|
|
|
@ -149,7 +149,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag, |
|
|
|
|
|
|
|
|
|
__BEGIN__; |
|
|
|
|
|
|
|
|
|
int sample_all = 0, r_type = 0, cv_n; |
|
|
|
|
int sample_all = 0, r_type, cv_n; |
|
|
|
|
int total_c_count = 0; |
|
|
|
|
int tree_block_size, temp_block_size, max_split_size, nv_size, cv_size = 0; |
|
|
|
|
int ds_step, dv_step, ms_step = 0, mv_step = 0; // {data|mask}{sample|var}_step
|
|
|
|
@ -252,11 +252,11 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag, |
|
|
|
|
"floating-point vector containing as many elements as " |
|
|
|
|
"the total number of samples in the training data matrix" ); |
|
|
|
|
|
|
|
|
|
r_type = CV_VAR_CATEGORICAL; |
|
|
|
|
if( _var_type ) |
|
|
|
|
CV_CALL( var_type0 = cvPreprocessVarType( _var_type, var_idx, var_count, &r_type )); |
|
|
|
|
|
|
|
|
|
CV_CALL( var_type = cvCreateMat( 1, var_count+2, CV_32SC1 )); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cat_var_count = 0; |
|
|
|
|
ord_var_count = -1; |
|
|
|
|