parent
b4f3d08725
commit
c0b3424a23
40 changed files with 4363 additions and 3262 deletions
@ -0,0 +1,74 @@ |
||||
Color space processing |
||||
====================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
|
||||
gpu::cvtColor |
||||
----------------- |
||||
Converts an image from one color space to another. |
||||
|
||||
.. ocv:function:: void gpu::cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image with ``CV_8U`` , ``CV_16U`` , or ``CV_32F`` depth and 1, 3, or 4 channels. |
||||
|
||||
:param dst: Destination image with the same size and depth as ``src`` . |
||||
|
||||
:param code: Color space conversion code. For details, see :ocv:func:`cvtColor` . Conversion to/from Luv and Bayer color spaces is not supported. |
||||
|
||||
:param dcn: Number of channels in the destination image. If the parameter is 0, the number of the channels is derived automatically from ``src`` and the ``code`` . |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
3-channel color spaces (like ``HSV``, ``XYZ``, and so on) can be stored in a 4-channel image for better performance. |
||||
|
||||
.. seealso:: :ocv:func:`cvtColor` |
||||
|
||||
|
||||
|
||||
gpu::swapChannels |
||||
----------------- |
||||
Exchanges the color channels of an image in-place. |
||||
|
||||
.. ocv:function:: void gpu::swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null()) |
||||
|
||||
:param image: Source image. Supports only ``CV_8UC4`` type. |
||||
|
||||
:param dstOrder: Integer array describing how channel values are permutated. The n-th entry of the array contains the number of the channel that is stored in the n-th channel of the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
The methods support arbitrary permutations of the original channels, including replication. |
||||
|
||||
|
||||
|
||||
gpu::alphaComp |
||||
------------------- |
||||
Composites two images using alpha opacity values contained in each image. |
||||
|
||||
.. ocv:function:: void gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null()) |
||||
|
||||
:param img1: First image. Supports ``CV_8UC4`` , ``CV_16UC4`` , ``CV_32SC4`` and ``CV_32FC4`` types. |
||||
|
||||
:param img2: Second image. Must have the same size and the same type as ``img1`` . |
||||
|
||||
:param dst: Destination image. |
||||
|
||||
:param alpha_op: Flag specifying the alpha-blending operation: |
||||
|
||||
* **ALPHA_OVER** |
||||
* **ALPHA_IN** |
||||
* **ALPHA_OUT** |
||||
* **ALPHA_ATOP** |
||||
* **ALPHA_XOR** |
||||
* **ALPHA_PLUS** |
||||
* **ALPHA_OVER_PREMUL** |
||||
* **ALPHA_IN_PREMUL** |
||||
* **ALPHA_OUT_PREMUL** |
||||
* **ALPHA_ATOP_PREMUL** |
||||
* **ALPHA_XOR_PREMUL** |
||||
* **ALPHA_PLUS_PREMUL** |
||||
* **ALPHA_PREMUL** |
||||
|
||||
:param stream: Stream for the asynchronous version. |
@ -0,0 +1,81 @@ |
||||
Feature Detection |
||||
================= |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
|
||||
gpu::cornerHarris |
||||
--------------------- |
||||
Computes the Harris cornerness criteria at each image pixel. |
||||
|
||||
.. ocv:function:: void gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType=BORDER_REFLECT101) |
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` and ``CV_32FC1`` images are supported for now. |
||||
|
||||
:param dst: Destination image containing cornerness values. It has the same size as ``src`` and ``CV_32FC1`` type. |
||||
|
||||
:param blockSize: Neighborhood size. |
||||
|
||||
:param ksize: Aperture parameter for the Sobel operator. |
||||
|
||||
:param k: Harris detector free parameter. |
||||
|
||||
:param borderType: Pixel extrapolation method. Only ``BORDER_REFLECT101`` and ``BORDER_REPLICATE`` are supported for now. |
||||
|
||||
.. seealso:: :ocv:func:`cornerHarris` |
||||
|
||||
|
||||
|
||||
gpu::cornerMinEigenVal |
||||
-------------------------- |
||||
Computes the minimum eigen value of a 2x2 derivative covariation matrix at each pixel (the cornerness criteria). |
||||
|
||||
.. ocv:function:: void gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101) |
||||
|
||||
.. ocv:function:: void gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101) |
||||
|
||||
.. ocv:function:: void gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` and ``CV_32FC1`` images are supported for now. |
||||
|
||||
:param dst: Destination image containing cornerness values. The size is the same. The type is ``CV_32FC1`` . |
||||
|
||||
:param blockSize: Neighborhood size. |
||||
|
||||
:param ksize: Aperture parameter for the Sobel operator. |
||||
|
||||
:param borderType: Pixel extrapolation method. Only ``BORDER_REFLECT101`` and ``BORDER_REPLICATE`` are supported for now. |
||||
|
||||
.. seealso:: :ocv:func:`cornerMinEigenVal` |
||||
|
||||
|
||||
|
||||
gpu::GoodFeaturesToTrackDetector_GPU |
||||
------------------------------------ |
||||
.. ocv:class:: gpu::GoodFeaturesToTrackDetector_GPU |
||||
|
||||
Class used for strong corners detection on an image. :: |
||||
|
||||
class GoodFeaturesToTrackDetector_GPU |
||||
{ |
||||
public: |
||||
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners_ = 1000, double qualityLevel_ = 0.01, double minDistance_ = 0.0, |
||||
int blockSize_ = 3, bool useHarrisDetector_ = false, double harrisK_ = 0.04); |
||||
|
||||
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat()); |
||||
|
||||
int maxCorners; |
||||
double qualityLevel; |
||||
double minDistance; |
||||
|
||||
int blockSize; |
||||
bool useHarrisDetector; |
||||
double harrisK; |
||||
|
||||
void releaseMemory(); |
||||
}; |
||||
|
||||
The class finds the most prominent corners in the image. |
||||
|
||||
.. seealso:: :ocv:func:`goodFeaturesToTrack` |
@ -1,8 +1,12 @@ |
||||
************************************* |
||||
gpu. GPU-accelerated Image Processing |
||||
************************************* |
||||
******************************************** |
||||
gpuimgproc. GPU-accelerated Image Processing |
||||
******************************************** |
||||
|
||||
.. toctree:: |
||||
:maxdepth: 1 |
||||
|
||||
image_processing |
||||
color |
||||
histogram |
||||
hough |
||||
feature_detection |
||||
imgproc |
||||
|
@ -0,0 +1,104 @@ |
||||
Histogram Calculation |
||||
===================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
|
||||
gpu::evenLevels |
||||
------------------- |
||||
Computes levels with even distribution. |
||||
|
||||
.. ocv:function:: void gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel) |
||||
|
||||
:param levels: Destination array. ``levels`` has 1 row, ``nLevels`` columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param nLevels: Number of computed levels. ``nLevels`` must be at least 2. |
||||
|
||||
:param lowerLevel: Lower boundary value of the lowest level. |
||||
|
||||
:param upperLevel: Upper boundary value of the greatest level. |
||||
|
||||
|
||||
|
||||
gpu::histEven |
||||
----------------- |
||||
Calculates a histogram with evenly distributed bins. |
||||
|
||||
.. ocv:function:: void gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::histEven( const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream=Stream::Null() ) |
||||
|
||||
.. ocv:function:: void gpu::histEven( const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. ``CV_8U``, ``CV_16U``, or ``CV_16S`` depth and 1 or 4 channels are supported. For a four-channel image, all channels are processed separately. |
||||
|
||||
:param hist: Destination histogram with one row, ``histSize`` columns, and the ``CV_32S`` type. |
||||
|
||||
:param histSize: Size of the histogram. |
||||
|
||||
:param lowerLevel: Lower boundary of lowest-level bin. |
||||
|
||||
:param upperLevel: Upper boundary of highest-level bin. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::histRange |
||||
------------------ |
||||
Calculates a histogram with bins determined by the ``levels`` array. |
||||
|
||||
.. ocv:function:: void gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. ``CV_8U`` , ``CV_16U`` , or ``CV_16S`` depth and 1 or 4 channels are supported. For a four-channel image, all channels are processed separately. |
||||
|
||||
:param hist: Destination histogram with one row, ``(levels.cols-1)`` columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param levels: Number of levels in the histogram. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::calcHist |
||||
------------------ |
||||
Calculates histogram for one channel 8-bit image. |
||||
|
||||
.. ocv:function:: void gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. |
||||
|
||||
:param hist: Destination histogram with one row, 256 columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::equalizeHist |
||||
------------------ |
||||
Equalizes the histogram of a grayscale image. |
||||
|
||||
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. |
||||
|
||||
:param dst: Destination image. |
||||
|
||||
:param hist: Destination histogram with one row, 256 columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
.. seealso:: :ocv:func:`equalizeHist` |
@ -0,0 +1,96 @@ |
||||
Hough Transform |
||||
=============== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
|
||||
gpu::HoughLines |
||||
--------------- |
||||
Finds lines in a binary image using the classical Hough transform. |
||||
|
||||
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096) |
||||
|
||||
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096) |
||||
|
||||
:param src: 8-bit, single-channel binary source image. |
||||
|
||||
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ). |
||||
|
||||
:param rho: Distance resolution of the accumulator in pixels. |
||||
|
||||
:param theta: Angle resolution of the accumulator in radians. |
||||
|
||||
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ). |
||||
|
||||
:param doSort: Performs lines sort by votes. |
||||
|
||||
:param maxLines: Maximum number of output lines. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
.. seealso:: :ocv:func:`HoughLines` |
||||
|
||||
|
||||
|
||||
gpu::HoughLinesDownload |
||||
----------------------- |
||||
Downloads results from :ocv:func:`gpu::HoughLines` to host memory. |
||||
|
||||
.. ocv:function:: void gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) |
||||
|
||||
:param d_lines: Result of :ocv:func:`gpu::HoughLines` . |
||||
|
||||
:param h_lines: Output host array. |
||||
|
||||
:param h_votes: Optional output array for line's votes. |
||||
|
||||
.. seealso:: :ocv:func:`gpu::HoughLines` |
||||
|
||||
|
||||
|
||||
gpu::HoughCircles |
||||
----------------- |
||||
Finds circles in a grayscale image using the Hough transform. |
||||
|
||||
.. ocv:function:: void gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096) |
||||
|
||||
.. ocv:function:: void gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096) |
||||
|
||||
:param src: 8-bit, single-channel grayscale input image. |
||||
|
||||
:param circles: Output vector of found circles. Each vector is encoded as a 3-element floating-point vector :math:`(x, y, radius)` . |
||||
|
||||
:param method: Detection method to use. Currently, the only implemented method is ``CV_HOUGH_GRADIENT`` , which is basically *21HT* , described in [Yuen90]_. |
||||
|
||||
:param dp: Inverse ratio of the accumulator resolution to the image resolution. For example, if ``dp=1`` , the accumulator has the same resolution as the input image. If ``dp=2`` , the accumulator has half as big width and height. |
||||
|
||||
:param minDist: Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed. |
||||
|
||||
:param cannyThreshold: The higher threshold of the two passed to the :ocv:func:`gpu::Canny` edge detector (the lower one is twice smaller). |
||||
|
||||
:param votesThreshold: The accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected. |
||||
|
||||
:param minRadius: Minimum circle radius. |
||||
|
||||
:param maxRadius: Maximum circle radius. |
||||
|
||||
:param maxCircles: Maximum number of output circles. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
.. seealso:: :ocv:func:`HoughCircles` |
||||
|
||||
|
||||
|
||||
gpu::HoughCirclesDownload |
||||
------------------------- |
||||
Downloads results from :ocv:func:`gpu::HoughCircles` to host memory. |
||||
|
||||
.. ocv:function:: void gpu::HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles) |
||||
|
||||
:param d_circles: Result of :ocv:func:`gpu::HoughCircles` . |
||||
|
||||
:param h_circles: Output host array. |
||||
|
||||
.. seealso:: :ocv:func:`gpu::HoughCircles` |
@ -1,589 +0,0 @@ |
||||
Image Processing |
||||
================ |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
|
||||
gpu::meanShiftFiltering |
||||
--------------------------- |
||||
Performs mean-shift filtering for each point of the source image. |
||||
|
||||
.. ocv:function:: void gpu::meanShiftFiltering( const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. Only ``CV_8UC4`` images are supported for now. |
||||
|
||||
:param dst: Destination image containing the color of mapped points. It has the same size and type as ``src`` . |
||||
|
||||
:param sp: Spatial window radius. |
||||
|
||||
:param sr: Color window radius. |
||||
|
||||
:param criteria: Termination criteria. See :ocv:class:`TermCriteria`. |
||||
|
||||
It maps each point of the source image into another point. As a result, you have a new color and new position of each point. |
||||
|
||||
|
||||
|
||||
gpu::meanShiftProc |
||||
---------------------- |
||||
Performs a mean-shift procedure and stores information about processed points (their colors and positions) in two images. |
||||
|
||||
.. ocv:function:: void gpu::meanShiftProc( const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. Only ``CV_8UC4`` images are supported for now. |
||||
|
||||
:param dstr: Destination image containing the color of mapped points. The size and type is the same as ``src`` . |
||||
|
||||
:param dstsp: Destination image containing the position of mapped points. The size is the same as ``src`` size. The type is ``CV_16SC2`` . |
||||
|
||||
:param sp: Spatial window radius. |
||||
|
||||
:param sr: Color window radius. |
||||
|
||||
:param criteria: Termination criteria. See :ocv:class:`TermCriteria`. |
||||
|
||||
.. seealso:: :ocv:func:`gpu::meanShiftFiltering` |
||||
|
||||
|
||||
|
||||
gpu::meanShiftSegmentation |
||||
------------------------------ |
||||
Performs a mean-shift segmentation of the source image and eliminates small segments. |
||||
|
||||
.. ocv:function:: void gpu::meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)) |
||||
|
||||
:param src: Source image. Only ``CV_8UC4`` images are supported for now. |
||||
|
||||
:param dst: Segmented image with the same size and type as ``src`` . |
||||
|
||||
:param sp: Spatial window radius. |
||||
|
||||
:param sr: Color window radius. |
||||
|
||||
:param minsize: Minimum segment size. Smaller segments are merged. |
||||
|
||||
:param criteria: Termination criteria. See :ocv:class:`TermCriteria`. |
||||
|
||||
|
||||
|
||||
gpu::integral |
||||
----------------- |
||||
Computes an integral image. |
||||
|
||||
.. ocv:function:: void gpu::integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` images are supported for now. |
||||
|
||||
:param sum: Integral image containing 32-bit unsigned integer values packed into ``CV_32SC1`` . |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
.. seealso:: :ocv:func:`integral` |
||||
|
||||
|
||||
|
||||
gpu::sqrIntegral |
||||
-------------------- |
||||
Computes a squared integral image. |
||||
|
||||
.. ocv:function:: void gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` images are supported for now. |
||||
|
||||
:param sqsum: Squared integral image containing 64-bit unsigned integer values packed into ``CV_64FC1`` . |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::cornerHarris |
||||
--------------------- |
||||
Computes the Harris cornerness criteria at each image pixel. |
||||
|
||||
.. ocv:function:: void gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType=BORDER_REFLECT101) |
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` and ``CV_32FC1`` images are supported for now. |
||||
|
||||
:param dst: Destination image containing cornerness values. It has the same size as ``src`` and ``CV_32FC1`` type. |
||||
|
||||
:param blockSize: Neighborhood size. |
||||
|
||||
:param ksize: Aperture parameter for the Sobel operator. |
||||
|
||||
:param k: Harris detector free parameter. |
||||
|
||||
:param borderType: Pixel extrapolation method. Only ``BORDER_REFLECT101`` and ``BORDER_REPLICATE`` are supported for now. |
||||
|
||||
.. seealso:: :ocv:func:`cornerHarris` |
||||
|
||||
|
||||
|
||||
gpu::cornerMinEigenVal |
||||
-------------------------- |
||||
Computes the minimum eigen value of a 2x2 derivative covariation matrix at each pixel (the cornerness criteria). |
||||
|
||||
.. ocv:function:: void gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101) |
||||
|
||||
.. ocv:function:: void gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101) |
||||
|
||||
.. ocv:function:: void gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` and ``CV_32FC1`` images are supported for now. |
||||
|
||||
:param dst: Destination image containing cornerness values. The size is the same. The type is ``CV_32FC1`` . |
||||
|
||||
:param blockSize: Neighborhood size. |
||||
|
||||
:param ksize: Aperture parameter for the Sobel operator. |
||||
|
||||
:param borderType: Pixel extrapolation method. Only ``BORDER_REFLECT101`` and ``BORDER_REPLICATE`` are supported for now. |
||||
|
||||
.. seealso:: :ocv:func:`cornerMinEigenVal` |
||||
|
||||
|
||||
|
||||
gpu::MatchTemplateBuf |
||||
--------------------- |
||||
.. ocv:struct:: gpu::MatchTemplateBuf |
||||
|
||||
Class providing memory buffers for :ocv:func:`gpu::matchTemplate` function, plus it allows to adjust some specific parameters. :: |
||||
|
||||
struct CV_EXPORTS MatchTemplateBuf |
||||
{ |
||||
Size user_block_size; |
||||
GpuMat imagef, templf; |
||||
std::vector<GpuMat> images; |
||||
std::vector<GpuMat> image_sums; |
||||
std::vector<GpuMat> image_sqsums; |
||||
}; |
||||
|
||||
You can use field `user_block_size` to set specific block size for :ocv:func:`gpu::matchTemplate` function. If you leave its default value `Size(0,0)` then automatic estimation of block size will be used (which is optimized for speed). By varying `user_block_size` you can reduce memory requirements at the cost of speed. |
||||
|
||||
|
||||
|
||||
gpu::matchTemplate |
||||
---------------------- |
||||
Computes a proximity map for a raster template and an image where the template is searched for. |
||||
|
||||
.. ocv:function:: void gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null()) |
||||
|
||||
:param image: Source image. ``CV_32F`` and ``CV_8U`` depth images (1..4 channels) are supported for now. |
||||
|
||||
:param templ: Template image with the size and type the same as ``image`` . |
||||
|
||||
:param result: Map containing comparison results ( ``CV_32FC1`` ). If ``image`` is *W x H* and ``templ`` is *w x h*, then ``result`` must be *W-w+1 x H-h+1*. |
||||
|
||||
:param method: Specifies the way to compare the template with the image. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations and to adjust some specific parameters. See :ocv:struct:`gpu::MatchTemplateBuf`. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
The following methods are supported for the ``CV_8U`` depth images for now: |
||||
|
||||
* ``CV_TM_SQDIFF`` |
||||
* ``CV_TM_SQDIFF_NORMED`` |
||||
* ``CV_TM_CCORR`` |
||||
* ``CV_TM_CCORR_NORMED`` |
||||
* ``CV_TM_CCOEFF`` |
||||
* ``CV_TM_CCOEFF_NORMED`` |
||||
|
||||
The following methods are supported for the ``CV_32F`` images for now: |
||||
|
||||
* ``CV_TM_SQDIFF`` |
||||
* ``CV_TM_CCORR`` |
||||
|
||||
.. seealso:: :ocv:func:`matchTemplate` |
||||
|
||||
|
||||
|
||||
gpu::cvtColor |
||||
----------------- |
||||
Converts an image from one color space to another. |
||||
|
||||
.. ocv:function:: void gpu::cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image with ``CV_8U`` , ``CV_16U`` , or ``CV_32F`` depth and 1, 3, or 4 channels. |
||||
|
||||
:param dst: Destination image with the same size and depth as ``src`` . |
||||
|
||||
:param code: Color space conversion code. For details, see :ocv:func:`cvtColor` . Conversion to/from Luv and Bayer color spaces is not supported. |
||||
|
||||
:param dcn: Number of channels in the destination image. If the parameter is 0, the number of the channels is derived automatically from ``src`` and the ``code`` . |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
3-channel color spaces (like ``HSV``, ``XYZ``, and so on) can be stored in a 4-channel image for better performance. |
||||
|
||||
.. seealso:: :ocv:func:`cvtColor` |
||||
|
||||
|
||||
|
||||
gpu::swapChannels |
||||
----------------- |
||||
Exchanges the color channels of an image in-place. |
||||
|
||||
.. ocv:function:: void gpu::swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null()) |
||||
|
||||
:param image: Source image. Supports only ``CV_8UC4`` type. |
||||
|
||||
:param dstOrder: Integer array describing how channel values are permutated. The n-th entry of the array contains the number of the channel that is stored in the n-th channel of the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
The methods support arbitrary permutations of the original channels, including replication. |
||||
|
||||
|
||||
|
||||
gpu::rectStdDev |
||||
------------------- |
||||
Computes a standard deviation of integral images. |
||||
|
||||
.. ocv:function:: void gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. Only the ``CV_32SC1`` type is supported. |
||||
|
||||
:param sqr: Squared source image. Only the ``CV_32FC1`` type is supported. |
||||
|
||||
:param dst: Destination image with the same type and size as ``src`` . |
||||
|
||||
:param rect: Rectangular window. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::evenLevels |
||||
------------------- |
||||
Computes levels with even distribution. |
||||
|
||||
.. ocv:function:: void gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel) |
||||
|
||||
:param levels: Destination array. ``levels`` has 1 row, ``nLevels`` columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param nLevels: Number of computed levels. ``nLevels`` must be at least 2. |
||||
|
||||
:param lowerLevel: Lower boundary value of the lowest level. |
||||
|
||||
:param upperLevel: Upper boundary value of the greatest level. |
||||
|
||||
|
||||
|
||||
gpu::histEven |
||||
----------------- |
||||
Calculates a histogram with evenly distributed bins. |
||||
|
||||
.. ocv:function:: void gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::histEven( const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream=Stream::Null() ) |
||||
|
||||
.. ocv:function:: void gpu::histEven( const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. ``CV_8U``, ``CV_16U``, or ``CV_16S`` depth and 1 or 4 channels are supported. For a four-channel image, all channels are processed separately. |
||||
|
||||
:param hist: Destination histogram with one row, ``histSize`` columns, and the ``CV_32S`` type. |
||||
|
||||
:param histSize: Size of the histogram. |
||||
|
||||
:param lowerLevel: Lower boundary of lowest-level bin. |
||||
|
||||
:param upperLevel: Upper boundary of highest-level bin. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::histRange |
||||
------------------ |
||||
Calculates a histogram with bins determined by the ``levels`` array. |
||||
|
||||
.. ocv:function:: void gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. ``CV_8U`` , ``CV_16U`` , or ``CV_16S`` depth and 1 or 4 channels are supported. For a four-channel image, all channels are processed separately. |
||||
|
||||
:param hist: Destination histogram with one row, ``(levels.cols-1)`` columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param levels: Number of levels in the histogram. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::calcHist |
||||
------------------ |
||||
Calculates histogram for one channel 8-bit image. |
||||
|
||||
.. ocv:function:: void gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. |
||||
|
||||
:param hist: Destination histogram with one row, 256 columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::equalizeHist |
||||
------------------ |
||||
Equalizes the histogram of a grayscale image. |
||||
|
||||
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null()) |
||||
|
||||
:param src: Source image. |
||||
|
||||
:param dst: Destination image. |
||||
|
||||
:param hist: Destination histogram with one row, 256 columns, and the ``CV_32SC1`` type. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
.. seealso:: :ocv:func:`equalizeHist` |
||||
|
||||
|
||||
|
||||
gpu::blendLinear |
||||
------------------- |
||||
Performs linear blending of two images. |
||||
|
||||
.. ocv:function:: void gpu::blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2, GpuMat& result, Stream& stream = Stream::Null()) |
||||
|
||||
:param img1: First image. Supports only ``CV_8U`` and ``CV_32F`` depth. |
||||
|
||||
:param img2: Second image. Must have the same size and the same type as ``img1`` . |
||||
|
||||
:param weights1: Weights for first image. Must have tha same size as ``img1`` . Supports only ``CV_32F`` type. |
||||
|
||||
:param weights2: Weights for second image. Must have tha same size as ``img2`` . Supports only ``CV_32F`` type. |
||||
|
||||
:param result: Destination image. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
gpu::bilateralFilter |
||||
-------------------- |
||||
Performs bilateral filtering of passed image |
||||
|
||||
.. ocv:function:: void gpu::bilateralFilter( const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode=BORDER_DEFAULT, Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. Supports only (channles != 2 && depth() != CV_8S && depth() != CV_32S && depth() != CV_64F). |
||||
|
||||
:param dst: Destination imagwe. |
||||
|
||||
:param kernel_size: Kernel window size. |
||||
|
||||
:param sigma_color: Filter sigma in the color space. |
||||
|
||||
:param sigma_spatial: Filter sigma in the coordinate space. |
||||
|
||||
:param borderMode: Border type. See :ocv:func:`borderInterpolate` for details. ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , ``BORDER_CONSTANT`` , ``BORDER_REFLECT`` and ``BORDER_WRAP`` are supported for now. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:func:`bilateralFilter` |
||||
|
||||
|
||||
|
||||
gpu::alphaComp |
||||
------------------- |
||||
Composites two images using alpha opacity values contained in each image. |
||||
|
||||
.. ocv:function:: void gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null()) |
||||
|
||||
:param img1: First image. Supports ``CV_8UC4`` , ``CV_16UC4`` , ``CV_32SC4`` and ``CV_32FC4`` types. |
||||
|
||||
:param img2: Second image. Must have the same size and the same type as ``img1`` . |
||||
|
||||
:param dst: Destination image. |
||||
|
||||
:param alpha_op: Flag specifying the alpha-blending operation: |
||||
|
||||
* **ALPHA_OVER** |
||||
* **ALPHA_IN** |
||||
* **ALPHA_OUT** |
||||
* **ALPHA_ATOP** |
||||
* **ALPHA_XOR** |
||||
* **ALPHA_PLUS** |
||||
* **ALPHA_OVER_PREMUL** |
||||
* **ALPHA_IN_PREMUL** |
||||
* **ALPHA_OUT_PREMUL** |
||||
* **ALPHA_ATOP_PREMUL** |
||||
* **ALPHA_XOR_PREMUL** |
||||
* **ALPHA_PLUS_PREMUL** |
||||
* **ALPHA_PREMUL** |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
|
||||
|
||||
gpu::Canny |
||||
------------------- |
||||
Finds edges in an image using the [Canny86]_ algorithm. |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false) |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false) |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false) |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false) |
||||
|
||||
:param image: Single-channel 8-bit input image. |
||||
|
||||
:param dx: First derivative of image in the vertical direction. Support only ``CV_32S`` type. |
||||
|
||||
:param dy: First derivative of image in the horizontal direction. Support only ``CV_32S`` type. |
||||
|
||||
:param edges: Output edge map. It has the same size and type as ``image`` . |
||||
|
||||
:param low_thresh: First threshold for the hysteresis procedure. |
||||
|
||||
:param high_thresh: Second threshold for the hysteresis procedure. |
||||
|
||||
:param apperture_size: Aperture size for the :ocv:func:`Sobel` operator. |
||||
|
||||
:param L2gradient: Flag indicating whether a more accurate :math:`L_2` norm :math:`=\sqrt{(dI/dx)^2 + (dI/dy)^2}` should be used to compute the image gradient magnitude ( ``L2gradient=true`` ), or a faster default :math:`L_1` norm :math:`=|dI/dx|+|dI/dy|` is enough ( ``L2gradient=false`` ). |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
.. seealso:: :ocv:func:`Canny` |
||||
|
||||
|
||||
|
||||
gpu::HoughLines |
||||
--------------- |
||||
Finds lines in a binary image using the classical Hough transform. |
||||
|
||||
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096) |
||||
|
||||
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096) |
||||
|
||||
:param src: 8-bit, single-channel binary source image. |
||||
|
||||
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ). |
||||
|
||||
:param rho: Distance resolution of the accumulator in pixels. |
||||
|
||||
:param theta: Angle resolution of the accumulator in radians. |
||||
|
||||
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ). |
||||
|
||||
:param doSort: Performs lines sort by votes. |
||||
|
||||
:param maxLines: Maximum number of output lines. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
.. seealso:: :ocv:func:`HoughLines` |
||||
|
||||
|
||||
|
||||
gpu::HoughLinesDownload |
||||
----------------------- |
||||
Downloads results from :ocv:func:`gpu::HoughLines` to host memory. |
||||
|
||||
.. ocv:function:: void gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) |
||||
|
||||
:param d_lines: Result of :ocv:func:`gpu::HoughLines` . |
||||
|
||||
:param h_lines: Output host array. |
||||
|
||||
:param h_votes: Optional output array for line's votes. |
||||
|
||||
.. seealso:: :ocv:func:`gpu::HoughLines` |
||||
|
||||
|
||||
|
||||
gpu::HoughCircles |
||||
----------------- |
||||
Finds circles in a grayscale image using the Hough transform. |
||||
|
||||
.. ocv:function:: void gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096) |
||||
|
||||
.. ocv:function:: void gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096) |
||||
|
||||
:param src: 8-bit, single-channel grayscale input image. |
||||
|
||||
:param circles: Output vector of found circles. Each vector is encoded as a 3-element floating-point vector :math:`(x, y, radius)` . |
||||
|
||||
:param method: Detection method to use. Currently, the only implemented method is ``CV_HOUGH_GRADIENT`` , which is basically *21HT* , described in [Yuen90]_. |
||||
|
||||
:param dp: Inverse ratio of the accumulator resolution to the image resolution. For example, if ``dp=1`` , the accumulator has the same resolution as the input image. If ``dp=2`` , the accumulator has half as big width and height. |
||||
|
||||
:param minDist: Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed. |
||||
|
||||
:param cannyThreshold: The higher threshold of the two passed to the :ocv:func:`gpu::Canny` edge detector (the lower one is twice smaller). |
||||
|
||||
:param votesThreshold: The accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected. |
||||
|
||||
:param minRadius: Minimum circle radius. |
||||
|
||||
:param maxRadius: Maximum circle radius. |
||||
|
||||
:param maxCircles: Maximum number of output circles. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
.. seealso:: :ocv:func:`HoughCircles` |
||||
|
||||
|
||||
|
||||
gpu::HoughCirclesDownload |
||||
------------------------- |
||||
Downloads results from :ocv:func:`gpu::HoughCircles` to host memory. |
||||
|
||||
.. ocv:function:: void gpu::HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles) |
||||
|
||||
:param d_circles: Result of :ocv:func:`gpu::HoughCircles` . |
||||
|
||||
:param h_circles: Output host array. |
||||
|
||||
.. seealso:: :ocv:func:`gpu::HoughCircles` |
||||
|
||||
|
||||
|
||||
gpu::GoodFeaturesToTrackDetector_GPU |
||||
------------------------------------ |
||||
.. ocv:class:: gpu::GoodFeaturesToTrackDetector_GPU |
||||
|
||||
Class used for strong corners detection on an image. :: |
||||
|
||||
class GoodFeaturesToTrackDetector_GPU |
||||
{ |
||||
public: |
||||
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners_ = 1000, double qualityLevel_ = 0.01, double minDistance_ = 0.0, |
||||
int blockSize_ = 3, bool useHarrisDetector_ = false, double harrisK_ = 0.04); |
||||
|
||||
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat()); |
||||
|
||||
int maxCorners; |
||||
double qualityLevel; |
||||
double minDistance; |
||||
|
||||
int blockSize; |
||||
bool useHarrisDetector; |
||||
double harrisK; |
||||
|
||||
void releaseMemory(); |
||||
}; |
||||
|
||||
The class finds the most prominent corners in the image. |
||||
|
||||
.. seealso:: :ocv:func:`goodFeaturesToTrack` |
@ -0,0 +1,203 @@ |
||||
Image Processing |
||||
================ |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
|
||||
|
||||
gpu::meanShiftFiltering |
||||
--------------------------- |
||||
Performs mean-shift filtering for each point of the source image. |
||||
|
||||
.. ocv:function:: void gpu::meanShiftFiltering( const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. Only ``CV_8UC4`` images are supported for now. |
||||
|
||||
:param dst: Destination image containing the color of mapped points. It has the same size and type as ``src`` . |
||||
|
||||
:param sp: Spatial window radius. |
||||
|
||||
:param sr: Color window radius. |
||||
|
||||
:param criteria: Termination criteria. See :ocv:class:`TermCriteria`. |
||||
|
||||
It maps each point of the source image into another point. As a result, you have a new color and new position of each point. |
||||
|
||||
|
||||
|
||||
gpu::meanShiftProc |
||||
---------------------- |
||||
Performs a mean-shift procedure and stores information about processed points (their colors and positions) in two images. |
||||
|
||||
.. ocv:function:: void gpu::meanShiftProc( const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. Only ``CV_8UC4`` images are supported for now. |
||||
|
||||
:param dstr: Destination image containing the color of mapped points. The size and type is the same as ``src`` . |
||||
|
||||
:param dstsp: Destination image containing the position of mapped points. The size is the same as ``src`` size. The type is ``CV_16SC2`` . |
||||
|
||||
:param sp: Spatial window radius. |
||||
|
||||
:param sr: Color window radius. |
||||
|
||||
:param criteria: Termination criteria. See :ocv:class:`TermCriteria`. |
||||
|
||||
.. seealso:: :ocv:func:`gpu::meanShiftFiltering` |
||||
|
||||
|
||||
|
||||
gpu::meanShiftSegmentation |
||||
------------------------------ |
||||
Performs a mean-shift segmentation of the source image and eliminates small segments. |
||||
|
||||
.. ocv:function:: void gpu::meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)) |
||||
|
||||
:param src: Source image. Only ``CV_8UC4`` images are supported for now. |
||||
|
||||
:param dst: Segmented image with the same size and type as ``src`` . |
||||
|
||||
:param sp: Spatial window radius. |
||||
|
||||
:param sr: Color window radius. |
||||
|
||||
:param minsize: Minimum segment size. Smaller segments are merged. |
||||
|
||||
:param criteria: Termination criteria. See :ocv:class:`TermCriteria`. |
||||
|
||||
|
||||
|
||||
gpu::MatchTemplateBuf |
||||
--------------------- |
||||
.. ocv:struct:: gpu::MatchTemplateBuf |
||||
|
||||
Class providing memory buffers for :ocv:func:`gpu::matchTemplate` function, plus it allows to adjust some specific parameters. :: |
||||
|
||||
struct CV_EXPORTS MatchTemplateBuf |
||||
{ |
||||
Size user_block_size; |
||||
GpuMat imagef, templf; |
||||
std::vector<GpuMat> images; |
||||
std::vector<GpuMat> image_sums; |
||||
std::vector<GpuMat> image_sqsums; |
||||
}; |
||||
|
||||
You can use field `user_block_size` to set specific block size for :ocv:func:`gpu::matchTemplate` function. If you leave its default value `Size(0,0)` then automatic estimation of block size will be used (which is optimized for speed). By varying `user_block_size` you can reduce memory requirements at the cost of speed. |
||||
|
||||
|
||||
|
||||
gpu::matchTemplate |
||||
---------------------- |
||||
Computes a proximity map for a raster template and an image where the template is searched for. |
||||
|
||||
.. ocv:function:: void gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null()) |
||||
|
||||
.. ocv:function:: void gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null()) |
||||
|
||||
:param image: Source image. ``CV_32F`` and ``CV_8U`` depth images (1..4 channels) are supported for now. |
||||
|
||||
:param templ: Template image with the size and type the same as ``image`` . |
||||
|
||||
:param result: Map containing comparison results ( ``CV_32FC1`` ). If ``image`` is *W x H* and ``templ`` is *w x h*, then ``result`` must be *W-w+1 x H-h+1*. |
||||
|
||||
:param method: Specifies the way to compare the template with the image. |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations and to adjust some specific parameters. See :ocv:struct:`gpu::MatchTemplateBuf`. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
The following methods are supported for the ``CV_8U`` depth images for now: |
||||
|
||||
* ``CV_TM_SQDIFF`` |
||||
* ``CV_TM_SQDIFF_NORMED`` |
||||
* ``CV_TM_CCORR`` |
||||
* ``CV_TM_CCORR_NORMED`` |
||||
* ``CV_TM_CCOEFF`` |
||||
* ``CV_TM_CCOEFF_NORMED`` |
||||
|
||||
The following methods are supported for the ``CV_32F`` images for now: |
||||
|
||||
* ``CV_TM_SQDIFF`` |
||||
* ``CV_TM_CCORR`` |
||||
|
||||
.. seealso:: :ocv:func:`matchTemplate` |
||||
|
||||
|
||||
|
||||
gpu::Canny |
||||
------------------- |
||||
Finds edges in an image using the [Canny86]_ algorithm. |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false) |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false) |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false) |
||||
|
||||
.. ocv:function:: void gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false) |
||||
|
||||
:param image: Single-channel 8-bit input image. |
||||
|
||||
:param dx: First derivative of image in the vertical direction. Support only ``CV_32S`` type. |
||||
|
||||
:param dy: First derivative of image in the horizontal direction. Support only ``CV_32S`` type. |
||||
|
||||
:param edges: Output edge map. It has the same size and type as ``image`` . |
||||
|
||||
:param low_thresh: First threshold for the hysteresis procedure. |
||||
|
||||
:param high_thresh: Second threshold for the hysteresis procedure. |
||||
|
||||
:param apperture_size: Aperture size for the :ocv:func:`Sobel` operator. |
||||
|
||||
:param L2gradient: Flag indicating whether a more accurate :math:`L_2` norm :math:`=\sqrt{(dI/dx)^2 + (dI/dy)^2}` should be used to compute the image gradient magnitude ( ``L2gradient=true`` ), or a faster default :math:`L_1` norm :math:`=|dI/dx|+|dI/dy|` is enough ( ``L2gradient=false`` ). |
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). |
||||
|
||||
.. seealso:: :ocv:func:`Canny` |
||||
|
||||
|
||||
|
||||
gpu::bilateralFilter |
||||
-------------------- |
||||
Performs bilateral filtering of passed image |
||||
|
||||
.. ocv:function:: void gpu::bilateralFilter( const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode=BORDER_DEFAULT, Stream& stream=Stream::Null() ) |
||||
|
||||
:param src: Source image. Supports only (channles != 2 && depth() != CV_8S && depth() != CV_32S && depth() != CV_64F). |
||||
|
||||
:param dst: Destination imagwe. |
||||
|
||||
:param kernel_size: Kernel window size. |
||||
|
||||
:param sigma_color: Filter sigma in the color space. |
||||
|
||||
:param sigma_spatial: Filter sigma in the coordinate space. |
||||
|
||||
:param borderMode: Border type. See :ocv:func:`borderInterpolate` for details. ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , ``BORDER_CONSTANT`` , ``BORDER_REFLECT`` and ``BORDER_WRAP`` are supported for now. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
||||
|
||||
.. seealso:: |
||||
|
||||
:ocv:func:`bilateralFilter` |
||||
|
||||
|
||||
|
||||
gpu::blendLinear |
||||
------------------- |
||||
Performs linear blending of two images. |
||||
|
||||
.. ocv:function:: void gpu::blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2, GpuMat& result, Stream& stream = Stream::Null()) |
||||
|
||||
:param img1: First image. Supports only ``CV_8U`` and ``CV_32F`` depth. |
||||
|
||||
:param img2: Second image. Must have the same size and the same type as ``img1`` . |
||||
|
||||
:param weights1: Weights for first image. Must have tha same size as ``img1`` . Supports only ``CV_32F`` type. |
||||
|
||||
:param weights2: Weights for second image. Must have tha same size as ``img2`` . Supports only ``CV_32F`` type. |
||||
|
||||
:param result: Destination image. |
||||
|
||||
:param stream: Stream for the asynchronous version. |
@ -0,0 +1,93 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BilateralFilter
|
||||
|
||||
DEF_PARAM_TEST(Sz_Depth_Cn_KernelSz, cv::Size, MatDepth, MatCn, int); |
||||
|
||||
PERF_TEST_P(Sz_Depth_Cn_KernelSz, BilateralFilter, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(CV_8U, CV_32F), |
||||
GPU_CHANNELS_1_3, |
||||
Values(3, 5, 9))) |
||||
{ |
||||
declare.time(60.0); |
||||
|
||||
const cv::Size size = GET_PARAM(0); |
||||
const int depth = GET_PARAM(1); |
||||
const int channels = GET_PARAM(2); |
||||
const int kernel_size = GET_PARAM(3); |
||||
|
||||
const float sigma_color = 7; |
||||
const float sigma_spatial = 5; |
||||
const int borderMode = cv::BORDER_REFLECT101; |
||||
|
||||
const int type = CV_MAKE_TYPE(depth, channels); |
||||
|
||||
cv::Mat src(size, type); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::bilateralFilter(d_src, dst, kernel_size, sigma_color, sigma_spatial, borderMode); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
@ -0,0 +1,86 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BlendLinear
|
||||
|
||||
PERF_TEST_P(Sz_Depth_Cn, BlendLinear, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(CV_8U, CV_32F), |
||||
GPU_CHANNELS_1_3_4)) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const int depth = GET_PARAM(1); |
||||
const int channels = GET_PARAM(2); |
||||
|
||||
const int type = CV_MAKE_TYPE(depth, channels); |
||||
|
||||
cv::Mat img1(size, type); |
||||
cv::Mat img2(size, type); |
||||
declare.in(img1, img2, WARMUP_RNG); |
||||
|
||||
const cv::Mat weights1(size, CV_32FC1, cv::Scalar::all(0.5)); |
||||
const cv::Mat weights2(size, CV_32FC1, cv::Scalar::all(0.5)); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_img1(img1); |
||||
const cv::gpu::GpuMat d_img2(img2); |
||||
const cv::gpu::GpuMat d_weights1(weights1); |
||||
const cv::gpu::GpuMat d_weights2(weights2); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::blendLinear(d_img1, d_img2, d_weights1, d_weights2, dst); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
} |
@ -0,0 +1,87 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
DEF_PARAM_TEST(Image_AppertureSz_L2gradient, string, int, bool); |
||||
|
||||
PERF_TEST_P(Image_AppertureSz_L2gradient, Canny, |
||||
Combine(Values("perf/800x600.png", "perf/1280x1024.png", "perf/1680x1050.png"), |
||||
Values(3, 5), |
||||
Bool())) |
||||
{ |
||||
const string fileName = GET_PARAM(0); |
||||
const int apperture_size = GET_PARAM(1); |
||||
const bool useL2gradient = GET_PARAM(2); |
||||
|
||||
const cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
const double low_thresh = 50.0; |
||||
const double high_thresh = 100.0; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_image(image); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::CannyBuf d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::Canny(d_image, d_buf, dst, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::Canny(image, dst, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
@ -0,0 +1,252 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CvtColor
|
||||
|
||||
DEF_PARAM_TEST(Sz_Depth_Code, cv::Size, MatDepth, CvtColorInfo); |
||||
|
||||
PERF_TEST_P(Sz_Depth_Code, CvtColor, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(CV_8U, CV_32F), |
||||
Values(CvtColorInfo(4, 4, cv::COLOR_RGBA2BGRA), |
||||
CvtColorInfo(4, 1, cv::COLOR_BGRA2GRAY), |
||||
CvtColorInfo(1, 4, cv::COLOR_GRAY2BGRA), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2XYZ), |
||||
CvtColorInfo(3, 3, cv::COLOR_XYZ2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2YCrCb), |
||||
CvtColorInfo(3, 3, cv::COLOR_YCrCb2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2YUV), |
||||
CvtColorInfo(3, 3, cv::COLOR_YUV2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2HSV), |
||||
CvtColorInfo(3, 3, cv::COLOR_HSV2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2HLS), |
||||
CvtColorInfo(3, 3, cv::COLOR_HLS2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2Lab), |
||||
CvtColorInfo(3, 3, cv::COLOR_LBGR2Lab), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2Luv), |
||||
CvtColorInfo(3, 3, cv::COLOR_LBGR2Luv), |
||||
CvtColorInfo(3, 3, cv::COLOR_Lab2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_Lab2LBGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_Luv2RGB), |
||||
CvtColorInfo(3, 3, cv::COLOR_Luv2LRGB)))) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const int depth = GET_PARAM(1); |
||||
const CvtColorInfo info = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); |
||||
cv::randu(src, 0, depth == CV_8U ? 255.0 : 1.0); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::cvtColor(d_src, dst, info.code, info.dcn); |
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-4); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::cvtColor(src, dst, info.code, info.dcn); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
||||
|
||||
PERF_TEST_P(Sz_Depth_Code, CvtColorBayer, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(CV_8U, CV_16U), |
||||
Values(CvtColorInfo(1, 3, cv::COLOR_BayerBG2BGR), |
||||
CvtColorInfo(1, 3, cv::COLOR_BayerGB2BGR), |
||||
CvtColorInfo(1, 3, cv::COLOR_BayerRG2BGR), |
||||
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR), |
||||
|
||||
CvtColorInfo(1, 1, cv::COLOR_BayerBG2GRAY), |
||||
CvtColorInfo(1, 1, cv::COLOR_BayerGB2GRAY), |
||||
CvtColorInfo(1, 1, cv::COLOR_BayerRG2GRAY), |
||||
CvtColorInfo(1, 1, cv::COLOR_BayerGR2GRAY)))) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const int depth = GET_PARAM(1); |
||||
const CvtColorInfo info = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::cvtColor(d_src, dst, info.code, info.dcn); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::cvtColor(src, dst, info.code, info.dcn); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Demosaicing
|
||||
|
||||
CV_ENUM(DemosaicingCode, |
||||
cv::COLOR_BayerBG2BGR, cv::COLOR_BayerGB2BGR, cv::COLOR_BayerRG2BGR, cv::COLOR_BayerGR2BGR, |
||||
cv::COLOR_BayerBG2GRAY, cv::COLOR_BayerGB2GRAY, cv::COLOR_BayerRG2GRAY, cv::COLOR_BayerGR2GRAY, |
||||
cv::gpu::COLOR_BayerBG2BGR_MHT, cv::gpu::COLOR_BayerGB2BGR_MHT, cv::gpu::COLOR_BayerRG2BGR_MHT, cv::gpu::COLOR_BayerGR2BGR_MHT, |
||||
cv::gpu::COLOR_BayerBG2GRAY_MHT, cv::gpu::COLOR_BayerGB2GRAY_MHT, cv::gpu::COLOR_BayerRG2GRAY_MHT, cv::gpu::COLOR_BayerGR2GRAY_MHT) |
||||
|
||||
DEF_PARAM_TEST(Sz_Code, cv::Size, DemosaicingCode); |
||||
|
||||
PERF_TEST_P(Sz_Code, Demosaicing, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
DemosaicingCode::all())) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const int code = GET_PARAM(1); |
||||
|
||||
cv::Mat src(size, CV_8UC1); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::demosaicing(d_src, dst, code); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
if (code >= cv::COLOR_COLORCVT_MAX) |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::cvtColor(src, dst, code); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SwapChannels
|
||||
|
||||
PERF_TEST_P(Sz, SwapChannels, |
||||
GPU_TYPICAL_MAT_SIZES) |
||||
{ |
||||
const cv::Size size = GetParam(); |
||||
|
||||
cv::Mat src(size, CV_8UC4); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
const int dstOrder[] = {2, 1, 0, 3}; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
cv::gpu::GpuMat dst(src); |
||||
|
||||
TEST_CYCLE() cv::gpu::swapChannels(dst, dstOrder); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// AlphaComp
|
||||
|
||||
CV_ENUM(AlphaOp, cv::gpu::ALPHA_OVER, cv::gpu::ALPHA_IN, cv::gpu::ALPHA_OUT, cv::gpu::ALPHA_ATOP, cv::gpu::ALPHA_XOR, cv::gpu::ALPHA_PLUS, cv::gpu::ALPHA_OVER_PREMUL, cv::gpu::ALPHA_IN_PREMUL, cv::gpu::ALPHA_OUT_PREMUL, cv::gpu::ALPHA_ATOP_PREMUL, cv::gpu::ALPHA_XOR_PREMUL, cv::gpu::ALPHA_PLUS_PREMUL, cv::gpu::ALPHA_PREMUL) |
||||
|
||||
DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, AlphaOp); |
||||
|
||||
PERF_TEST_P(Sz_Type_Op, AlphaComp, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(CV_8UC4, CV_16UC4, CV_32SC4, CV_32FC4), |
||||
AlphaOp::all())) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const int type = GET_PARAM(1); |
||||
const int alpha_op = GET_PARAM(2); |
||||
|
||||
cv::Mat img1(size, type); |
||||
cv::Mat img2(size, type); |
||||
declare.in(img1, img2, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_img1(img1); |
||||
const cv::gpu::GpuMat d_img2(img2); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::alphaComp(d_img1, d_img2, dst, alpha_op); |
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE); |
||||
} |
||||
else |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
} |
@ -0,0 +1,137 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CornerHarris
|
||||
|
||||
DEF_PARAM_TEST(Image_Type_Border_BlockSz_ApertureSz, string, MatType, BorderMode, int, int); |
||||
|
||||
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, CornerHarris, |
||||
Combine(Values<string>("gpu/stereobm/aloe-L.png"), |
||||
Values(CV_8UC1, CV_32FC1), |
||||
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
||||
Values(3, 5, 7), |
||||
Values(0, 3, 5, 7))) |
||||
{ |
||||
const string fileName = GET_PARAM(0); |
||||
const int type = GET_PARAM(1); |
||||
const int borderMode = GET_PARAM(2); |
||||
const int blockSize = GET_PARAM(3); |
||||
const int apertureSize = GET_PARAM(4); |
||||
|
||||
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
||||
|
||||
const double k = 0.5; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_img(img); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat d_Dx; |
||||
cv::gpu::GpuMat d_Dy; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::cornerHarris(d_img, dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, k, borderMode); |
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-4); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CornerMinEigenVal
|
||||
|
||||
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, CornerMinEigenVal, |
||||
Combine(Values<string>("gpu/stereobm/aloe-L.png"), |
||||
Values(CV_8UC1, CV_32FC1), |
||||
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
||||
Values(3, 5, 7), |
||||
Values(0, 3, 5, 7))) |
||||
{ |
||||
const string fileName = GET_PARAM(0); |
||||
const int type = GET_PARAM(1); |
||||
const int borderMode = GET_PARAM(2); |
||||
const int blockSize = GET_PARAM(3); |
||||
const int apertureSize = GET_PARAM(4); |
||||
|
||||
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_img(img); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat d_Dx; |
||||
cv::gpu::GpuMat d_Dy; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::cornerMinEigenVal(d_img, dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, borderMode); |
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-4); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
@ -0,0 +1,86 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// GoodFeaturesToTrack
|
||||
|
||||
DEF_PARAM_TEST(Image_MinDistance, string, double); |
||||
|
||||
PERF_TEST_P(Image_MinDistance, GoodFeaturesToTrack, |
||||
Combine(Values<string>("gpu/perf/aloe.png"), |
||||
Values(0.0, 3.0))) |
||||
{ |
||||
const string fileName = GET_PARAM(0); |
||||
const double minDistance = GET_PARAM(1); |
||||
|
||||
const cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
const int maxCorners = 8000; |
||||
const double qualityLevel = 0.01; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(maxCorners, qualityLevel, minDistance); |
||||
|
||||
const cv::gpu::GpuMat d_image(image); |
||||
cv::gpu::GpuMat pts; |
||||
|
||||
TEST_CYCLE() d_detector(d_image, pts); |
||||
|
||||
GPU_SANITY_CHECK(pts); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat pts; |
||||
|
||||
TEST_CYCLE() cv::goodFeaturesToTrack(image, pts, maxCorners, qualityLevel, minDistance); |
||||
|
||||
CPU_SANITY_CHECK(pts); |
||||
} |
||||
} |
@ -0,0 +1,221 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// HistEvenC1
|
||||
|
||||
PERF_TEST_P(Sz_Depth, HistEvenC1, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(CV_8U, CV_16U, CV_16S))) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const int depth = GET_PARAM(1); |
||||
|
||||
cv::Mat src(size, depth); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::histEven(d_src, dst, d_buf, 30, 0, 180); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
const int hbins = 30; |
||||
const float hranges[] = {0.0f, 180.0f}; |
||||
const int histSize[] = {hbins}; |
||||
const float* ranges[] = {hranges}; |
||||
const int channels[] = {0}; |
||||
|
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::calcHist(&src, 1, channels, cv::Mat(), dst, 1, histSize, ranges); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// HistEvenC4
|
||||
|
||||
PERF_TEST_P(Sz_Depth, HistEvenC4, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(CV_8U, CV_16U, CV_16S))) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const int depth = GET_PARAM(1); |
||||
|
||||
cv::Mat src(size, CV_MAKE_TYPE(depth, 4)); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
int histSize[] = {30, 30, 30, 30}; |
||||
int lowerLevel[] = {0, 0, 0, 0}; |
||||
int upperLevel[] = {180, 180, 180, 180}; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_hist[4]; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::histEven(d_src, d_hist, d_buf, histSize, lowerLevel, upperLevel); |
||||
|
||||
cv::Mat cpu_hist0, cpu_hist1, cpu_hist2, cpu_hist3; |
||||
d_hist[0].download(cpu_hist0); |
||||
d_hist[1].download(cpu_hist1); |
||||
d_hist[2].download(cpu_hist2); |
||||
d_hist[3].download(cpu_hist3); |
||||
SANITY_CHECK(cpu_hist0); |
||||
SANITY_CHECK(cpu_hist1); |
||||
SANITY_CHECK(cpu_hist2); |
||||
SANITY_CHECK(cpu_hist3); |
||||
} |
||||
else |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CalcHist
|
||||
|
||||
PERF_TEST_P(Sz, CalcHist, |
||||
GPU_TYPICAL_MAT_SIZES) |
||||
{ |
||||
const cv::Size size = GetParam(); |
||||
|
||||
cv::Mat src(size, CV_8UC1); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::calcHist(d_src, dst); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// EqualizeHist
|
||||
|
||||
PERF_TEST_P(Sz, EqualizeHist, |
||||
GPU_TYPICAL_MAT_SIZES) |
||||
{ |
||||
const cv::Size size = GetParam(); |
||||
|
||||
cv::Mat src(size, CV_8UC1); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat d_hist; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::equalizeHist(d_src, dst, d_hist, d_buf); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::equalizeHist(src, dst); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CLAHE
|
||||
|
||||
DEF_PARAM_TEST(Sz_ClipLimit, cv::Size, double); |
||||
|
||||
PERF_TEST_P(Sz_ClipLimit, CLAHE, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(0.0, 40.0))) |
||||
{ |
||||
const cv::Size size = GET_PARAM(0); |
||||
const double clipLimit = GET_PARAM(1); |
||||
|
||||
cv::Mat src(size, CV_8UC1); |
||||
declare.in(src, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit); |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() clahe->apply(d_src, dst); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit); |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() clahe->apply(src, dst); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
@ -0,0 +1,317 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// HoughLines
|
||||
|
||||
namespace |
||||
{ |
||||
struct Vec4iComparator |
||||
{ |
||||
bool operator()(const cv::Vec4i& a, const cv::Vec4i b) const |
||||
{ |
||||
if (a[0] != b[0]) return a[0] < b[0]; |
||||
else if(a[1] != b[1]) return a[1] < b[1]; |
||||
else if(a[2] != b[2]) return a[2] < b[2]; |
||||
else return a[3] < b[3]; |
||||
} |
||||
}; |
||||
struct Vec3fComparator |
||||
{ |
||||
bool operator()(const cv::Vec3f& a, const cv::Vec3f b) const |
||||
{ |
||||
if(a[0] != b[0]) return a[0] < b[0]; |
||||
else if(a[1] != b[1]) return a[1] < b[1]; |
||||
else return a[2] < b[2]; |
||||
} |
||||
}; |
||||
struct Vec2fComparator |
||||
{ |
||||
bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const |
||||
{ |
||||
if(a[0] != b[0]) return a[0] < b[0]; |
||||
else return a[1] < b[1]; |
||||
} |
||||
}; |
||||
} |
||||
|
||||
PERF_TEST_P(Sz, HoughLines, |
||||
GPU_TYPICAL_MAT_SIZES) |
||||
{ |
||||
declare.time(30.0); |
||||
|
||||
const cv::Size size = GetParam(); |
||||
|
||||
const float rho = 1.0f; |
||||
const float theta = static_cast<float>(CV_PI / 180.0); |
||||
const int threshold = 300; |
||||
|
||||
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
||||
cv::line(src, cv::Point(0, 100), cv::Point(src.cols, 100), cv::Scalar::all(255), 1); |
||||
cv::line(src, cv::Point(0, 200), cv::Point(src.cols, 200), cv::Scalar::all(255), 1); |
||||
cv::line(src, cv::Point(0, 400), cv::Point(src.cols, 400), cv::Scalar::all(255), 1); |
||||
cv::line(src, cv::Point(100, 0), cv::Point(100, src.rows), cv::Scalar::all(255), 1); |
||||
cv::line(src, cv::Point(200, 0), cv::Point(200, src.rows), cv::Scalar::all(255), 1); |
||||
cv::line(src, cv::Point(400, 0), cv::Point(400, src.rows), cv::Scalar::all(255), 1); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_lines; |
||||
cv::gpu::HoughLinesBuf d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold); |
||||
|
||||
cv::Mat gpu_lines(d_lines.row(0)); |
||||
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0); |
||||
cv::Vec2f* end = begin + gpu_lines.cols; |
||||
std::sort(begin, end, Vec2fComparator()); |
||||
SANITY_CHECK(gpu_lines); |
||||
} |
||||
else |
||||
{ |
||||
std::vector<cv::Vec2f> cpu_lines; |
||||
|
||||
TEST_CYCLE() cv::HoughLines(src, cpu_lines, rho, theta, threshold); |
||||
|
||||
SANITY_CHECK(cpu_lines); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// HoughLinesP
|
||||
|
||||
DEF_PARAM_TEST_1(Image, std::string); |
||||
|
||||
PERF_TEST_P(Image, HoughLinesP, |
||||
testing::Values("cv/shared/pic5.png", "stitching/a1.png")) |
||||
{ |
||||
declare.time(30.0); |
||||
|
||||
const std::string fileName = getDataPath(GetParam()); |
||||
|
||||
const float rho = 1.0f; |
||||
const float theta = static_cast<float>(CV_PI / 180.0); |
||||
const int threshold = 100; |
||||
const int minLineLenght = 50; |
||||
const int maxLineGap = 5; |
||||
|
||||
const cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat mask; |
||||
cv::Canny(image, mask, 50, 100); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_mask(mask); |
||||
cv::gpu::GpuMat d_lines; |
||||
cv::gpu::HoughLinesBuf d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::HoughLinesP(d_mask, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap); |
||||
|
||||
cv::Mat gpu_lines(d_lines); |
||||
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>(); |
||||
cv::Vec4i* end = begin + gpu_lines.cols; |
||||
std::sort(begin, end, Vec4iComparator()); |
||||
SANITY_CHECK(gpu_lines); |
||||
} |
||||
else |
||||
{ |
||||
std::vector<cv::Vec4i> cpu_lines; |
||||
|
||||
TEST_CYCLE() cv::HoughLinesP(mask, cpu_lines, rho, theta, threshold, minLineLenght, maxLineGap); |
||||
|
||||
SANITY_CHECK(cpu_lines); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// HoughCircles
|
||||
|
||||
DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float); |
||||
|
||||
PERF_TEST_P(Sz_Dp_MinDist, HoughCircles, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(1.0f, 2.0f, 4.0f), |
||||
Values(1.0f))) |
||||
{ |
||||
declare.time(30.0); |
||||
|
||||
const cv::Size size = GET_PARAM(0); |
||||
const float dp = GET_PARAM(1); |
||||
const float minDist = GET_PARAM(2); |
||||
|
||||
const int minRadius = 10; |
||||
const int maxRadius = 30; |
||||
const int cannyThreshold = 100; |
||||
const int votesThreshold = 15; |
||||
|
||||
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
||||
cv::circle(src, cv::Point(100, 100), 20, cv::Scalar::all(255), -1); |
||||
cv::circle(src, cv::Point(200, 200), 25, cv::Scalar::all(255), -1); |
||||
cv::circle(src, cv::Point(200, 100), 25, cv::Scalar::all(255), -1); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_circles; |
||||
cv::gpu::HoughCirclesBuf d_buf; |
||||
|
||||
TEST_CYCLE() cv::gpu::HoughCircles(d_src, d_circles, d_buf, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); |
||||
|
||||
cv::Mat gpu_circles(d_circles); |
||||
cv::Vec3f* begin = gpu_circles.ptr<cv::Vec3f>(0); |
||||
cv::Vec3f* end = begin + gpu_circles.cols; |
||||
std::sort(begin, end, Vec3fComparator()); |
||||
SANITY_CHECK(gpu_circles); |
||||
} |
||||
else |
||||
{ |
||||
std::vector<cv::Vec3f> cpu_circles; |
||||
|
||||
TEST_CYCLE() cv::HoughCircles(src, cpu_circles, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); |
||||
|
||||
SANITY_CHECK(cpu_circles); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GeneralizedHough
|
||||
|
||||
enum { GHT_POSITION = cv::GeneralizedHough::GHT_POSITION, |
||||
GHT_SCALE = cv::GeneralizedHough::GHT_SCALE, |
||||
GHT_ROTATION = cv::GeneralizedHough::GHT_ROTATION |
||||
}; |
||||
|
||||
CV_FLAGS(GHMethod, GHT_POSITION, GHT_SCALE, GHT_ROTATION); |
||||
|
||||
DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size); |
||||
|
||||
PERF_TEST_P(Method_Sz, GeneralizedHough, |
||||
Combine(Values(GHMethod(GHT_POSITION), GHMethod(GHT_POSITION | GHT_SCALE), GHMethod(GHT_POSITION | GHT_ROTATION), GHMethod(GHT_POSITION | GHT_SCALE | GHT_ROTATION)), |
||||
GPU_TYPICAL_MAT_SIZES)) |
||||
{ |
||||
declare.time(10); |
||||
|
||||
const int method = GET_PARAM(0); |
||||
const cv::Size imageSize = GET_PARAM(1); |
||||
|
||||
const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(templ.empty()); |
||||
|
||||
cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0)); |
||||
templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows))); |
||||
|
||||
cv::RNG rng(123456789); |
||||
const int objCount = rng.uniform(5, 15); |
||||
for (int i = 0; i < objCount; ++i) |
||||
{ |
||||
double scale = rng.uniform(0.7, 1.3); |
||||
bool rotate = 1 == rng.uniform(0, 2); |
||||
|
||||
cv::Mat obj; |
||||
cv::resize(templ, obj, cv::Size(), scale, scale); |
||||
if (rotate) |
||||
obj = obj.t(); |
||||
|
||||
cv::Point pos; |
||||
|
||||
pos.x = rng.uniform(0, image.cols - obj.cols); |
||||
pos.y = rng.uniform(0, image.rows - obj.rows); |
||||
|
||||
cv::Mat roi = image(cv::Rect(pos, obj.size())); |
||||
cv::add(roi, obj, roi); |
||||
} |
||||
|
||||
cv::Mat edges; |
||||
cv::Canny(image, edges, 50, 100); |
||||
|
||||
cv::Mat dx, dy; |
||||
cv::Sobel(image, dx, CV_32F, 1, 0); |
||||
cv::Sobel(image, dy, CV_32F, 0, 1); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_edges(edges); |
||||
const cv::gpu::GpuMat d_dx(dx); |
||||
const cv::gpu::GpuMat d_dy(dy); |
||||
cv::gpu::GpuMat posAndVotes; |
||||
|
||||
cv::Ptr<cv::gpu::GeneralizedHough_GPU> d_hough = cv::gpu::GeneralizedHough_GPU::create(method); |
||||
if (method & GHT_ROTATION) |
||||
{ |
||||
d_hough->set("maxAngle", 90.0); |
||||
d_hough->set("angleStep", 2.0); |
||||
} |
||||
|
||||
d_hough->setTemplate(cv::gpu::GpuMat(templ)); |
||||
|
||||
TEST_CYCLE() d_hough->detect(d_edges, d_dx, d_dy, posAndVotes); |
||||
|
||||
const cv::gpu::GpuMat positions(1, posAndVotes.cols, CV_32FC4, posAndVotes.data); |
||||
GPU_SANITY_CHECK(positions); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat positions; |
||||
|
||||
cv::Ptr<cv::GeneralizedHough> hough = cv::GeneralizedHough::create(method); |
||||
if (method & GHT_ROTATION) |
||||
{ |
||||
hough->set("maxAngle", 90.0); |
||||
hough->set("angleStep", 2.0); |
||||
} |
||||
|
||||
hough->setTemplate(templ); |
||||
|
||||
TEST_CYCLE() hough->detect(edges, dx, dy, positions); |
||||
|
||||
CPU_SANITY_CHECK(positions); |
||||
} |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,131 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate8U
|
||||
|
||||
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) |
||||
|
||||
DEF_PARAM_TEST(Sz_TemplateSz_Cn_Method, cv::Size, cv::Size, MatCn, TemplateMethod); |
||||
|
||||
PERF_TEST_P(Sz_TemplateSz_Cn_Method, MatchTemplate8U, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), |
||||
GPU_CHANNELS_1_3_4, |
||||
TemplateMethod::all())) |
||||
{ |
||||
declare.time(300.0); |
||||
|
||||
const cv::Size size = GET_PARAM(0); |
||||
const cv::Size templ_size = GET_PARAM(1); |
||||
const int cn = GET_PARAM(2); |
||||
const int method = GET_PARAM(3); |
||||
|
||||
cv::Mat image(size, CV_MAKE_TYPE(CV_8U, cn)); |
||||
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn)); |
||||
declare.in(image, templ, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_image(image); |
||||
const cv::gpu::GpuMat d_templ(templ); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method); |
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-5, ERROR_RELATIVE); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::matchTemplate(image, templ, dst, method); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate32F
|
||||
|
||||
PERF_TEST_P(Sz_TemplateSz_Cn_Method, MatchTemplate32F, |
||||
Combine(GPU_TYPICAL_MAT_SIZES, |
||||
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), |
||||
GPU_CHANNELS_1_3_4, |
||||
Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))) |
||||
{ |
||||
declare.time(300.0); |
||||
|
||||
const cv::Size size = GET_PARAM(0); |
||||
const cv::Size templ_size = GET_PARAM(1); |
||||
const int cn = GET_PARAM(2); |
||||
int method = GET_PARAM(3); |
||||
|
||||
cv::Mat image(size, CV_MAKE_TYPE(CV_32F, cn)); |
||||
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn)); |
||||
declare.in(image, templ, WARMUP_RNG); |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_image(image); |
||||
const cv::gpu::GpuMat d_templ(templ); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method); |
||||
|
||||
GPU_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::matchTemplate(image, templ, dst, method); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
@ -0,0 +1,152 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// MeanShiftFiltering
|
||||
|
||||
DEF_PARAM_TEST_1(Image, string); |
||||
|
||||
PERF_TEST_P(Image, MeanShiftFiltering, |
||||
Values<string>("gpu/meanshift/cones.png")) |
||||
{ |
||||
declare.time(300.0); |
||||
|
||||
const cv::Mat img = readImage(GetParam()); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat rgba; |
||||
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
||||
|
||||
const int sp = 50; |
||||
const int sr = 50; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(rgba); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::meanShiftFiltering(d_src, dst, sp, sr); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::pyrMeanShiftFiltering(img, dst, sp, sr); |
||||
|
||||
CPU_SANITY_CHECK(dst); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// MeanShiftProc
|
||||
|
||||
PERF_TEST_P(Image, MeanShiftProc, |
||||
Values<string>("gpu/meanshift/cones.png")) |
||||
{ |
||||
declare.time(300.0); |
||||
|
||||
const cv::Mat img = readImage(GetParam()); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat rgba; |
||||
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
||||
|
||||
const int sp = 50; |
||||
const int sr = 50; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(rgba); |
||||
cv::gpu::GpuMat dstr; |
||||
cv::gpu::GpuMat dstsp; |
||||
|
||||
TEST_CYCLE() cv::gpu::meanShiftProc(d_src, dstr, dstsp, sp, sr); |
||||
|
||||
GPU_SANITY_CHECK(dstr); |
||||
GPU_SANITY_CHECK(dstsp); |
||||
} |
||||
else |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// MeanShiftSegmentation
|
||||
|
||||
PERF_TEST_P(Image, MeanShiftSegmentation, |
||||
Values<string>("gpu/meanshift/cones.png")) |
||||
{ |
||||
declare.time(300.0); |
||||
|
||||
const cv::Mat img = readImage(GetParam()); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat rgba; |
||||
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
||||
|
||||
const int sp = 10; |
||||
const int sr = 10; |
||||
const int minsize = 20; |
||||
|
||||
if (PERF_RUN_GPU()) |
||||
{ |
||||
const cv::gpu::GpuMat d_src(rgba); |
||||
cv::Mat dst; |
||||
|
||||
TEST_CYCLE() cv::gpu::meanShiftSegmentation(d_src, dst, sp, sr, minsize); |
||||
|
||||
GPU_SANITY_CHECK(dst); |
||||
} |
||||
else |
||||
{ |
||||
FAIL_NO_CPU(); |
||||
} |
||||
} |
@ -0,0 +1,186 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
||||
|
||||
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_no_cuda(); } |
||||
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_no_cuda(); } |
||||
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_no_cuda(); } |
||||
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_no_cuda(); } |
||||
void cv::gpu::CannyBuf::create(const Size&, int) { throw_no_cuda(); } |
||||
void cv::gpu::CannyBuf::release() { throw_no_cuda(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size) |
||||
{ |
||||
if (apperture_size > 0) |
||||
{ |
||||
ensureSizeIsEnough(image_size, CV_32SC1, dx); |
||||
ensureSizeIsEnough(image_size, CV_32SC1, dy); |
||||
|
||||
if (apperture_size != 3) |
||||
{ |
||||
filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE); |
||||
filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE); |
||||
} |
||||
} |
||||
|
||||
ensureSizeIsEnough(image_size, CV_32FC1, mag); |
||||
ensureSizeIsEnough(image_size, CV_32SC1, map); |
||||
|
||||
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st1); |
||||
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st2); |
||||
} |
||||
|
||||
void cv::gpu::CannyBuf::release() |
||||
{ |
||||
dx.release(); |
||||
dy.release(); |
||||
mag.release(); |
||||
map.release(); |
||||
st1.release(); |
||||
st2.release(); |
||||
} |
||||
|
||||
namespace canny |
||||
{ |
||||
void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad); |
||||
void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad); |
||||
|
||||
void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh); |
||||
|
||||
void edgesHysteresisLocal(PtrStepSzi map, ushort2* st1); |
||||
|
||||
void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2); |
||||
|
||||
void getEdges(PtrStepSzi map, PtrStepSzb dst); |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
void CannyCaller(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh) |
||||
{ |
||||
using namespace canny; |
||||
|
||||
buf.map.setTo(Scalar::all(0)); |
||||
calcMap(dx, dy, buf.mag, buf.map, low_thresh, high_thresh); |
||||
|
||||
edgesHysteresisLocal(buf.map, buf.st1.ptr<ushort2>()); |
||||
|
||||
edgesHysteresisGlobal(buf.map, buf.st1.ptr<ushort2>(), buf.st2.ptr<ushort2>()); |
||||
|
||||
getEdges(buf.map, dst); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient) |
||||
{ |
||||
CannyBuf buf; |
||||
Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient); |
||||
} |
||||
|
||||
void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient) |
||||
{ |
||||
using namespace canny; |
||||
|
||||
CV_Assert(src.type() == CV_8UC1); |
||||
|
||||
if (!deviceSupports(SHARED_ATOMICS)) |
||||
CV_Error(cv::Error::StsNotImplemented, "The device doesn't support shared atomics"); |
||||
|
||||
if( low_thresh > high_thresh ) |
||||
std::swap( low_thresh, high_thresh); |
||||
|
||||
dst.create(src.size(), CV_8U); |
||||
buf.create(src.size(), apperture_size); |
||||
|
||||
if (apperture_size == 3) |
||||
{ |
||||
Size wholeSize; |
||||
Point ofs; |
||||
src.locateROI(wholeSize, ofs); |
||||
GpuMat srcWhole(wholeSize, src.type(), src.datastart, src.step); |
||||
|
||||
calcMagnitude(srcWhole, ofs.x, ofs.y, buf.dx, buf.dy, buf.mag, L2gradient); |
||||
} |
||||
else |
||||
{ |
||||
buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows)); |
||||
buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows)); |
||||
|
||||
calcMagnitude(buf.dx, buf.dy, buf.mag, L2gradient); |
||||
} |
||||
|
||||
CannyCaller(buf.dx, buf.dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh)); |
||||
} |
||||
|
||||
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient) |
||||
{ |
||||
CannyBuf buf; |
||||
Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient); |
||||
} |
||||
|
||||
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient) |
||||
{ |
||||
using namespace canny; |
||||
|
||||
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS)); |
||||
CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size()); |
||||
|
||||
if( low_thresh > high_thresh ) |
||||
std::swap( low_thresh, high_thresh); |
||||
|
||||
dst.create(dx.size(), CV_8U); |
||||
buf.create(dx.size(), -1); |
||||
|
||||
calcMagnitude(dx, dy, buf.mag, L2gradient); |
||||
|
||||
CannyCaller(dx, dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh)); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,149 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
||||
|
||||
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_no_cuda(); } |
||||
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int) { throw_no_cuda(); } |
||||
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int, Stream&) { throw_no_cuda(); } |
||||
|
||||
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_no_cuda(); } |
||||
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int) { throw_no_cuda(); } |
||||
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_no_cuda(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace imgproc |
||||
{ |
||||
void cornerHarris_gpu(int block_size, float k, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream); |
||||
void cornerMinEigenVal_gpu(int block_size, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream); |
||||
} |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream) |
||||
{ |
||||
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize; |
||||
|
||||
if (ksize < 0) |
||||
scale *= 2.; |
||||
|
||||
if (src.depth() == CV_8U) |
||||
scale *= 255.; |
||||
|
||||
scale = 1./scale; |
||||
|
||||
Dx.create(src.size(), CV_32F); |
||||
Dy.create(src.size(), CV_32F); |
||||
|
||||
if (ksize > 0) |
||||
{ |
||||
Sobel(src, Dx, CV_32F, 1, 0, buf, ksize, scale, borderType, -1, stream); |
||||
Sobel(src, Dy, CV_32F, 0, 1, buf, ksize, scale, borderType, -1, stream); |
||||
} |
||||
else |
||||
{ |
||||
Scharr(src, Dx, CV_32F, 1, 0, buf, scale, borderType, -1, stream); |
||||
Scharr(src, Dy, CV_32F, 0, 1, buf, scale, borderType, -1, stream); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType) |
||||
{ |
||||
GpuMat Dx, Dy; |
||||
cornerHarris(src, dst, Dx, Dy, blockSize, ksize, k, borderType); |
||||
} |
||||
|
||||
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType) |
||||
{ |
||||
GpuMat buf; |
||||
cornerHarris(src, dst, Dx, Dy, buf, blockSize, ksize, k, borderType); |
||||
} |
||||
|
||||
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, int borderType, Stream& stream) |
||||
{ |
||||
using namespace cv::gpu::cudev::imgproc; |
||||
|
||||
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); |
||||
|
||||
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream); |
||||
|
||||
dst.create(src.size(), CV_32F); |
||||
|
||||
cornerHarris_gpu(blockSize, static_cast<float>(k), Dx, Dy, dst, borderType, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType) |
||||
{ |
||||
GpuMat Dx, Dy; |
||||
cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType); |
||||
} |
||||
|
||||
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType) |
||||
{ |
||||
GpuMat buf; |
||||
cornerMinEigenVal(src, dst, Dx, Dy, buf, blockSize, ksize, borderType); |
||||
} |
||||
|
||||
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream) |
||||
{ |
||||
using namespace ::cv::gpu::cudev::imgproc; |
||||
|
||||
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); |
||||
|
||||
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream); |
||||
|
||||
dst.create(src.size(), CV_32F); |
||||
|
||||
cornerMinEigenVal_gpu(blockSize, Dx, Dy, dst, borderType, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,182 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#if !defined CUDA_DISABLER |
||||
|
||||
#include "opencv2/core/cuda/common.hpp" |
||||
#include "opencv2/core/cuda/vec_traits.hpp" |
||||
#include "opencv2/core/cuda/vec_math.hpp" |
||||
#include "opencv2/core/cuda/saturate_cast.hpp" |
||||
#include "opencv2/core/cuda/border_interpolate.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace imgproc |
||||
{ |
||||
texture<uchar4, 2> tex_meanshift; |
||||
|
||||
__device__ short2 do_mean_shift(int x0, int y0, unsigned char* out, |
||||
size_t out_step, int cols, int rows, |
||||
int sp, int sr, int maxIter, float eps) |
||||
{ |
||||
int isr2 = sr*sr; |
||||
uchar4 c = tex2D(tex_meanshift, x0, y0 ); |
||||
|
||||
// iterate meanshift procedure |
||||
for( int iter = 0; iter < maxIter; iter++ ) |
||||
{ |
||||
int count = 0; |
||||
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0; |
||||
float icount; |
||||
|
||||
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp) |
||||
int minx = x0-sp; |
||||
int miny = y0-sp; |
||||
int maxx = x0+sp; |
||||
int maxy = y0+sp; |
||||
|
||||
for( int y = miny; y <= maxy; y++) |
||||
{ |
||||
int rowCount = 0; |
||||
for( int x = minx; x <= maxx; x++ ) |
||||
{ |
||||
uchar4 t = tex2D( tex_meanshift, x, y ); |
||||
|
||||
int norm2 = (t.x - c.x) * (t.x - c.x) + (t.y - c.y) * (t.y - c.y) + (t.z - c.z) * (t.z - c.z); |
||||
if( norm2 <= isr2 ) |
||||
{ |
||||
s0 += t.x; s1 += t.y; s2 += t.z; |
||||
sx += x; rowCount++; |
||||
} |
||||
} |
||||
count += rowCount; |
||||
sy += y*rowCount; |
||||
} |
||||
|
||||
if( count == 0 ) |
||||
break; |
||||
|
||||
icount = 1.f/count; |
||||
int x1 = __float2int_rz(sx*icount); |
||||
int y1 = __float2int_rz(sy*icount); |
||||
s0 = __float2int_rz(s0*icount); |
||||
s1 = __float2int_rz(s1*icount); |
||||
s2 = __float2int_rz(s2*icount); |
||||
|
||||
int norm2 = (s0 - c.x) * (s0 - c.x) + (s1 - c.y) * (s1 - c.y) + (s2 - c.z) * (s2 - c.z); |
||||
|
||||
bool stopFlag = (x0 == x1 && y0 == y1) || (::abs(x1-x0) + ::abs(y1-y0) + norm2 <= eps); |
||||
|
||||
x0 = x1; y0 = y1; |
||||
c.x = s0; c.y = s1; c.z = s2; |
||||
|
||||
if( stopFlag ) |
||||
break; |
||||
} |
||||
|
||||
int base = (blockIdx.y * blockDim.y + threadIdx.y) * out_step + (blockIdx.x * blockDim.x + threadIdx.x) * 4 * sizeof(uchar); |
||||
*(uchar4*)(out + base) = c; |
||||
|
||||
return make_short2((short)x0, (short)y0); |
||||
} |
||||
|
||||
__global__ void meanshift_kernel(unsigned char* out, size_t out_step, int cols, int rows, int sp, int sr, int maxIter, float eps ) |
||||
{ |
||||
int x0 = blockIdx.x * blockDim.x + threadIdx.x; |
||||
int y0 = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if( x0 < cols && y0 < rows ) |
||||
do_mean_shift(x0, y0, out, out_step, cols, rows, sp, sr, maxIter, eps); |
||||
} |
||||
|
||||
void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream) |
||||
{ |
||||
dim3 grid(1, 1, 1); |
||||
dim3 threads(32, 8, 1); |
||||
grid.x = divUp(src.cols, threads.x); |
||||
grid.y = divUp(src.rows, threads.y); |
||||
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>(); |
||||
cudaSafeCall( cudaBindTexture2D( 0, tex_meanshift, src.data, desc, src.cols, src.rows, src.step ) ); |
||||
|
||||
meanshift_kernel<<< grid, threads, 0, stream >>>( dst.data, dst.step, dst.cols, dst.rows, sp, sr, maxIter, eps ); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
__global__ void meanshiftproc_kernel(unsigned char* outr, size_t outrstep, |
||||
unsigned char* outsp, size_t outspstep, |
||||
int cols, int rows, |
||||
int sp, int sr, int maxIter, float eps) |
||||
{ |
||||
int x0 = blockIdx.x * blockDim.x + threadIdx.x; |
||||
int y0 = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if( x0 < cols && y0 < rows ) |
||||
{ |
||||
int basesp = (blockIdx.y * blockDim.y + threadIdx.y) * outspstep + (blockIdx.x * blockDim.x + threadIdx.x) * 2 * sizeof(short); |
||||
*(short2*)(outsp + basesp) = do_mean_shift(x0, y0, outr, outrstep, cols, rows, sp, sr, maxIter, eps); |
||||
} |
||||
} |
||||
|
||||
void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream) |
||||
{ |
||||
dim3 grid(1, 1, 1); |
||||
dim3 threads(32, 8, 1); |
||||
grid.x = divUp(src.cols, threads.x); |
||||
grid.y = divUp(src.rows, threads.y); |
||||
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>(); |
||||
cudaSafeCall( cudaBindTexture2D( 0, tex_meanshift, src.data, desc, src.cols, src.rows, src.step ) ); |
||||
|
||||
meanshiftproc_kernel<<< grid, threads, 0, stream >>>( dstr.data, dstr.step, dstsp.data, dstsp.step, dstr.cols, dstr.rows, sp, sr, maxIter, eps ); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
} |
||||
}}} |
||||
|
||||
#endif |
@ -0,0 +1,128 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
||||
|
||||
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_no_cuda(); } |
||||
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_no_cuda(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// meanShiftFiltering_GPU
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace imgproc |
||||
{ |
||||
void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream); |
||||
} |
||||
}}} |
||||
|
||||
void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria, Stream& stream) |
||||
{ |
||||
using namespace ::cv::gpu::cudev::imgproc; |
||||
|
||||
if( src.empty() ) |
||||
CV_Error( cv::Error::StsBadArg, "The input image is empty" ); |
||||
|
||||
if( src.depth() != CV_8U || src.channels() != 4 ) |
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); |
||||
|
||||
dst.create( src.size(), CV_8UC4 ); |
||||
|
||||
if( !(criteria.type & TermCriteria::MAX_ITER) ) |
||||
criteria.maxCount = 5; |
||||
|
||||
int maxIter = std::min(std::max(criteria.maxCount, 1), 100); |
||||
|
||||
float eps; |
||||
if( !(criteria.type & TermCriteria::EPS) ) |
||||
eps = 1.f; |
||||
eps = (float)std::max(criteria.epsilon, 0.0); |
||||
|
||||
meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// meanShiftProc_GPU
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev |
||||
{ |
||||
namespace imgproc |
||||
{ |
||||
void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream); |
||||
} |
||||
}}} |
||||
|
||||
void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria, Stream& stream) |
||||
{ |
||||
using namespace ::cv::gpu::cudev::imgproc; |
||||
|
||||
if( src.empty() ) |
||||
CV_Error( cv::Error::StsBadArg, "The input image is empty" ); |
||||
|
||||
if( src.depth() != CV_8U || src.channels() != 4 ) |
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); |
||||
|
||||
dstr.create( src.size(), CV_8UC4 ); |
||||
dstsp.create( src.size(), CV_16SC2 ); |
||||
|
||||
if( !(criteria.type & TermCriteria::MAX_ITER) ) |
||||
criteria.maxCount = 5; |
||||
|
||||
int maxIter = std::min(std::max(criteria.maxCount, 1), 100); |
||||
|
||||
float eps; |
||||
if( !(criteria.type & TermCriteria::EPS) ) |
||||
eps = 1.f; |
||||
eps = (float)std::max(criteria.epsilon, 0.0); |
||||
|
||||
meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,97 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// BilateralFilter
|
||||
|
||||
PARAM_TEST_CASE(BilateralFilter, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
int type; |
||||
int kernel_size; |
||||
float sigma_color; |
||||
float sigma_spatial; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
type = GET_PARAM(2); |
||||
|
||||
kernel_size = 5; |
||||
sigma_color = 10.f; |
||||
sigma_spatial = 3.5f; |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(BilateralFilter, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, type); |
||||
|
||||
src.convertTo(src, type); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
cv::gpu::bilateralFilter(loadMat(src), dst, kernel_size, sigma_color, sigma_spatial); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::bilateralFilter(src, dst_gold, kernel_size, sigma_color, sigma_spatial); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-3 : 1.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, BilateralFilter, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(639, 481)), |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_32FC1), MatType(CV_32FC3)) |
||||
)); |
||||
|
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,124 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Blend
|
||||
|
||||
namespace |
||||
{ |
||||
template <typename T> |
||||
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold) |
||||
{ |
||||
result_gold.create(img1.size(), img1.type()); |
||||
|
||||
int cn = img1.channels(); |
||||
|
||||
for (int y = 0; y < img1.rows; ++y) |
||||
{ |
||||
const float* weights1_row = weights1.ptr<float>(y); |
||||
const float* weights2_row = weights2.ptr<float>(y); |
||||
const T* img1_row = img1.ptr<T>(y); |
||||
const T* img2_row = img2.ptr<T>(y); |
||||
T* result_gold_row = result_gold.ptr<T>(y); |
||||
|
||||
for (int x = 0; x < img1.cols * cn; ++x) |
||||
{ |
||||
float w1 = weights1_row[x / cn]; |
||||
float w2 = weights2_row[x / cn]; |
||||
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f)); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
int type; |
||||
bool useRoi; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
type = GET_PARAM(2); |
||||
useRoi = GET_PARAM(3); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(Blend, Accuracy) |
||||
{ |
||||
int depth = CV_MAT_DEPTH(type); |
||||
|
||||
cv::Mat img1 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); |
||||
cv::Mat img2 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); |
||||
cv::Mat weights1 = randomMat(size, CV_32F, 0, 1); |
||||
cv::Mat weights2 = randomMat(size, CV_32F, 0, 1); |
||||
|
||||
cv::gpu::GpuMat result; |
||||
cv::gpu::blendLinear(loadMat(img1, useRoi), loadMat(img2, useRoi), loadMat(weights1, useRoi), loadMat(weights2, useRoi), result); |
||||
|
||||
cv::Mat result_gold; |
||||
if (depth == CV_8U) |
||||
blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold); |
||||
else |
||||
blendLinearGold<float>(img1, img2, weights1, weights2, result_gold); |
||||
|
||||
EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1.0 : 1e-5); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), |
||||
WHOLE_SUBMAT)); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,114 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int) |
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool) |
||||
} |
||||
|
||||
PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int apperture_size; |
||||
bool useL2gradient; |
||||
bool useRoi; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
apperture_size = GET_PARAM(1); |
||||
useL2gradient = GET_PARAM(2); |
||||
useRoi = GET_PARAM(3); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(Canny, Accuracy) |
||||
{ |
||||
cv::Mat img = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
double low_thresh = 50.0; |
||||
double high_thresh = 100.0; |
||||
|
||||
if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS)) |
||||
{ |
||||
try |
||||
{ |
||||
cv::gpu::GpuMat edges; |
||||
cv::gpu::Canny(loadMat(img), edges, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
} |
||||
catch (const cv::Exception& e) |
||||
{ |
||||
ASSERT_EQ(cv::Error::StsNotImplemented, e.code); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::GpuMat edges; |
||||
cv::gpu::Canny(loadMat(img, useRoi), edges, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
|
||||
cv::Mat edges_gold; |
||||
cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
|
||||
EXPECT_MAT_SIMILAR(edges_gold, edges, 2e-2); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Canny, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(AppertureSize(3), AppertureSize(5)), |
||||
testing::Values(L2gradient(false), L2gradient(true)), |
||||
WHOLE_SUBMAT)); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,145 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CornerHarris
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(BlockSize, int); |
||||
IMPLEMENT_PARAM_CLASS(ApertureSize, int); |
||||
} |
||||
|
||||
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
int borderType; |
||||
int blockSize; |
||||
int apertureSize; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
type = GET_PARAM(1); |
||||
borderType = GET_PARAM(2); |
||||
blockSize = GET_PARAM(3); |
||||
apertureSize = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CornerHarris, Accuracy) |
||||
{ |
||||
cv::Mat src = readImageType("stereobm/aloe-L.png", type); |
||||
ASSERT_FALSE(src.empty()); |
||||
|
||||
double k = randomDouble(0.1, 0.9); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::cornerHarris(loadMat(src), dst, blockSize, apertureSize, k, borderType); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.02); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerHarris, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), |
||||
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)), |
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), |
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// cornerMinEigen
|
||||
|
||||
PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
int borderType; |
||||
int blockSize; |
||||
int apertureSize; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
type = GET_PARAM(1); |
||||
borderType = GET_PARAM(2); |
||||
blockSize = GET_PARAM(3); |
||||
apertureSize = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CornerMinEigen, Accuracy) |
||||
{ |
||||
cv::Mat src = readImageType("stereobm/aloe-L.png", type); |
||||
ASSERT_FALSE(src.empty()); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::cornerMinEigenVal(loadMat(src), dst, blockSize, apertureSize, borderType); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.02); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), |
||||
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)), |
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), |
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,131 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// GoodFeaturesToTrack
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(MinDistance, double) |
||||
} |
||||
|
||||
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
double minDistance; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
minDistance = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(GoodFeaturesToTrack, Accuracy) |
||||
{ |
||||
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
int maxCorners = 1000; |
||||
double qualityLevel = 0.01; |
||||
|
||||
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); |
||||
|
||||
cv::gpu::GpuMat d_pts; |
||||
detector(loadMat(image), d_pts); |
||||
|
||||
ASSERT_FALSE(d_pts.empty()); |
||||
|
||||
std::vector<cv::Point2f> pts(d_pts.cols); |
||||
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*) &pts[0]); |
||||
d_pts.download(pts_mat); |
||||
|
||||
std::vector<cv::Point2f> pts_gold; |
||||
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance); |
||||
|
||||
ASSERT_EQ(pts_gold.size(), pts.size()); |
||||
|
||||
size_t mistmatch = 0; |
||||
for (size_t i = 0; i < pts.size(); ++i) |
||||
{ |
||||
cv::Point2i a = pts_gold[i]; |
||||
cv::Point2i b = pts[i]; |
||||
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; |
||||
|
||||
if (!eq) |
||||
++mistmatch; |
||||
} |
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / pts.size(); |
||||
|
||||
ASSERT_LE(bad_ratio, 0.01); |
||||
} |
||||
|
||||
GPU_TEST_P(GoodFeaturesToTrack, EmptyCorners) |
||||
{ |
||||
int maxCorners = 1000; |
||||
double qualityLevel = 0.01; |
||||
|
||||
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); |
||||
|
||||
cv::gpu::GpuMat src(100, 100, CV_8UC1, cv::Scalar::all(0)); |
||||
cv::gpu::GpuMat corners(1, maxCorners, CV_32FC2); |
||||
|
||||
detector(src, corners); |
||||
|
||||
ASSERT_TRUE(corners.empty()); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, GoodFeaturesToTrack, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MinDistance(0.0), MinDistance(3.0)))); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,227 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// HistEven
|
||||
|
||||
struct HistEven : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(HistEven, Accuracy) |
||||
{ |
||||
cv::Mat img = readImage("stereobm/aloe-L.png"); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat hsv; |
||||
cv::cvtColor(img, hsv, cv::COLOR_BGR2HSV); |
||||
|
||||
int hbins = 30; |
||||
float hranges[] = {0.0f, 180.0f}; |
||||
|
||||
std::vector<cv::gpu::GpuMat> srcs; |
||||
cv::gpu::split(loadMat(hsv), srcs); |
||||
|
||||
cv::gpu::GpuMat hist; |
||||
cv::gpu::histEven(srcs[0], hist, hbins, (int)hranges[0], (int)hranges[1]); |
||||
|
||||
cv::MatND histnd; |
||||
int histSize[] = {hbins}; |
||||
const float* ranges[] = {hranges}; |
||||
int channels[] = {0}; |
||||
cv::calcHist(&hsv, 1, channels, cv::Mat(), histnd, 1, histSize, ranges); |
||||
|
||||
cv::Mat hist_gold = histnd; |
||||
hist_gold = hist_gold.t(); |
||||
hist_gold.convertTo(hist_gold, CV_32S); |
||||
|
||||
EXPECT_MAT_NEAR(hist_gold, hist, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HistEven, ALL_DEVICES); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CalcHist
|
||||
|
||||
namespace |
||||
{ |
||||
void calcHistGold(const cv::Mat& src, cv::Mat& hist) |
||||
{ |
||||
hist.create(1, 256, CV_32SC1); |
||||
hist.setTo(cv::Scalar::all(0)); |
||||
|
||||
int* hist_row = hist.ptr<int>(); |
||||
for (int y = 0; y < src.rows; ++y) |
||||
{ |
||||
const uchar* src_row = src.ptr(y); |
||||
|
||||
for (int x = 0; x < src.cols; ++x) |
||||
++hist_row[src_row[x]]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::Size size; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CalcHist, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, CV_8UC1); |
||||
|
||||
cv::gpu::GpuMat hist; |
||||
cv::gpu::calcHist(loadMat(src), hist); |
||||
|
||||
cv::Mat hist_gold; |
||||
calcHistGold(src, hist_gold); |
||||
|
||||
EXPECT_MAT_NEAR(hist_gold, hist, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CalcHist, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES)); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// EqualizeHist
|
||||
|
||||
PARAM_TEST_CASE(EqualizeHist, cv::gpu::DeviceInfo, cv::Size) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(EqualizeHist, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, CV_8UC1); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::equalizeHist(loadMat(src), dst); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::equalizeHist(src, dst_gold); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 3.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, EqualizeHist, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES)); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CLAHE
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(ClipLimit, double) |
||||
} |
||||
|
||||
PARAM_TEST_CASE(CLAHE, cv::gpu::DeviceInfo, cv::Size, ClipLimit) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
double clipLimit; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
clipLimit = GET_PARAM(2); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CLAHE, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, CV_8UC1); |
||||
|
||||
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit); |
||||
cv::gpu::GpuMat dst; |
||||
clahe->apply(loadMat(src), dst); |
||||
|
||||
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit); |
||||
cv::Mat dst_gold; |
||||
clahe_gold->apply(src, dst_gold); |
||||
|
||||
ASSERT_MAT_NEAR(dst_gold, dst, 1.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CLAHE, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(0.0, 40.0))); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -1,890 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// HistEven
|
||||
|
||||
struct HistEven : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(HistEven, Accuracy) |
||||
{ |
||||
cv::Mat img = readImage("stereobm/aloe-L.png"); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat hsv; |
||||
cv::cvtColor(img, hsv, cv::COLOR_BGR2HSV); |
||||
|
||||
int hbins = 30; |
||||
float hranges[] = {0.0f, 180.0f}; |
||||
|
||||
std::vector<cv::gpu::GpuMat> srcs; |
||||
cv::gpu::split(loadMat(hsv), srcs); |
||||
|
||||
cv::gpu::GpuMat hist; |
||||
cv::gpu::histEven(srcs[0], hist, hbins, (int)hranges[0], (int)hranges[1]); |
||||
|
||||
cv::MatND histnd; |
||||
int histSize[] = {hbins}; |
||||
const float* ranges[] = {hranges}; |
||||
int channels[] = {0}; |
||||
cv::calcHist(&hsv, 1, channels, cv::Mat(), histnd, 1, histSize, ranges); |
||||
|
||||
cv::Mat hist_gold = histnd; |
||||
hist_gold = hist_gold.t(); |
||||
hist_gold.convertTo(hist_gold, CV_32S); |
||||
|
||||
EXPECT_MAT_NEAR(hist_gold, hist, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HistEven, ALL_DEVICES); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CalcHist
|
||||
|
||||
namespace |
||||
{ |
||||
void calcHistGold(const cv::Mat& src, cv::Mat& hist) |
||||
{ |
||||
hist.create(1, 256, CV_32SC1); |
||||
hist.setTo(cv::Scalar::all(0)); |
||||
|
||||
int* hist_row = hist.ptr<int>(); |
||||
for (int y = 0; y < src.rows; ++y) |
||||
{ |
||||
const uchar* src_row = src.ptr(y); |
||||
|
||||
for (int x = 0; x < src.cols; ++x) |
||||
++hist_row[src_row[x]]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::Size size; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CalcHist, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, CV_8UC1); |
||||
|
||||
cv::gpu::GpuMat hist; |
||||
cv::gpu::calcHist(loadMat(src), hist); |
||||
|
||||
cv::Mat hist_gold; |
||||
calcHistGold(src, hist_gold); |
||||
|
||||
EXPECT_MAT_NEAR(hist_gold, hist, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CalcHist, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES)); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// EqualizeHist
|
||||
|
||||
PARAM_TEST_CASE(EqualizeHist, cv::gpu::DeviceInfo, cv::Size) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(EqualizeHist, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, CV_8UC1); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::equalizeHist(loadMat(src), dst); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::equalizeHist(src, dst_gold); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 3.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, EqualizeHist, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES)); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CLAHE
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(ClipLimit, double) |
||||
} |
||||
|
||||
PARAM_TEST_CASE(CLAHE, cv::gpu::DeviceInfo, cv::Size, ClipLimit) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
double clipLimit; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
clipLimit = GET_PARAM(2); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CLAHE, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, CV_8UC1); |
||||
|
||||
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit); |
||||
cv::gpu::GpuMat dst; |
||||
clahe->apply(loadMat(src), dst); |
||||
|
||||
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit); |
||||
cv::Mat dst_gold; |
||||
clahe_gold->apply(src, dst_gold); |
||||
|
||||
ASSERT_MAT_NEAR(dst_gold, dst, 1.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CLAHE, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(0.0, 40.0))); |
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int); |
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool); |
||||
} |
||||
|
||||
PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int apperture_size; |
||||
bool useL2gradient; |
||||
bool useRoi; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
apperture_size = GET_PARAM(1); |
||||
useL2gradient = GET_PARAM(2); |
||||
useRoi = GET_PARAM(3); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(Canny, Accuracy) |
||||
{ |
||||
cv::Mat img = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
double low_thresh = 50.0; |
||||
double high_thresh = 100.0; |
||||
|
||||
if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS)) |
||||
{ |
||||
try |
||||
{ |
||||
cv::gpu::GpuMat edges; |
||||
cv::gpu::Canny(loadMat(img), edges, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
} |
||||
catch (const cv::Exception& e) |
||||
{ |
||||
ASSERT_EQ(cv::Error::StsNotImplemented, e.code); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::GpuMat edges; |
||||
cv::gpu::Canny(loadMat(img, useRoi), edges, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
|
||||
cv::Mat edges_gold; |
||||
cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient); |
||||
|
||||
EXPECT_MAT_SIMILAR(edges_gold, edges, 2e-2); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Canny, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(AppertureSize(3), AppertureSize(5)), |
||||
testing::Values(L2gradient(false), L2gradient(true)), |
||||
WHOLE_SUBMAT)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MeanShift
|
||||
|
||||
struct MeanShift : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::Mat img; |
||||
|
||||
int spatialRad; |
||||
int colorRad; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
img = readImageType("meanshift/cones.png", CV_8UC4); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
spatialRad = 30; |
||||
colorRad = 30; |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MeanShift, Filtering) |
||||
{ |
||||
cv::Mat img_template; |
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
img_template = readImage("meanshift/con_result.png"); |
||||
else |
||||
img_template = readImage("meanshift/con_result_CC1X.png"); |
||||
ASSERT_FALSE(img_template.empty()); |
||||
|
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::meanShiftFiltering(loadMat(img), d_dst, spatialRad, colorRad); |
||||
|
||||
ASSERT_EQ(CV_8UC4, d_dst.type()); |
||||
|
||||
cv::Mat dst(d_dst); |
||||
|
||||
cv::Mat result; |
||||
cv::cvtColor(dst, result, cv::COLOR_BGRA2BGR); |
||||
|
||||
EXPECT_MAT_NEAR(img_template, result, 0.0); |
||||
} |
||||
|
||||
GPU_TEST_P(MeanShift, Proc) |
||||
{ |
||||
cv::FileStorage fs; |
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ); |
||||
else |
||||
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
cv::Mat spmap_template; |
||||
fs["spmap"] >> spmap_template; |
||||
ASSERT_FALSE(spmap_template.empty()); |
||||
|
||||
cv::gpu::GpuMat rmap_filtered; |
||||
cv::gpu::meanShiftFiltering(loadMat(img), rmap_filtered, spatialRad, colorRad); |
||||
|
||||
cv::gpu::GpuMat rmap; |
||||
cv::gpu::GpuMat spmap; |
||||
cv::gpu::meanShiftProc(loadMat(img), rmap, spmap, spatialRad, colorRad); |
||||
|
||||
ASSERT_EQ(CV_8UC4, rmap.type()); |
||||
|
||||
EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0); |
||||
EXPECT_MAT_NEAR(spmap_template, spmap, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShift, ALL_DEVICES); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MeanShiftSegmentation
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(MinSize, int); |
||||
} |
||||
|
||||
PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int minsize; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
minsize = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MeanShiftSegmentation, Regression) |
||||
{ |
||||
cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
std::ostringstream path; |
||||
path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize; |
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
path << ".png"; |
||||
else |
||||
path << "_CC1X.png"; |
||||
cv::Mat dst_gold = readImage(path.str()); |
||||
ASSERT_FALSE(dst_gold.empty()); |
||||
|
||||
cv::Mat dst; |
||||
cv::gpu::meanShiftSegmentation(loadMat(img), dst, 10, 10, minsize); |
||||
|
||||
cv::Mat dst_rgb; |
||||
cv::cvtColor(dst, dst_rgb, cv::COLOR_BGRA2BGR); |
||||
|
||||
EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShiftSegmentation, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MinSize(0), MinSize(4), MinSize(20), MinSize(84), MinSize(340), MinSize(1364)))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Blend
|
||||
|
||||
namespace |
||||
{ |
||||
template <typename T> |
||||
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold) |
||||
{ |
||||
result_gold.create(img1.size(), img1.type()); |
||||
|
||||
int cn = img1.channels(); |
||||
|
||||
for (int y = 0; y < img1.rows; ++y) |
||||
{ |
||||
const float* weights1_row = weights1.ptr<float>(y); |
||||
const float* weights2_row = weights2.ptr<float>(y); |
||||
const T* img1_row = img1.ptr<T>(y); |
||||
const T* img2_row = img2.ptr<T>(y); |
||||
T* result_gold_row = result_gold.ptr<T>(y); |
||||
|
||||
for (int x = 0; x < img1.cols * cn; ++x) |
||||
{ |
||||
float w1 = weights1_row[x / cn]; |
||||
float w2 = weights2_row[x / cn]; |
||||
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f)); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
int type; |
||||
bool useRoi; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
type = GET_PARAM(2); |
||||
useRoi = GET_PARAM(3); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(Blend, Accuracy) |
||||
{ |
||||
int depth = CV_MAT_DEPTH(type); |
||||
|
||||
cv::Mat img1 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); |
||||
cv::Mat img2 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); |
||||
cv::Mat weights1 = randomMat(size, CV_32F, 0, 1); |
||||
cv::Mat weights2 = randomMat(size, CV_32F, 0, 1); |
||||
|
||||
cv::gpu::GpuMat result; |
||||
cv::gpu::blendLinear(loadMat(img1, useRoi), loadMat(img2, useRoi), loadMat(weights1, useRoi), loadMat(weights2, useRoi), result); |
||||
|
||||
cv::Mat result_gold; |
||||
if (depth == CV_8U) |
||||
blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold); |
||||
else |
||||
blendLinearGold<float>(img1, img2, weights1, weights2, result_gold); |
||||
|
||||
EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1.0 : 1e-5); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), |
||||
WHOLE_SUBMAT)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate8U
|
||||
|
||||
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) |
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size); |
||||
} |
||||
|
||||
PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
cv::Size templ_size; |
||||
int cn; |
||||
int method; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
templ_size = GET_PARAM(2); |
||||
cn = GET_PARAM(3); |
||||
method = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate8U, Accuracy) |
||||
{ |
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn)); |
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn)); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::matchTemplate(image, templ, dst_gold, method); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), |
||||
testing::Values(Channels(1), Channels(3), Channels(4)), |
||||
TemplateMethod::all())); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate32F
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
cv::Size templ_size; |
||||
int cn; |
||||
int method; |
||||
|
||||
int n, m, h, w; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
templ_size = GET_PARAM(2); |
||||
cn = GET_PARAM(3); |
||||
method = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate32F, Regression) |
||||
{ |
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn)); |
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn)); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::matchTemplate(image, templ, dst_gold, method); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), |
||||
testing::Values(Channels(1), Channels(3), Channels(4)), |
||||
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplateBlackSource
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int method; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
method = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplateBlackSource, Accuracy) |
||||
{ |
||||
cv::Mat image = readImage("matchtemplate/black.png"); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat pattern = readImage("matchtemplate/cat.png"); |
||||
ASSERT_FALSE(pattern.empty()); |
||||
|
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, method); |
||||
|
||||
cv::Mat dst(d_dst); |
||||
|
||||
double maxValue; |
||||
cv::Point maxLoc; |
||||
cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc); |
||||
|
||||
cv::Point maxLocGold = cv::Point(284, 12); |
||||
|
||||
ASSERT_EQ(maxLocGold, maxLoc); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplateBlackSource, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(TemplateMethod(cv::TM_CCOEFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED)))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate_CCOEF_NORMED
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::string, std::string>) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
std::string imageName; |
||||
std::string patternName; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
imageName = GET_PARAM(1).first; |
||||
patternName = GET_PARAM(1).second; |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy) |
||||
{ |
||||
cv::Mat image = readImage(imageName); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat pattern = readImage(patternName); |
||||
ASSERT_FALSE(pattern.empty()); |
||||
|
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, cv::TM_CCOEFF_NORMED); |
||||
|
||||
cv::Mat dst(d_dst); |
||||
|
||||
cv::Point minLoc, maxLoc; |
||||
double minVal, maxVal; |
||||
cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc); |
||||
|
||||
cv::Mat dstGold; |
||||
cv::matchTemplate(image, pattern, dstGold, cv::TM_CCOEFF_NORMED); |
||||
|
||||
double minValGold, maxValGold; |
||||
cv::Point minLocGold, maxLocGold; |
||||
cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold); |
||||
|
||||
ASSERT_EQ(minLocGold, minLoc); |
||||
ASSERT_EQ(maxLocGold, maxLoc); |
||||
ASSERT_LE(maxVal, 1.0); |
||||
ASSERT_GE(minVal, -1.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CCOEF_NORMED, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png"))))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate_CanFindBigTemplate
|
||||
|
||||
struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED) |
||||
{ |
||||
cv::Mat scene = readImage("matchtemplate/scene.png"); |
||||
ASSERT_FALSE(scene.empty()); |
||||
|
||||
cv::Mat templ = readImage("matchtemplate/template.png"); |
||||
ASSERT_FALSE(templ.empty()); |
||||
|
||||
cv::gpu::GpuMat d_result; |
||||
cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF_NORMED); |
||||
|
||||
cv::Mat result(d_result); |
||||
|
||||
double minVal; |
||||
cv::Point minLoc; |
||||
cv::minMaxLoc(result, &minVal, 0, &minLoc, 0); |
||||
|
||||
ASSERT_GE(minVal, 0); |
||||
ASSERT_LT(minVal, 1e-3); |
||||
ASSERT_EQ(344, minLoc.x); |
||||
ASSERT_EQ(0, minLoc.y); |
||||
} |
||||
|
||||
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF) |
||||
{ |
||||
cv::Mat scene = readImage("matchtemplate/scene.png"); |
||||
ASSERT_FALSE(scene.empty()); |
||||
|
||||
cv::Mat templ = readImage("matchtemplate/template.png"); |
||||
ASSERT_FALSE(templ.empty()); |
||||
|
||||
cv::gpu::GpuMat d_result; |
||||
cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF); |
||||
|
||||
cv::Mat result(d_result); |
||||
|
||||
double minVal; |
||||
cv::Point minLoc; |
||||
cv::minMaxLoc(result, &minVal, 0, &minLoc, 0); |
||||
|
||||
ASSERT_GE(minVal, 0); |
||||
ASSERT_EQ(344, minLoc.x); |
||||
ASSERT_EQ(0, minLoc.y); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CornerHarris
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(BlockSize, int); |
||||
IMPLEMENT_PARAM_CLASS(ApertureSize, int); |
||||
} |
||||
|
||||
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
int borderType; |
||||
int blockSize; |
||||
int apertureSize; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
type = GET_PARAM(1); |
||||
borderType = GET_PARAM(2); |
||||
blockSize = GET_PARAM(3); |
||||
apertureSize = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CornerHarris, Accuracy) |
||||
{ |
||||
cv::Mat src = readImageType("stereobm/aloe-L.png", type); |
||||
ASSERT_FALSE(src.empty()); |
||||
|
||||
double k = randomDouble(0.1, 0.9); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::cornerHarris(loadMat(src), dst, blockSize, apertureSize, k, borderType); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.02); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerHarris, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), |
||||
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)), |
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), |
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// cornerMinEigen
|
||||
|
||||
PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
int borderType; |
||||
int blockSize; |
||||
int apertureSize; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
type = GET_PARAM(1); |
||||
borderType = GET_PARAM(2); |
||||
blockSize = GET_PARAM(3); |
||||
apertureSize = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(CornerMinEigen, Accuracy) |
||||
{ |
||||
cv::Mat src = readImageType("stereobm/aloe-L.png", type); |
||||
ASSERT_FALSE(src.empty()); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::cornerMinEigenVal(loadMat(src), dst, blockSize, apertureSize, borderType); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.02); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), |
||||
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)), |
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), |
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); |
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// BilateralFilter
|
||||
|
||||
PARAM_TEST_CASE(BilateralFilter, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
int type; |
||||
int kernel_size; |
||||
float sigma_color; |
||||
float sigma_spatial; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
type = GET_PARAM(2); |
||||
|
||||
kernel_size = 5; |
||||
sigma_color = 10.f; |
||||
sigma_spatial = 3.5f; |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(BilateralFilter, Accuracy) |
||||
{ |
||||
cv::Mat src = randomMat(size, type); |
||||
|
||||
src.convertTo(src, type); |
||||
cv::gpu::GpuMat dst; |
||||
|
||||
cv::gpu::bilateralFilter(loadMat(src), dst, kernel_size, sigma_color, sigma_spatial); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::bilateralFilter(src, dst_gold, kernel_size, sigma_color, sigma_spatial); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-3 : 1.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, BilateralFilter, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(639, 481)), |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_32FC1), MatType(CV_32FC3)) |
||||
)); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,305 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate8U
|
||||
|
||||
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED) |
||||
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED)) |
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size); |
||||
} |
||||
|
||||
PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
cv::Size templ_size; |
||||
int cn; |
||||
int method; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
templ_size = GET_PARAM(2); |
||||
cn = GET_PARAM(3); |
||||
method = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate8U, Accuracy) |
||||
{ |
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn)); |
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn)); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::matchTemplate(image, templ, dst_gold, method); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), |
||||
testing::Values(Channels(1), Channels(3), Channels(4)), |
||||
ALL_TEMPLATE_METHODS)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate32F
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
cv::Size size; |
||||
cv::Size templ_size; |
||||
int cn; |
||||
int method; |
||||
|
||||
int n, m, h, w; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
size = GET_PARAM(1); |
||||
templ_size = GET_PARAM(2); |
||||
cn = GET_PARAM(3); |
||||
method = GET_PARAM(4); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate32F, Regression) |
||||
{ |
||||
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn)); |
||||
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn)); |
||||
|
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::matchTemplate(image, templ, dst_gold, method); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine( |
||||
ALL_DEVICES, |
||||
DIFFERENT_SIZES, |
||||
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), |
||||
testing::Values(Channels(1), Channels(3), Channels(4)), |
||||
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplateBlackSource
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int method; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
method = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplateBlackSource, Accuracy) |
||||
{ |
||||
cv::Mat image = readImage("matchtemplate/black.png"); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat pattern = readImage("matchtemplate/cat.png"); |
||||
ASSERT_FALSE(pattern.empty()); |
||||
|
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, method); |
||||
|
||||
cv::Mat dst(d_dst); |
||||
|
||||
double maxValue; |
||||
cv::Point maxLoc; |
||||
cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc); |
||||
|
||||
cv::Point maxLocGold = cv::Point(284, 12); |
||||
|
||||
ASSERT_EQ(maxLocGold, maxLoc); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplateBlackSource, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(TemplateMethod(cv::TM_CCOEFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED)))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate_CCOEF_NORMED
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::string, std::string>) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
std::string imageName; |
||||
std::string patternName; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
imageName = GET_PARAM(1).first; |
||||
patternName = GET_PARAM(1).second; |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy) |
||||
{ |
||||
cv::Mat image = readImage(imageName); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat pattern = readImage(patternName); |
||||
ASSERT_FALSE(pattern.empty()); |
||||
|
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, cv::TM_CCOEFF_NORMED); |
||||
|
||||
cv::Mat dst(d_dst); |
||||
|
||||
cv::Point minLoc, maxLoc; |
||||
double minVal, maxVal; |
||||
cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc); |
||||
|
||||
cv::Mat dstGold; |
||||
cv::matchTemplate(image, pattern, dstGold, cv::TM_CCOEFF_NORMED); |
||||
|
||||
double minValGold, maxValGold; |
||||
cv::Point minLocGold, maxLocGold; |
||||
cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold); |
||||
|
||||
ASSERT_EQ(minLocGold, minLoc); |
||||
ASSERT_EQ(maxLocGold, maxLoc); |
||||
ASSERT_LE(maxVal, 1.0); |
||||
ASSERT_GE(minVal, -1.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CCOEF_NORMED, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png"))))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate_CanFindBigTemplate
|
||||
|
||||
struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED) |
||||
{ |
||||
cv::Mat scene = readImage("matchtemplate/scene.png"); |
||||
ASSERT_FALSE(scene.empty()); |
||||
|
||||
cv::Mat templ = readImage("matchtemplate/template.png"); |
||||
ASSERT_FALSE(templ.empty()); |
||||
|
||||
cv::gpu::GpuMat d_result; |
||||
cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF_NORMED); |
||||
|
||||
cv::Mat result(d_result); |
||||
|
||||
double minVal; |
||||
cv::Point minLoc; |
||||
cv::minMaxLoc(result, &minVal, 0, &minLoc, 0); |
||||
|
||||
ASSERT_GE(minVal, 0); |
||||
ASSERT_LT(minVal, 1e-3); |
||||
ASSERT_EQ(344, minLoc.x); |
||||
ASSERT_EQ(0, minLoc.y); |
||||
} |
||||
|
||||
GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF) |
||||
{ |
||||
cv::Mat scene = readImage("matchtemplate/scene.png"); |
||||
ASSERT_FALSE(scene.empty()); |
||||
|
||||
cv::Mat templ = readImage("matchtemplate/template.png"); |
||||
ASSERT_FALSE(templ.empty()); |
||||
|
||||
cv::gpu::GpuMat d_result; |
||||
cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF); |
||||
|
||||
cv::Mat result(d_result); |
||||
|
||||
double minVal; |
||||
cv::Point minLoc; |
||||
cv::minMaxLoc(result, &minVal, 0, &minLoc, 0); |
||||
|
||||
ASSERT_GE(minVal, 0); |
||||
ASSERT_EQ(344, minLoc.x); |
||||
ASSERT_EQ(0, minLoc.y); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -0,0 +1,174 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
using namespace cvtest; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MeanShift
|
||||
|
||||
struct MeanShift : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::Mat img; |
||||
|
||||
int spatialRad; |
||||
int colorRad; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
img = readImageType("meanshift/cones.png", CV_8UC4); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
spatialRad = 30; |
||||
colorRad = 30; |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MeanShift, Filtering) |
||||
{ |
||||
cv::Mat img_template; |
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
img_template = readImage("meanshift/con_result.png"); |
||||
else |
||||
img_template = readImage("meanshift/con_result_CC1X.png"); |
||||
ASSERT_FALSE(img_template.empty()); |
||||
|
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::meanShiftFiltering(loadMat(img), d_dst, spatialRad, colorRad); |
||||
|
||||
ASSERT_EQ(CV_8UC4, d_dst.type()); |
||||
|
||||
cv::Mat dst(d_dst); |
||||
|
||||
cv::Mat result; |
||||
cv::cvtColor(dst, result, cv::COLOR_BGRA2BGR); |
||||
|
||||
EXPECT_MAT_NEAR(img_template, result, 0.0); |
||||
} |
||||
|
||||
GPU_TEST_P(MeanShift, Proc) |
||||
{ |
||||
cv::FileStorage fs; |
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ); |
||||
else |
||||
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ); |
||||
ASSERT_TRUE(fs.isOpened()); |
||||
|
||||
cv::Mat spmap_template; |
||||
fs["spmap"] >> spmap_template; |
||||
ASSERT_FALSE(spmap_template.empty()); |
||||
|
||||
cv::gpu::GpuMat rmap_filtered; |
||||
cv::gpu::meanShiftFiltering(loadMat(img), rmap_filtered, spatialRad, colorRad); |
||||
|
||||
cv::gpu::GpuMat rmap; |
||||
cv::gpu::GpuMat spmap; |
||||
cv::gpu::meanShiftProc(loadMat(img), rmap, spmap, spatialRad, colorRad); |
||||
|
||||
ASSERT_EQ(CV_8UC4, rmap.type()); |
||||
|
||||
EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0); |
||||
EXPECT_MAT_NEAR(spmap_template, spmap, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShift, ALL_DEVICES); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MeanShiftSegmentation
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(MinSize, int); |
||||
} |
||||
|
||||
PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int minsize; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GET_PARAM(0); |
||||
minsize = GET_PARAM(1); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
GPU_TEST_P(MeanShiftSegmentation, Regression) |
||||
{ |
||||
cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
std::ostringstream path; |
||||
path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize; |
||||
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
path << ".png"; |
||||
else |
||||
path << "_CC1X.png"; |
||||
cv::Mat dst_gold = readImage(path.str()); |
||||
ASSERT_FALSE(dst_gold.empty()); |
||||
|
||||
cv::Mat dst; |
||||
cv::gpu::meanShiftSegmentation(loadMat(img), dst, 10, 10, minsize); |
||||
|
||||
cv::Mat dst_rgb; |
||||
cv::cvtColor(dst, dst_rgb, cv::COLOR_BGRA2BGR); |
||||
|
||||
EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShiftSegmentation, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MinSize(0), MinSize(4), MinSize(20), MinSize(84), MinSize(340), MinSize(1364)))); |
||||
|
||||
#endif // HAVE_CUDA
|
Loading…
Reference in new issue