const void * pSrc, int srcStep, void * pDst, int dstStep, IppiSize dstRoiSize,
IppiBorderType border, const void * borderValue,
const IppiFilterBorderSpec* pSpec, Ipp8u* pBuffer);
struct ReplacementFilter : public hal::Filter2D
{
cvhalFilter2D* ctx;
bool isInitialized;
ReplacementFilter() : ctx(0), isInitialized(false) { }
bool init(uchar* kernel_data, size_t kernel_step, int kernel_type, int kernel_width,
int kernel_height, int max_width, int max_height, int stype, int dtype, int borderType, double delta,
int anchor_x, int anchor_y, bool isSubmatrix, bool isInplace)
{
int res = cv_hal_filterInit(&ctx, kernel_data, kernel_step, kernel_type, kernel_width, kernel_height, max_width, max_height,
stype, dtype, borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace);
isInitialized = (res == CV_HAL_ERROR_OK);
return isInitialized;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int full_width, int full_height, int offset_x, int offset_y)
{
if (isInitialized)
{
int res = cv_hal_filter(ctx, src_data, src_step, dst_data, dst_step, width, height, full_width, full_height, offset_x, offset_y);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "HAL Filter returned an error");
}
}
~ReplacementFilter()
{
if (isInitialized)
{
int res = cv_hal_filterFree(ctx);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "HAL Filter Free returned an error");
}
}
};
int stype = src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
ktype = kernel.type(), kdepth = CV_MAT_DEPTH(ktype);
bool isolated = (borderType & BORDER_ISOLATED) != 0;
#if IPP_VERSION_X100 >= 900
Point ippAnchor((kernel.cols-1)/2, (kernel.rows-1)/2);
#else
Point ippAnchor(kernel.cols >> 1, kernel.rows >> 1);
#endif
int borderTypeNI = borderType & ~BORDER_ISOLATED;
IppiBorderType ippBorderType = ippiGetBorderType(borderTypeNI);
#ifdef HAVE_IPP
#if !HAVE_ICV
typedef IppStatus(CV_STDCALL* ippiFilterBorder)(
const void* pSrc, int srcStep, void* pDst, int dstStep,
IppiSize dstRoiSize, IppiBorderType border, const void* borderValue,
const IppiFilterBorderSpec* pSpec, Ipp8u* pBuffer);
if (borderTypeNI == BORDER_CONSTANT || borderTypeNI == BORDER_REPLICATE)
static ippiFilterBorder getIppFunc(int stype)
{
switch (stype)
{
ippiFilterBorder ippFunc =
stype == CV_8UC1 ? (ippiFilterBorder)ippiFilterBorder_8u_C1R :
stype == CV_8UC3 ? (ippiFilterBorder)ippiFilterBorder_8u_C3R :
stype == CV_8UC4 ? (ippiFilterBorder)ippiFilterBorder_8u_C4R :
stype == CV_16UC1 ? (ippiFilterBorder)ippiFilterBorder_16u_C1R :
stype == CV_16UC3 ? (ippiFilterBorder)ippiFilterBorder_16u_C3R :
stype == CV_16UC4 ? (ippiFilterBorder)ippiFilterBorder_16u_C4R :
stype == CV_16SC1 ? (ippiFilterBorder)ippiFilterBorder_16s_C1R :
stype == CV_16SC3 ? (ippiFilterBorder)ippiFilterBorder_16s_C3R :
stype == CV_16SC4 ? (ippiFilterBorder)ippiFilterBorder_16s_C4R :
stype == CV_32FC1 ? (ippiFilterBorder)ippiFilterBorder_32f_C1R :
stype == CV_32FC3 ? (ippiFilterBorder)ippiFilterBorder_32f_C3R :
stype == CV_32FC4 ? (ippiFilterBorder)ippiFilterBorder_32f_C4R : 0;
if (sdepth == ddepth && (ktype == CV_16SC1 || ktype == CV_32FC1) &&
ippFunc && (int)ippBorderType >= 0 && (!src.isSubmatrix() || isolated) &&
std::fabs(delta - 0) < DBL_EPSILON && ippAnchor == anchor && dst.data != src.data)
{
IppiSize kernelSize = { kernel.cols, kernel.rows }, dstRoiSize = { dst.cols, dst.rows };
IppDataType dataType = ippiGetDataType(ddepth), kernelType = ippiGetDataType(kdepth);
Ipp32s specSize = 0, bufsize = 0;
IppStatus status = (IppStatus)-1;
case CV_8UC1:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_8u_C1R);
case CV_8UC3:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_8u_C3R);
case CV_8UC4:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_8u_C4R);
case CV_16UC1:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_16u_C1R);
case CV_16UC3:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_16u_C3R);
case CV_16UC4:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_16u_C4R);
case CV_16SC1:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_16s_C1R);
case CV_16SC3:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_16s_C3R);
case CV_16SC4:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_16s_C4R);
case CV_32FC1:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_32f_C1R);
case CV_32FC3:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_32f_C3R);
case CV_32FC4:
return reinterpret_cast<ippiFilterBorder>(ippiFilterBorder_32f_C4R);
default:
return 0;
}
}
if ((status = ippiFilterBorderGetSize(kernelSize, dstRoiSize, dataType, kernelType, cn, &specSize, &bufsize)) >= 0)
{
IppAutoBuffer<IppiFilterBorderSpec> spec(specSize);
IppAutoBuffer<Ipp8u> buffer(bufsize);
Ipp32f borderValue[4] = { 0, 0, 0, 0 };
template <int kdepth>
struct IppFilterTrait { };
if(kdepth == CV_32F)
{
Ipp32f *pKerBuffer = (Ipp32f*)kernel.data;
IppAutoBuffer<Ipp32f> kerTmp;
int kerStep = sizeof(Ipp32f)*kernelSize.width;
template <>
struct IppFilterTrait<CV_16S>
{
enum { kernel_type_id = CV_16SC1 };
typedef Ipp16s kernel_type;
typedef IppStatus(CV_STDCALL* copy_fun_type)(const kernel_type* pSrc, int srcStep, kernel_type* pDst, int dstStep, IppiSize roiSize);
inline static copy_fun_type get_copy_fun() { return ippiCopy_16s_C1R; }
inline static IppStatus runInit(const kernel_type* pKernel, IppiSize kernelSize, int divisor, IppDataType dataType, int numChannels, IppRoundMode roundMode, IppiFilterBorderSpec* pSpec)
{
return ippiFilterBorderInit_16s(pKernel, kernelSize, divisor, dataType, numChannels, roundMode, pSpec);
}
};
template <>
struct IppFilterTrait<CV_32F>
{
enum { kernel_type_id = CV_32FC1 };
typedef Ipp32f kernel_type;
typedef IppStatus(CV_STDCALL* copy_fun_type)(const kernel_type* pSrc, int srcStep, kernel_type* pDst, int dstStep, IppiSize roiSize);
inline static copy_fun_type get_copy_fun() { return ippiCopy_32f_C1R; }
inline static IppStatus runInit(const kernel_type* pKernel, IppiSize kernelSize, int divisor, IppDataType dataType, int numChannels, IppRoundMode roundMode, IppiFilterBorderSpec* pSpec)
{
CV_UNUSED(divisor);
return ippiFilterBorderInit_32f(pKernel, kernelSize, dataType, numChannels, roundMode, pSpec);
}
};
template <int kdepth>
struct IppFilter : public hal::Filter2D
{
typedef IppFilterTrait<kdepth> trait;
typedef typename trait::kernel_type kernel_type;
IppAutoBuffer<IppiFilterBorderSpec> spec;
IppAutoBuffer<Ipp8u> buffer;
IppAutoBuffer<kernel_type> kernelBuffer;
IppiBorderType ippBorderType;
int src_type;
bool init(uchar* kernel_data, size_t kernel_step, int, int kernel_width, int kernel_height,
int max_width, int max_height, int stype, int dtype,
int borderType, double delta, int anchor_x, int anchor_y, bool isSubmatrix, bool isInplace)
{
Point anchor(anchor_x, anchor_y);
#if IPP_VERSION_X100 >= 900
if((int)kernel.step != kerStep)
{
kerTmp.Alloc(kerStep*kernelSize.height);
if(ippiCopy_32f_C1R((Ipp32f*)kernel.data, (int)kernel.step, kerTmp, kerStep, kernelSize) < 0)
return false;
pKerBuffer = kerTmp;
}
Point ippAnchor((kernel_width - 1) / 2, (kernel_height - 1) / 2);
#else
kerTmp.Alloc(kerStep*kernelSize.height);
Mat kerFlip(Size(kernelSize.width, kernelSize.height), CV_32FC1, kerTmp, kerStep);
flip(kernel, kerFlip, -1);
pKerBuffer = kerTmp;
Point ippAnchor(kernel_width >> 1, kernel_height >> 1);
#endif
bool isIsolated = (borderType & BORDER_ISOLATED) != 0;
int borderTypeNI = borderType & ~BORDER_ISOLATED;
ippBorderType = ippiGetBorderType(borderTypeNI);
int ddepth = CV_MAT_DEPTH(dtype);
int sdepth = CV_MAT_DEPTH(stype);
bool runIpp = true
&& (borderTypeNI == BORDER_CONSTANT || borderTypeNI == BORDER_REPLICATE)
&& (sdepth == ddepth)
&& (getIppFunc(stype))
&& ((int)ippBorderType > 0)
&& (!isSubmatrix || isIsolated)
&& (std::fabs(delta - 0) < DBL_EPSILON)
&& (ippAnchor == anchor)
&& !isInplace;
if (!runIpp)
return false;
if((status = ippiFilterBorderInit_32f(pKerBuffer, kernelSize,
dataType, cn, ippRndFinancial, spec)) >= 0 )
{
status = ippFunc(src.data, (int)src.step, dst.data, (int)dst.step, dstRoiSize,
ippBorderType, borderValue, spec, buffer);
}
}
else if(kdepth == CV_16S)
{
Ipp16s *pKerBuffer = (Ipp16s*)kernel.data;
IppAutoBuffer<Ipp16s> kerTmp;
int kerStep = sizeof(Ipp16s)*kernelSize.width;
src_type = stype;
int cn = CV_MAT_CN(stype);
IppiSize kernelSize = { kernel_width, kernel_height };
IppDataType dataType = ippiGetDataType(ddepth);
IppDataType kernelType = ippiGetDataType(kdepth);
Ipp32s specSize = 0;
Ipp32s bufsize = 0;
IppiSize dstRoiSize = { max_width, max_height };
IppStatus status;
status = ippiFilterBorderGetSize(kernelSize, dstRoiSize, dataType, kernelType, cn, &specSize, &bufsize);
if (status >= 0) {
kernel_type* pKerBuffer = (kernel_type*)kernel_data;
size_t good_kernel_step = sizeof(kernel_type) * static_cast<size_t>(kernelSize.width);
#if IPP_VERSION_X100 >= 900
if((int)kernel.step != kerStep)
{
kerTmp.Alloc(kerStep*kernelSize.height);
if(ippiCopy_16s_C1R((Ipp16s*)kernel.data, (int)kernel.step, kerTmp, kerStep, kernelSize) < 0)
return false;
pKerBuffer = kerTmp;
}
if (kernel_step != good_kernel_step) {
kernelBuffer.Alloc((int)good_kernel_step * kernelSize.height);
status = trait::get_copy_fun()((kernel_type*)kernel_data, (int)kernel_step, kernelBuffer, (int)good_kernel_step, kernelSize);
if (status < 0)
return false;
pKerBuffer = kernelBuffer;
}
#else
kerTmp.Alloc(kerStep*kernelSize.height);
Mat kerFlip(Size(kernelSize.width, kernelSize.height), CV_16SC1, kerTmp, kerStep);
flip(kernel, kerFlip, -1);
pKerBuffer = kerTmp;
kernelBuffer.Alloc(good_kernel_step * kernelSize.height);
Mat kerFlip(Size(kernelSize.width, kernelSize.height), trait::kernel_type_id, kernelBuffer, (int)good_kernel_step);
Mat kernel(Size(kernel_width, kernel_height), trait::kernel_type_id, kernel_data, kernel_step);
flip(kernel, kerFlip, -1);
pKerBuffer = kernelBuffer;
#endif
if((status = ippiFilterBorderInit_16s(pKerBuffer, kernelSize,
0, dataType, cn, ippRndFinancial, spec)) >= 0)
{
status = ippFunc(src.data, (int)src.step, dst.data, (int)dst.step, dstRoiSize,
ippBorderType, borderValue, spec, buffer);
}
}
}
if (status >= 0)
{
CV_IMPL_ADD(CV_IMPL_IPP);
spec.Alloc(specSize);
buffer.Alloc(bufsize);
status = trait::runInit(pKerBuffer, kernelSize, 0, dataType, cn, ippRndFinancial, spec);
if (status >= 0) {
return true;
}
}
return false;
}
#else
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ddepth); CV_UNUSED(_kernel), CV_UNUSED(anchor0), CV_UNUSED(delta), CV_UNUSED(borderType);
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int, int, int, int)
{
if (dst_data == src_data)
CV_Error(Error::StsBadArg, "Inplace IPP Filter2D is not supported");
ippiFilterBorder ippFunc = getIppFunc(src_type);
IppiSize dstRoiSize = { width, height };
kernel_type borderValue[4] = { 0, 0, 0, 0 };
IppStatus status = ippFunc(src_data, (int)src_step, dst_data, (int)dst_step, dstRoiSize, ippBorderType, borderValue, spec, buffer);
if (status >= 0) {
CV_IMPL_ADD(CV_IMPL_IPP);
}
}
};
#endif
return false;
}
}
#endif
void cv::filter2D( InputArray _src, OutputArray _dst, int ddepth,
InputArray _kernel, Point anchor0,
double delta, int borderType )
struct DftFilter : public hal::Filter2D
{
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2,
ocl_filter2D(_src, _dst, ddepth, _kernel, anchor0, delta, borderType))
Mat src = _src.getMat(), kernel = _kernel.getMat();
if( ddepth < 0 )
ddepth = src.depth();
int src_type;
int dst_type;
double delta;
Mat kernel;
Point anchor;
int borderType;
static bool isAppropriate(int stype, int dtype, int kernel_width, int kernel_height)
{
#if CV_SSE2
int dft_filter_size = ((src.depth() == CV_8U && (ddepth == CV_8U || ddepth == CV_16S)) ||
(src.depth() == CV_32F && ddepth == CV_32F)) && checkHardwareSupport(CV_CPU_SSE3)? 130 : 50;
int sdepth = CV_MAT_DEPTH(stype);
int ddepth = CV_MAT_DEPTH(dtype);
int dft_filter_size = ((sdepth == CV_8U && (ddepth == CV_8U || ddepth == CV_16S)) || (sdepth == CV_32F && ddepth == CV_32F)) && checkHardwareSupport(CV_CPU_SSE3) ? 130 : 50;
#else
int dft_filter_size = 50;
CV_UNUSED(stype);
CV_UNUSED(dtype);
int dft_filter_size = 50;
#endif
return kernel_width * kernel_height >= dft_filter_size;
}
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
Mat dst = _dst.getMat();
Point anchor = normalizeAnchor(anchor0, kernel.size());
CV_IPP_RUN(true, ipp_filter2D(_src, _dst, ddepth, _kernel, anchor0, delta, borderType));
#ifdef HAVE_TEGRA_OPTIMIZATION
if( tegra::useTegra() && tegra::filter2D(src, dst, kernel, anchor, delta, borderType) )
return;
#endif
bool init(uchar* kernel_data, size_t kernel_step, int kernel_type, int kernel_width, int kernel_height,
int, int, int stype, int dtype,
int borderType_, double delta_, int anchor_x, int anchor_y, bool, bool)
{
anchor = Point(anchor_x, anchor_y);
borderType = borderType_;
kernel = Mat(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
src_type = stype;
dst_type = dtype;
delta = delta_;
if (isAppropriate(stype, dtype, kernel_width, kernel_height))
return true;
return false;
}
if( kernel.cols*kernel.rows >= dft_filter_size )
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int, int, int, int)
{
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
Mat temp;
int src_channels = CV_MAT_CN(src_type);
int dst_channels = CV_MAT_CN(dst_type);
int ddepth = CV_MAT_DEPTH(dst_type);
// crossCorr doesn't accept non-zero delta with multiple channels
if( src.channels() != 1 && delta != 0 )
{
if (src_channels != 1 && delta != 0) {
// The semantics of filter2D require that the delta be applied
// as floating-point math. So wee need an intermediate Mat
// with a float datatype. If the dest is already floats,
// we just use that.
int corrDepth = dst.depth();
if( (dst.depth() == CV_32F || dst.depth() == CV_64F) &&
src.data != dst.data )
{
temp = dst;
}
else
{
corrDepth = dst.depth() == CV_64F ? CV_64F : CV_32F;
temp.create( dst.size(), CV_MAKETYPE(corrDepth, dst.channels()) );
int corrDepth = ddepth;
if ((ddepth == CV_32F || ddepth == CV_64F) && src_data != dst_data) {
temp = Mat(Size(width, height), dst_type, dst_data, dst_step);
} else {
corrDepth = ddepth == CV_64F ? CV_64F : CV_32F;
temp.create(Size(width, height), CV_MAKETYPE(corrDepth, dst_channels));
}
crossCorr( src, kernel, temp, src.size(),
CV_MAKETYPE(corrDepth, src.channels()),
anchor, 0, borderType );
add( temp, delta, temp );
if ( temp.data != dst.data )
{
temp.convertTo( dst, dst.type() );
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(corrDepth, src_channels),
anchor, 0, borderType);
add(temp, delta, temp);
if (temp.data != dst_data) {
temp.convertTo(dst, dst.type());
}
}
else
{
if( src.data != dst.data )
temp = dst;
} else {
if (src_data != dst_data)
temp = Mat(Size(width, height), dst_type, dst_data, dst_step);
else
temp.create(dst.size(), dst.type());
crossCorr( src, kernel, temp, src.size(),
CV_MAKETYPE(ddepth, src.channels()),
anchor, delta, borderType );
if( temp.data != dst.data )
temp.create(Size(width, height), dst_type);
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(ddepth, src_channels),
anchor, delta, borderType);
if (temp.data != dst_data)
temp.copyTo(dst);
}
return;
}
};
struct OcvFilter : public hal::Filter2D
{
Ptr<FilterEngine> f;
int src_type;
int dst_type;
bool isIsolated;
bool init(uchar* kernel_data, size_t kernel_step, int kernel_type, int kernel_width,
int kernel_height, int, int, int stype, int dtype, int borderType, double delta,
int anchor_x, int anchor_y, bool, bool)
{
isIsolated = (borderType & BORDER_ISOLATED) != 0;
src_type = stype;
dst_type = dtype;
int borderTypeValue = borderType & ~BORDER_ISOLATED;
Mat kernel = Mat(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step);
f = createLinearFilter(src_type, dst_type, kernel, Point(anchor_x, anchor_y), delta,
borderTypeValue);
return true;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int full_width, int full_height, int offset_x, int offset_y)
{
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
}
};
struct ReplacementSepFilter : public hal::SepFilter2D
{
cvhalFilter2D *ctx;
bool isInitialized;
ReplacementSepFilter() : ctx(0), isInitialized(false) {}
bool init(int stype, int dtype, int ktype,
uchar * kernelx_data, size_t kernelx_step, int kernelx_width, int kernelx_height,
uchar * kernely_data, size_t kernely_step, int kernely_width, int kernely_height,
int anchor_x, int anchor_y, double delta, int borderType)
{
int res = cv_hal_sepFilterInit(&ctx, stype, dtype, ktype,
kernelx_data, kernelx_step, kernelx_width, kernelx_height,
kernely_data, kernely_step, kernely_width, kernely_height,
anchor_x, anchor_y, delta, borderType);
isInitialized = (res == CV_HAL_ERROR_OK);
return isInitialized;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y)
{
if (isInitialized)
{
int res = cv_hal_sepFilter(ctx, src_data, src_step, dst_data, dst_step, width, height, full_width, full_height, offset_x, offset_y);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "Failed to run HAL sepFilter implementation");
}
}
~ReplacementSepFilter()
{
if (isInitialized)
{
int res = cv_hal_sepFilterFree(ctx);
if (res != CV_HAL_ERROR_OK)
CV_Error(Error::StsNotImplemented, "Failed to run HAL sepFilter implementation");
}
}
};
struct OcvSepFilter : public hal::SepFilter2D
{
Ptr<FilterEngine> f;
int src_type;
int dst_type;
bool init(int stype, int dtype, int ktype,
uchar * kernelx_data, size_t kernelx_step, int kernelx_width, int kernelx_height,
uchar * kernely_data, size_t kernely_step, int kernely_width, int kernely_height,
int anchor_x, int anchor_y, double delta, int borderType)
{
src_type = stype;
dst_type = dtype;
Mat kernelX(Size(kernelx_width, kernelx_height), ktype, kernelx_data, kernelx_step);
Mat kernelY(Size(kernely_width, kernely_height), ktype, kernely_data, kernely_step);
f = createSeparableLinearFilter( stype, dtype, kernelX, kernelY,
Point(anchor_x, anchor_y),
delta, borderType & ~BORDER_ISOLATED );
return true;
}
void apply(uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y)
{
Mat src(Size(width, height), src_type, src_data, src_step);
Mat dst(Size(width, height), dst_type, dst_data, dst_step);
f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
}
};
//===================================================================
// HAL functions
//===================================================================
namespace cv {
namespace hal {
Ptr<hal::Filter2D> Filter2D::create(uchar* kernel_data, size_t kernel_step, int kernel_type,
int kernel_width, int kernel_height,
int max_width, int max_height,
int stype, int dtype,
int borderType, double delta, int anchor_x, int anchor_y, bool isSubmatrix, bool isInplace)
{
{
ReplacementFilter* impl = new ReplacementFilter();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
}
#ifdef HAVE_IPP
#if !HAVE_ICV
if (kernel_type == CV_32FC1) {
IppFilter<CV_32F>* impl = new IppFilter<CV_32F>();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
}
if (kernel_type == CV_16SC1) {
IppFilter<CV_16S>* impl = new IppFilter<CV_16S>();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
}
#endif
#endif
if (DftFilter::isAppropriate(stype, dtype, kernel_width, kernel_height))
{
DftFilter* impl = new DftFilter();
if (impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace))
{
return Ptr<hal::Filter2D>(impl);
}
delete impl;
}
Ptr<FilterEngine> f = createLinearFilter(src.type(), dst.type(), kernel,
anchor, delta, borderType & ~BORDER_ISOLATED );
f->apply(src, dst, Rect(0,0,-1,-1), Point(), (borderType & BORDER_ISOLATED) != 0 );
{
OcvFilter* impl = new OcvFilter();
impl->init(kernel_data, kernel_step, kernel_type, kernel_width, kernel_height,
max_width, max_height, stype, dtype,
borderType, delta, anchor_x, anchor_y, isSubmatrix, isInplace);
return Ptr<hal::Filter2D>(impl);
}
}
//---------------------------------------------------------------
Ptr<SepFilter2D> SepFilter2D::create(int stype, int dtype, int ktype,
uchar * kernelx_data, size_t kernelx_step, int kernelx_width, int kernelx_height,
uchar * kernely_data, size_t kernely_step, int kernely_width, int kernely_height,
int anchor_x, int anchor_y, double delta, int borderType)
{
{
ReplacementSepFilter * impl = new ReplacementSepFilter();
if (impl->init(stype, dtype, ktype,
kernelx_data, kernelx_step, kernelx_width, kernelx_height,
kernely_data, kernely_step, kernely_width, kernely_height,
anchor_x, anchor_y, delta, borderType))
{
return Ptr<hal::SepFilter2D>(impl);
}
delete impl;
}
{
OcvSepFilter * impl = new OcvSepFilter();
impl->init(stype, dtype, ktype,
kernelx_data, kernelx_step, kernelx_width, kernelx_height,
kernely_data, kernely_step, kernely_width, kernely_height,
anchor_x, anchor_y, delta, borderType);
return Ptr<hal::SepFilter2D>(impl);
}
}
} // cv::hal::
} // cv::
//================================================================
// Main interface
//================================================================
void cv::filter2D( InputArray _src, OutputArray _dst, int ddepth,
InputArray _kernel, Point anchor0,
double delta, int borderType )
{
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2,
ocl_filter2D(_src, _dst, ddepth, _kernel, anchor0, delta, borderType))
Mat src = _src.getMat(), kernel = _kernel.getMat();
if( ddepth < 0 )
ddepth = src.depth();
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
Mat dst = _dst.getMat();
Point anchor = normalizeAnchor(anchor0, kernel.size());
Point ofs;
Size wsz(src.cols, src.rows);
if( (borderType & BORDER_ISOLATED) == 0 )
src.locateROI( wsz, ofs );
Ptr<hal::Filter2D> c = hal::Filter2D::create(kernel.data, kernel.step, kernel.type(), kernel.cols, kernel.rows,
dst.cols, dst.rows, src.type(), dst.type(),
borderType, delta, anchor.x, anchor.y, src.isSubmatrix(), src.data == dst.data);
c->apply(src.data, src.step, dst.data, dst.step, dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y);
}
void cv::sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
InputArray _kernelX, InputArray _kernelY, Point anchor,
@ -4787,9 +5060,18 @@ void cv::sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
Mat dst = _dst.getMat();
Ptr<FilterEngine> f = createSeparableLinearFilter(src.type(),
dst.type(), kernelX, kernelY, anchor, delta, borderType & ~BORDER_ISOLATED );
f->apply(src, dst, Rect(0,0,-1,-1), Point(), (borderType & BORDER_ISOLATED) != 0 );
Point ofs;
Size wsz(src.cols, src.rows);
if( (borderType & BORDER_ISOLATED) == 0 )
src.locateROI( wsz, ofs );
CV_Assert(kernelX.type() == kernelY.type());
Ptr<hal::SepFilter2D> c = hal::SepFilter2D::create(src.type(), dst.type(), kernelX.type(),
kernelX.data, kernelX.step, kernelX.cols, kernelX.rows,
kernelY.data, kernelY.step, kernelY.cols, kernelY.rows,
anchor.x, anchor.y, delta, borderType & ~BORDER_ISOLATED);
c->apply(src.data, src.step, dst.data, dst.step, dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y);
}

@ -228,19 +228,17 @@ public:
int _rowBorderType = BORDER_REPLICATE,
int _columnBorderType = -1,
const Scalar& _borderValue = Scalar());
//! starts filtering of the specified ROI of an image of size wholeSize.
virtual int start(Size wholeSize, Rect roi, int maxBufRows = -1);
virtual int start(const cv::Size &wholeSize, const cv::Size &sz, const cv::Point &ofs);
//! starts filtering of the specified ROI of the specified image.
virtual int start(const Mat& src, const Rect& srcRoi = Rect(0,0,-1,-1),
bool isolated = false, int maxBufRows = -1);
virtual int start(const Mat& src, const cv::Size &wsz, const cv::Point &ofs);
//! processes the next srcCount rows of the image.
virtual int proceed(const uchar* src, int srcStep, int srcCount,
uchar* dst, int dstStep);
//! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
virtual void apply( const Mat& src, Mat& dst,
const Rect& srcRoi = Rect(0,0,-1,-1),
Point dstOfs = Point(0,0),
bool isolated = false);
virtual void apply(const Mat& src, Mat& dst, const cv::Size &wsz, const cv::Point &ofs);
//! returns true if the filter is separable
bool isSeparable() const { return !filter2D; }
//! returns the number

@ -0,0 +1,26 @@
#ifndef OPENCV_IMGPROC_HAL_REPLACEMENT_HPP
#define OPENCV_IMGPROC_HAL_REPLACEMENT_HPP
#include "opencv2/core/hal/interface.h"
struct cvhalFilter2D {};
inline int hal_ni_filterInit(cvhalFilter2D **, uchar *, size_t, int, int, int, int, int, int, int, int, double, int, int, bool, bool) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_filter(cvhalFilter2D *, uchar *, size_t, uchar *, size_t, int, int, int, int, int, int) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_filterFree(cvhalFilter2D *) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
#define cv_hal_filterInit hal_ni_filterInit
#define cv_hal_filter hal_ni_filter
#define cv_hal_filterFree hal_ni_filterFree
inline int hal_ni_sepFilterInit(cvhalFilter2D **, int, int, int, uchar *, size_t, int, int, uchar *, size_t, int, int, int, int, double, int) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_sepFilter(cvhalFilter2D *, uchar *, size_t, uchar*, size_t, int, int, int, int, int, int) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_sepFilterFree(cvhalFilter2D *) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
#define cv_hal_sepFilterInit hal_ni_sepFilterInit
#define cv_hal_sepFilter hal_ni_sepFilter
#define cv_hal_sepFilterFree hal_ni_sepFilterFree
#include "custom_hal.hpp"
#endif // OPENCV_IMGPROC_HAL_REPLACEMENT_HPP

@ -1117,9 +1117,22 @@ public:
Ptr<FilterEngine> f = createMorphologyFilter(op, src.type(), kernel, anchor,
rowBorderType, columnBorderType, borderValue );
f->apply( srcStripe, dstStripe );
for( int i = 1; i < iterations; i++ )
f->apply( dstStripe, dstStripe );
{
Point ofs;
Size wsz(srcStripe.cols, srcStripe.rows);
srcStripe.locateROI( wsz, ofs );
f->apply( srcStripe, dstStripe, wsz, ofs );
}
{
Point ofs;
Size wsz(dstStripe.cols, dstStripe.rows);
dstStripe.locateROI( wsz, ofs );
for( int i = 1; i < iterations; i++ )
f->apply( dstStripe, dstStripe, wsz, ofs );
}
}
private:

@ -50,6 +50,7 @@
#include "opencv2/core/private.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/core/hal/hal.hpp"
#include "opencv2/imgproc/hal/hal.hpp"
#include <math.h>
#include <assert.h>

@ -1439,7 +1439,11 @@ void cv::boxFilter( InputArray _src, OutputArray _dst, int ddepth,
Ptr<FilterEngine> f = createBoxFilter( src.type(), dst.type(),
ksize, anchor, normalize, borderType );
f->apply( src, dst );
Point ofs;
Size wsz(src.cols, src.rows);
src.locateROI( wsz, ofs );
f->apply( src, dst, wsz, ofs );
}
@ -1561,7 +1565,11 @@ void cv::sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth,
Ptr<FilterEngine> f = makePtr<FilterEngine>(Ptr<BaseFilter>(), rowFilter, columnFilter,
srcType, dstType, sumType, borderType );
f->apply( src, dst );
Point ofs;
Size wsz(src.cols, src.rows);
src.locateROI( wsz, ofs );
f->apply( src, dst, wsz, ofs );
}

Loading…
Cancel
Save