mirror of https://github.com/opencv/opencv.git
parent
61386e1abd
commit
c0bbdde8ba
1 changed files with 499 additions and 0 deletions
@ -0,0 +1,499 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Nghia Ho, nghiaho12@yahoo.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of OpenCV Foundation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
#define ACCURACY 0.00001 |
||||
|
||||
class CV_RotatedRectangleIntersectionTest: public cvtest::ArrayTest |
||||
{ |
||||
public: |
||||
|
||||
protected: |
||||
void run (int); |
||||
|
||||
private: |
||||
void test1(); |
||||
void test2(); |
||||
void test3(); |
||||
void test4(); |
||||
void test5(); |
||||
void test6(); |
||||
void test7(); |
||||
void test8(); |
||||
void test9(); |
||||
}; |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::run(int) |
||||
{ |
||||
// See pics/intersection.png for the scenarios we are testing
|
||||
|
||||
// Test the following scenarios:
|
||||
// 1 - no intersection
|
||||
// 2 - partial intersection, rectangle translated
|
||||
// 3 - partial intersection, rectangle rotated 45 degree on the corner, forms a triangle intersection
|
||||
// 4 - full intersection, rectangles of same size directly on top of each other
|
||||
// 5 - partial intersection, rectangle on top rotated 45 degrees
|
||||
// 6 - partial intersection, rectangle on top of different size
|
||||
// 7 - full intersection, rectangle fully enclosed in the other
|
||||
// 8 - partial intersection, rectangle corner just touching. point contact
|
||||
// 9 - partial intersetion. rectangle side by side, line contact
|
||||
|
||||
test1(); |
||||
test2(); |
||||
test3(); |
||||
test4(); |
||||
test5(); |
||||
test6(); |
||||
test7(); |
||||
test8(); |
||||
test9(); |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test1() |
||||
{ |
||||
// no intersection
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 12.0f; |
||||
|
||||
rect2.center.x = 10; |
||||
rect2.center.y = 10; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 2; |
||||
rect2.angle = 34.0f; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
||||
|
||||
CV_Assert(ret == INTERSECT_NONE); |
||||
CV_Assert(vertices.empty()); |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test2() |
||||
{ |
||||
// partial intersection, rectangles translated
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 1; |
||||
rect2.center.y = 1; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 2; |
||||
rect2.angle = 0; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_PARTIAL); |
||||
CV_Assert(vertices.size() == 4); |
||||
|
||||
vector<Point2f> possibleVertices(4); |
||||
|
||||
possibleVertices[0] = Point2f(0.0f, 0.0f); |
||||
possibleVertices[1] = Point2f(1.0f, 1.0f); |
||||
possibleVertices[2] = Point2f(0.0f, 1.0f); |
||||
possibleVertices[3] = Point2f(1.0f, 0.0f); |
||||
|
||||
for( size_t i = 0; i < vertices.size(); i++ ) |
||||
{ |
||||
double bestR = DBL_MAX; |
||||
|
||||
for( size_t j = 0; j < possibleVertices.size(); j++ ) |
||||
{ |
||||
double dx = vertices[i].x - possibleVertices[j].x; |
||||
double dy = vertices[i].y - possibleVertices[j].y; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
bestR = std::min(bestR, r); |
||||
} |
||||
|
||||
CV_Assert(bestR < ACCURACY); |
||||
} |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test3() |
||||
{ |
||||
// partial intersection, rectangles rotated 45 degree on the corner, forms a triangle intersection
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 1; |
||||
rect2.center.y = 1; |
||||
rect2.size.width = sqrt(2.0f); |
||||
rect2.size.height = 20; |
||||
rect2.angle = 45.0f; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_PARTIAL); |
||||
CV_Assert(vertices.size() == 3); |
||||
|
||||
vector<Point2f> possibleVertices(3); |
||||
|
||||
possibleVertices[0] = Point2f(1.0f, 1.0f); |
||||
possibleVertices[1] = Point2f(0.0f, 1.0f); |
||||
possibleVertices[2] = Point2f(1.0f, 0.0f); |
||||
|
||||
for( size_t i = 0; i < vertices.size(); i++ ) |
||||
{ |
||||
double bestR = DBL_MAX; |
||||
|
||||
for( size_t j = 0; j < possibleVertices.size(); j++ ) |
||||
{ |
||||
double dx = vertices[i].x - possibleVertices[j].x; |
||||
double dy = vertices[i].y - possibleVertices[j].y; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
bestR = std::min(bestR, r); |
||||
} |
||||
|
||||
CV_Assert(bestR < ACCURACY); |
||||
} |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test4() |
||||
{ |
||||
// full intersection, rectangles of same size directly on top of each other
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 0; |
||||
rect2.center.y = 0; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 2; |
||||
rect2.angle = 0; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_FULL); |
||||
CV_Assert(vertices.size() == 4); |
||||
|
||||
vector<Point2f> possibleVertices(4); |
||||
|
||||
possibleVertices[0] = Point2f(-1.0f, 1.0f); |
||||
possibleVertices[1] = Point2f(1.0f, -1.0f); |
||||
possibleVertices[2] = Point2f(-1.0f, -1.0f); |
||||
possibleVertices[3] = Point2f(1.0f, 1.0f); |
||||
|
||||
for( size_t i = 0; i < vertices.size(); i++ ) |
||||
{ |
||||
double bestR = DBL_MAX; |
||||
|
||||
for( size_t j = 0; j < possibleVertices.size(); j++ ) |
||||
{ |
||||
double dx = vertices[i].x - possibleVertices[j].x; |
||||
double dy = vertices[i].y - possibleVertices[j].y; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
bestR = std::min(bestR, r); |
||||
} |
||||
|
||||
CV_Assert(bestR < ACCURACY); |
||||
} |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test5() |
||||
{ |
||||
// partial intersection, rectangle on top rotated 45 degrees
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 0; |
||||
rect2.center.y = 0; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 2; |
||||
rect2.angle = 45.0f; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_PARTIAL); |
||||
CV_Assert(vertices.size() == 8); |
||||
|
||||
vector<Point2f> possibleVertices(8); |
||||
|
||||
possibleVertices[0] = Point2f(-1.0f, -0.414214f); |
||||
possibleVertices[1] = Point2f(-1.0f, 0.414214f); |
||||
possibleVertices[2] = Point2f(-0.414214f, -1.0f); |
||||
possibleVertices[3] = Point2f(0.414214f, -1.0f); |
||||
possibleVertices[4] = Point2f(1.0f, -0.414214f); |
||||
possibleVertices[5] = Point2f(1.0f, 0.414214f); |
||||
possibleVertices[6] = Point2f(0.414214f, 1.0f); |
||||
possibleVertices[7] = Point2f(-0.414214f, 1.0f); |
||||
|
||||
for( size_t i = 0; i < vertices.size(); i++ ) |
||||
{ |
||||
double bestR = DBL_MAX; |
||||
|
||||
for( size_t j = 0; j < possibleVertices.size(); j++ ) |
||||
{ |
||||
double dx = vertices[i].x - possibleVertices[j].x; |
||||
double dy = vertices[i].y - possibleVertices[j].y; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
bestR = std::min(bestR, r); |
||||
} |
||||
|
||||
CV_Assert(bestR < ACCURACY); |
||||
} |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test6() |
||||
{ |
||||
// 6 - partial intersection, rectangle on top of different size
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 0; |
||||
rect2.center.y = 0; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 10; |
||||
rect2.angle = 0; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_PARTIAL); |
||||
CV_Assert(vertices.size() == 4); |
||||
|
||||
vector<Point2f> possibleVertices(4); |
||||
|
||||
possibleVertices[0] = Point2f(1.0f, 1.0f); |
||||
possibleVertices[1] = Point2f(1.0f, -1.0f); |
||||
possibleVertices[2] = Point2f(-1.0f, -1.0f); |
||||
possibleVertices[3] = Point2f(-1.0f, 1.0f); |
||||
|
||||
for( size_t i = 0; i < vertices.size(); i++ ) |
||||
{ |
||||
double bestR = DBL_MAX; |
||||
|
||||
for( size_t j = 0; j < possibleVertices.size(); j++ ) |
||||
{ |
||||
double dx = vertices[i].x - possibleVertices[j].x; |
||||
double dy = vertices[i].y - possibleVertices[j].y; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
bestR = std::min(bestR, r); |
||||
} |
||||
|
||||
CV_Assert(bestR < ACCURACY); |
||||
} |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test7() |
||||
{ |
||||
// full intersection, rectangle fully enclosed in the other
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 12.34; |
||||
rect1.size.height = 56.78; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 0; |
||||
rect2.center.y = 0; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 2; |
||||
rect2.angle = 0; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_FULL); |
||||
CV_Assert(vertices.size() == 4); |
||||
|
||||
vector<Point2f> possibleVertices(4); |
||||
|
||||
possibleVertices[0] = Point2f(1.0f, 1.0f); |
||||
possibleVertices[1] = Point2f(1.0f, -1.0f); |
||||
possibleVertices[2] = Point2f(-1.0f, -1.0f); |
||||
possibleVertices[3] = Point2f(-1.0f, 1.0f); |
||||
|
||||
for( size_t i = 0; i < vertices.size(); i++ ) |
||||
{ |
||||
double bestR = DBL_MAX; |
||||
|
||||
for( size_t j = 0; j < possibleVertices.size(); j++ ) |
||||
{ |
||||
double dx = vertices[i].x - possibleVertices[j].x; |
||||
double dy = vertices[i].y - possibleVertices[j].y; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
bestR = std::min(bestR, r); |
||||
} |
||||
|
||||
CV_Assert(bestR < ACCURACY); |
||||
} |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test8() |
||||
{ |
||||
// full intersection, rectangle fully enclosed in the other
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 2; |
||||
rect2.center.y = 2; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 2; |
||||
rect2.angle = 0; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_PARTIAL); |
||||
CV_Assert(vertices.size() == 1); |
||||
|
||||
double dx = vertices[0].x - 1; |
||||
double dy = vertices[0].y - 1; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
CV_Assert(r < ACCURACY); |
||||
} |
||||
|
||||
void CV_RotatedRectangleIntersectionTest::test9() |
||||
{ |
||||
// full intersection, rectangle fully enclosed in the other
|
||||
|
||||
RotatedRect rect1, rect2; |
||||
|
||||
rect1.center.x = 0; |
||||
rect1.center.y = 0; |
||||
rect1.size.width = 2; |
||||
rect1.size.height = 2; |
||||
rect1.angle = 0; |
||||
|
||||
rect2.center.x = 2; |
||||
rect2.center.y = 0; |
||||
rect2.size.width = 2; |
||||
rect2.size.height = 123.45; |
||||
rect2.angle = 0; |
||||
|
||||
vector<Point2f> vertices; |
||||
|
||||
int ret = rotatedRectangleIntersection(rect1, rect2, vertices); |
||||
|
||||
CV_Assert(ret == INTERSECT_PARTIAL); |
||||
CV_Assert(vertices.size() == 2); |
||||
|
||||
vector<Point2f> possibleVertices(2); |
||||
|
||||
possibleVertices[0] = Point2f(1.0f, 1.0f); |
||||
possibleVertices[1] = Point2f(1.0f, -1.0f); |
||||
|
||||
for( size_t i = 0; i < vertices.size(); i++ ) |
||||
{ |
||||
double bestR = DBL_MAX; |
||||
|
||||
for( size_t j = 0; j < possibleVertices.size(); j++ ) |
||||
{ |
||||
double dx = vertices[i].x - possibleVertices[j].x; |
||||
double dy = vertices[i].y - possibleVertices[j].y; |
||||
double r = sqrt(dx*dx + dy*dy); |
||||
|
||||
bestR = std::min(bestR, r); |
||||
} |
||||
|
||||
CV_Assert(bestR < ACCURACY); |
||||
} |
||||
} |
||||
|
||||
TEST (Imgproc_RotatedRectangleIntersection, accuracy) { CV_RotatedRectangleIntersectionTest test; test.safe_run(); } |
Loading…
Reference in new issue