|
|
|
@ -42,7 +42,6 @@ |
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
#include "limits" |
|
|
|
|
//#include "math.h"
|
|
|
|
|
|
|
|
|
|
#include <iostream> |
|
|
|
|
|
|
|
|
@ -76,9 +75,9 @@ public: |
|
|
|
|
|
|
|
|
|
virtual void clear(); |
|
|
|
|
|
|
|
|
|
virtual void write(FileStorage& fs) const; |
|
|
|
|
virtual void write(FileStorage &fs) const; |
|
|
|
|
|
|
|
|
|
virtual void read(const FileNode& fn); |
|
|
|
|
virtual void read(const FileNode &fn); |
|
|
|
|
|
|
|
|
|
virtual Mat getWeights(){ return weights_; } |
|
|
|
|
|
|
|
|
@ -88,11 +87,15 @@ public: |
|
|
|
|
|
|
|
|
|
virtual String getDefaultName() const {return "opencv_ml_svmsgd";} |
|
|
|
|
|
|
|
|
|
virtual void setOptimalParameters(int type = ASGD); |
|
|
|
|
virtual void setOptimalParameters(int svmsgdType = ASGD, int marginType = SOFT_MARGIN); |
|
|
|
|
|
|
|
|
|
virtual int getType() const; |
|
|
|
|
virtual int getSvmsgdType() const; |
|
|
|
|
|
|
|
|
|
virtual void setType(int type); |
|
|
|
|
virtual void setSvmsgdType(int svmsgdType); |
|
|
|
|
|
|
|
|
|
virtual int getMarginType() const; |
|
|
|
|
|
|
|
|
|
virtual void setMarginType(int marginType); |
|
|
|
|
|
|
|
|
|
CV_IMPL_PROPERTY(float, Lambda, params.lambda) |
|
|
|
|
CV_IMPL_PROPERTY(float, Gamma0, params.gamma0) |
|
|
|
@ -100,21 +103,21 @@ public: |
|
|
|
|
CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit) |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
void updateWeights(InputArray sample, bool isFirstClass, float gamma, Mat weights); |
|
|
|
|
void updateWeights(InputArray sample, bool isFirstClass, float gamma, Mat &weights); |
|
|
|
|
|
|
|
|
|
std::pair<bool,bool> areClassesEmpty(Mat responses); |
|
|
|
|
|
|
|
|
|
void writeParams( FileStorage& fs ) const; |
|
|
|
|
void writeParams( FileStorage &fs ) const; |
|
|
|
|
|
|
|
|
|
void readParams( const FileNode& fn ); |
|
|
|
|
void readParams( const FileNode &fn ); |
|
|
|
|
|
|
|
|
|
static inline bool isFirstClass(float val) { return val > 0; } |
|
|
|
|
|
|
|
|
|
static void normalizeSamples(Mat &matrix, Mat &multiplier, Mat &average); |
|
|
|
|
static void normalizeSamples(Mat &matrix, Mat &average, float &multiplier); |
|
|
|
|
|
|
|
|
|
float calcShift(InputArray _samples, InputArray _responses) const; |
|
|
|
|
|
|
|
|
|
static void makeExtendedTrainSamples(const Mat trainSamples, Mat &extendedTrainSamples, Mat &multiplier); |
|
|
|
|
static void makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -130,6 +133,7 @@ private: |
|
|
|
|
float c; |
|
|
|
|
TermCriteria termCrit; |
|
|
|
|
SvmsgdType svmsgdType; |
|
|
|
|
MarginType marginType; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
SVMSGDParams params; |
|
|
|
@ -160,7 +164,7 @@ std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses) |
|
|
|
|
return emptyInClasses; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &multiplier, Mat &average) |
|
|
|
|
void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier) |
|
|
|
|
{ |
|
|
|
|
int featuresCount = samples.cols; |
|
|
|
|
int samplesCount = samples.rows; |
|
|
|
@ -176,37 +180,25 @@ void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &multiplier, Mat &average) |
|
|
|
|
samples.row(sampleIndex) -= average; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat featureNorm(1, featuresCount, samples.type()); |
|
|
|
|
for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++) |
|
|
|
|
{ |
|
|
|
|
featureNorm.at<float>(featureIndex) = norm(samples.col(featureIndex)); |
|
|
|
|
} |
|
|
|
|
double normValue = norm(samples); |
|
|
|
|
|
|
|
|
|
multiplier = sqrt(samplesCount) / featureNorm; |
|
|
|
|
for (int sampleIndex = 0; sampleIndex < samplesCount; sampleIndex++) |
|
|
|
|
{ |
|
|
|
|
samples.row(sampleIndex) = samples.row(sampleIndex).mul(multiplier); |
|
|
|
|
} |
|
|
|
|
multiplier = sqrt(samples.total()) / normValue; |
|
|
|
|
|
|
|
|
|
samples *= multiplier; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::makeExtendedTrainSamples(const Mat trainSamples, Mat &extendedTrainSamples, Mat &multiplier) |
|
|
|
|
void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier) |
|
|
|
|
{ |
|
|
|
|
Mat normalisedTrainSamples = trainSamples.clone(); |
|
|
|
|
int samplesCount = normalisedTrainSamples.rows; |
|
|
|
|
|
|
|
|
|
Mat average; |
|
|
|
|
|
|
|
|
|
normalizeSamples(normalisedTrainSamples, multiplier, average); |
|
|
|
|
normalizeSamples(normalisedTrainSamples, average, multiplier); |
|
|
|
|
|
|
|
|
|
Mat onesCol = Mat::ones(samplesCount, 1, CV_32F); |
|
|
|
|
cv::hconcat(normalisedTrainSamples, onesCol, extendedTrainSamples); |
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::makeExtendedTrainSamples average: \n" << average << endl;
|
|
|
|
|
//cout << "SVMSGDImpl::makeExtendedTrainSamples multiplier: \n" << multiplier << endl;
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma, Mat weights) |
|
|
|
|
void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma, Mat& weights) |
|
|
|
|
{ |
|
|
|
|
Mat sample = _sample.getMat(); |
|
|
|
|
|
|
|
|
@ -226,7 +218,7 @@ void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma, |
|
|
|
|
|
|
|
|
|
float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const |
|
|
|
|
{ |
|
|
|
|
float distance_to_classes[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() }; |
|
|
|
|
float distanceToClasses[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() }; |
|
|
|
|
|
|
|
|
|
Mat trainSamples = _samples.getMat(); |
|
|
|
|
int trainSamplesCount = trainSamples.rows; |
|
|
|
@ -241,36 +233,29 @@ float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const |
|
|
|
|
bool firstClass = isFirstClass(trainResponses.at<float>(samplesIndex)); |
|
|
|
|
int index = firstClass ? 0:1; |
|
|
|
|
float signToMul = firstClass ? 1 : -1; |
|
|
|
|
float cur_distance = dotProduct * signToMul; |
|
|
|
|
float curDistance = dotProduct * signToMul; |
|
|
|
|
|
|
|
|
|
if (cur_distance < distance_to_classes[index]) |
|
|
|
|
if (curDistance < distanceToClasses[index]) |
|
|
|
|
{ |
|
|
|
|
distance_to_classes[index] = cur_distance; |
|
|
|
|
distanceToClasses[index] = curDistance; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return -(distance_to_classes[0] - distance_to_classes[1]) / 2.f; |
|
|
|
|
return -(distanceToClasses[0] - distanceToClasses[1]) / 2.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool SVMSGDImpl::train(const Ptr<TrainData>& data, int) |
|
|
|
|
{ |
|
|
|
|
//cout << "SVMSGDImpl::train begin" << endl;
|
|
|
|
|
clear(); |
|
|
|
|
CV_Assert( isClassifier() ); //toDo: consider
|
|
|
|
|
|
|
|
|
|
Mat trainSamples = data->getTrainSamples(); |
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::train trainSamples: \n" << trainSamples << endl;
|
|
|
|
|
|
|
|
|
|
int featureCount = trainSamples.cols; |
|
|
|
|
Mat trainResponses = data->getTrainResponses(); // (trainSamplesCount x 1) matrix
|
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::train trainresponses: \n" << trainResponses << endl;
|
|
|
|
|
|
|
|
|
|
std::pair<bool,bool> areEmpty = areClassesEmpty(trainResponses); |
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::train areEmpty" << areEmpty.first << "," << areEmpty.second << endl;
|
|
|
|
|
|
|
|
|
|
if ( areEmpty.first && areEmpty.second ) |
|
|
|
|
{ |
|
|
|
|
return false; |
|
|
|
@ -283,10 +268,9 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int) |
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Mat extendedTrainSamples; |
|
|
|
|
Mat multiplier; |
|
|
|
|
makeExtendedTrainSamples(trainSamples, extendedTrainSamples, multiplier); |
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::train extendedTrainSamples: \n" << extendedTrainSamples << endl;
|
|
|
|
|
Mat average; |
|
|
|
|
float multiplier = 0; |
|
|
|
|
makeExtendedTrainSamples(trainSamples, extendedTrainSamples, average, multiplier); |
|
|
|
|
|
|
|
|
|
int extendedTrainSamplesCount = extendedTrainSamples.rows; |
|
|
|
|
int extendedFeatureCount = extendedTrainSamples.cols; |
|
|
|
@ -301,6 +285,7 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int) |
|
|
|
|
|
|
|
|
|
RNG rng(0); |
|
|
|
|
|
|
|
|
|
CV_Assert (params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS); |
|
|
|
|
int maxCount = (params.termCrit.type & TermCriteria::COUNT) ? params.termCrit.maxCount : INT_MAX; |
|
|
|
|
double epsilon = (params.termCrit.type & TermCriteria::EPS) ? params.termCrit.epsilon : 0; |
|
|
|
|
|
|
|
|
@ -336,17 +321,20 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int) |
|
|
|
|
extendedWeights = averageExtendedWeights; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::train extendedWeights: \n" << extendedWeights << endl;
|
|
|
|
|
|
|
|
|
|
Rect roi(0, 0, featureCount, 1); |
|
|
|
|
weights_ = extendedWeights(roi); |
|
|
|
|
weights_ = weights_.mul(1/multiplier); |
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::train weights: \n" << weights_ << endl;
|
|
|
|
|
weights_ *= multiplier; |
|
|
|
|
|
|
|
|
|
shift_ = calcShift(trainSamples, trainResponses); |
|
|
|
|
CV_Assert(params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN); |
|
|
|
|
|
|
|
|
|
//cout << "SVMSGDImpl::train shift = " << shift_ << endl;
|
|
|
|
|
if (params.marginType == SOFT_MARGIN) |
|
|
|
|
{ |
|
|
|
|
shift_ = extendedWeights.at<float>(featureCount) - weights_.dot(average); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
shift_ = calcShift(trainSamples, trainResponses); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
@ -385,6 +373,8 @@ float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) cons |
|
|
|
|
bool SVMSGDImpl::isClassifier() const |
|
|
|
|
{ |
|
|
|
|
return (params.svmsgdType == SGD || params.svmsgdType == ASGD) |
|
|
|
|
&& |
|
|
|
|
(params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN) |
|
|
|
|
&& |
|
|
|
|
(params.lambda > 0) && (params.gamma0 > 0) && (params.c >= 0); |
|
|
|
|
} |
|
|
|
@ -417,15 +407,32 @@ void SVMSGDImpl::writeParams( FileStorage& fs ) const |
|
|
|
|
case ASGD: |
|
|
|
|
SvmsgdTypeStr = "ASGD"; |
|
|
|
|
break; |
|
|
|
|
case ILLEGAL_VALUE: |
|
|
|
|
SvmsgdTypeStr = format("Uknown_%d", params.svmsgdType); |
|
|
|
|
case ILLEGAL_SVMSGD_TYPE: |
|
|
|
|
SvmsgdTypeStr = format("Unknown_%d", params.svmsgdType); |
|
|
|
|
default: |
|
|
|
|
std::cout << "params.svmsgdType isn't initialized" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fs << "svmsgdType" << SvmsgdTypeStr; |
|
|
|
|
|
|
|
|
|
String marginTypeStr; |
|
|
|
|
|
|
|
|
|
switch (params.marginType) |
|
|
|
|
{ |
|
|
|
|
case SOFT_MARGIN: |
|
|
|
|
marginTypeStr = "SOFT_MARGIN"; |
|
|
|
|
break; |
|
|
|
|
case HARD_MARGIN: |
|
|
|
|
marginTypeStr = "HARD_MARGIN"; |
|
|
|
|
break; |
|
|
|
|
case ILLEGAL_MARGIN_TYPE: |
|
|
|
|
marginTypeStr = format("Unknown_%d", params.marginType); |
|
|
|
|
default: |
|
|
|
|
std::cout << "params.marginType isn't initialized" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
fs << "marginType" << marginTypeStr; |
|
|
|
|
|
|
|
|
|
fs << "lambda" << params.lambda; |
|
|
|
|
fs << "gamma0" << params.gamma0; |
|
|
|
|
fs << "c" << params.c; |
|
|
|
@ -438,8 +445,6 @@ void SVMSGDImpl::writeParams( FileStorage& fs ) const |
|
|
|
|
fs << "}"; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::read(const FileNode& fn) |
|
|
|
|
{ |
|
|
|
|
clear(); |
|
|
|
@ -455,13 +460,23 @@ void SVMSGDImpl::readParams( const FileNode& fn ) |
|
|
|
|
String svmsgdTypeStr = (String)fn["svmsgdType"]; |
|
|
|
|
SvmsgdType svmsgdType = |
|
|
|
|
svmsgdTypeStr == "SGD" ? SGD : |
|
|
|
|
svmsgdTypeStr == "ASGD" ? ASGD : ILLEGAL_VALUE; |
|
|
|
|
svmsgdTypeStr == "ASGD" ? ASGD : ILLEGAL_SVMSGD_TYPE; |
|
|
|
|
|
|
|
|
|
if( svmsgdType == ILLEGAL_VALUE ) |
|
|
|
|
if( svmsgdType == ILLEGAL_SVMSGD_TYPE ) |
|
|
|
|
CV_Error( CV_StsParseError, "Missing or invalid SVMSGD type" ); |
|
|
|
|
|
|
|
|
|
params.svmsgdType = svmsgdType; |
|
|
|
|
|
|
|
|
|
String marginTypeStr = (String)fn["marginType"]; |
|
|
|
|
MarginType marginType = |
|
|
|
|
marginTypeStr == "SOFT_MARGIN" ? SOFT_MARGIN : |
|
|
|
|
marginTypeStr == "HARD_MARGIN" ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE; |
|
|
|
|
|
|
|
|
|
if( marginType == ILLEGAL_MARGIN_TYPE ) |
|
|
|
|
CV_Error( CV_StsParseError, "Missing or invalid margin type" ); |
|
|
|
|
|
|
|
|
|
params.marginType = marginType; |
|
|
|
|
|
|
|
|
|
CV_Assert ( fn["lambda"].isReal() ); |
|
|
|
|
params.lambda = (float)fn["lambda"]; |
|
|
|
|
|
|
|
|
@ -494,7 +509,8 @@ SVMSGDImpl::SVMSGDImpl() |
|
|
|
|
{ |
|
|
|
|
clear(); |
|
|
|
|
|
|
|
|
|
params.svmsgdType = ILLEGAL_VALUE; |
|
|
|
|
params.svmsgdType = ILLEGAL_SVMSGD_TYPE; |
|
|
|
|
params.marginType = ILLEGAL_MARGIN_TYPE; |
|
|
|
|
|
|
|
|
|
// Parameters for learning
|
|
|
|
|
params.lambda = 0; // regularization
|
|
|
|
@ -505,26 +521,28 @@ SVMSGDImpl::SVMSGDImpl() |
|
|
|
|
params.termCrit = _termCrit; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::setOptimalParameters(int type) |
|
|
|
|
void SVMSGDImpl::setOptimalParameters(int svmsgdType, int marginType) |
|
|
|
|
{ |
|
|
|
|
switch (type) |
|
|
|
|
switch (svmsgdType) |
|
|
|
|
{ |
|
|
|
|
case SGD: |
|
|
|
|
params.svmsgdType = SGD; |
|
|
|
|
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN : |
|
|
|
|
(marginType == HARD_MARGIN) ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE; |
|
|
|
|
params.lambda = 0.0001; |
|
|
|
|
params.gamma0 = 0.05; |
|
|
|
|
params.c = 1; |
|
|
|
|
params.termCrit.maxCount = 100000; |
|
|
|
|
params.termCrit.epsilon = 0.00001; |
|
|
|
|
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001); |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
case ASGD: |
|
|
|
|
params.svmsgdType = ASGD; |
|
|
|
|
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN : |
|
|
|
|
(marginType == HARD_MARGIN) ? HARD_MARGIN : ILLEGAL_MARGIN_TYPE; |
|
|
|
|
params.lambda = 0.00001; |
|
|
|
|
params.gamma0 = 0.05; |
|
|
|
|
params.c = 0.75; |
|
|
|
|
params.termCrit.maxCount = 100000; |
|
|
|
|
params.termCrit.epsilon = 0.00001; |
|
|
|
|
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001); |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
default: |
|
|
|
@ -532,7 +550,7 @@ void SVMSGDImpl::setOptimalParameters(int type) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::setType(int type) |
|
|
|
|
void SVMSGDImpl::setSvmsgdType(int type) |
|
|
|
|
{ |
|
|
|
|
switch (type) |
|
|
|
|
{ |
|
|
|
@ -543,13 +561,33 @@ void SVMSGDImpl::setType(int type) |
|
|
|
|
params.svmsgdType = ASGD; |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
params.svmsgdType = ILLEGAL_VALUE; |
|
|
|
|
params.svmsgdType = ILLEGAL_SVMSGD_TYPE; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int SVMSGDImpl::getType() const |
|
|
|
|
int SVMSGDImpl::getSvmsgdType() const |
|
|
|
|
{ |
|
|
|
|
return params.svmsgdType; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::setMarginType(int type) |
|
|
|
|
{ |
|
|
|
|
switch (type) |
|
|
|
|
{ |
|
|
|
|
case HARD_MARGIN: |
|
|
|
|
params.marginType = HARD_MARGIN; |
|
|
|
|
break; |
|
|
|
|
case SOFT_MARGIN: |
|
|
|
|
params.marginType = SOFT_MARGIN; |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
params.marginType = ILLEGAL_MARGIN_TYPE; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int SVMSGDImpl::getMarginType() const |
|
|
|
|
{ |
|
|
|
|
return params.marginType; |
|
|
|
|
} |
|
|
|
|
} //ml
|
|
|
|
|
} //cv
|
|
|
|
|