|
|
|
@ -61,62 +61,87 @@ public: |
|
|
|
|
{ |
|
|
|
|
std::vector<Mat> images; |
|
|
|
|
src.getMatVector(images); |
|
|
|
|
dst.create(images[0].size(), CV_MAKETYPE(CV_32F, images[0].channels())); |
|
|
|
|
Mat result = dst.getMat(); |
|
|
|
|
|
|
|
|
|
CV_Assert(images.size() == times.size()); |
|
|
|
|
CV_Assert(images[0].depth() == CV_8U); |
|
|
|
|
checkImageDimensions(images); |
|
|
|
|
|
|
|
|
|
Mat response = input_response.getMat(); |
|
|
|
|
CV_Assert(response.rows == 256 && response.cols >= images[0].channels()); |
|
|
|
|
Mat log_response; |
|
|
|
|
log(response, log_response); |
|
|
|
|
|
|
|
|
|
std::vector<float> exp_times(times.size()); |
|
|
|
|
for(size_t i = 0; i < exp_times.size(); i++) { |
|
|
|
|
exp_times[i] = logf(times[i]); |
|
|
|
|
} |
|
|
|
|
CV_Assert(images[0].depth() == CV_8U); |
|
|
|
|
|
|
|
|
|
int channels = images[0].channels(); |
|
|
|
|
float *res_ptr = result.ptr<float>(); |
|
|
|
|
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += channels) { |
|
|
|
|
Size size = images[0].size(); |
|
|
|
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
|
|
|
|
|
|
|
|
dst.create(images[0].size(), CV_32FCC); |
|
|
|
|
Mat result = dst.getMat(); |
|
|
|
|
|
|
|
|
|
std::vector<float> sum(channels, 0); |
|
|
|
|
float weight_sum = 0; |
|
|
|
|
for(size_t im = 0; im < images.size(); im++) { |
|
|
|
|
Mat response = input_response.getMat(); |
|
|
|
|
|
|
|
|
|
uchar *img_ptr = images[im].ptr() + channels * pos; |
|
|
|
|
float w = 0; |
|
|
|
|
for(int channel = 0; channel < channels; channel++) { |
|
|
|
|
w += weights.at<float>(img_ptr[channel]); |
|
|
|
|
} |
|
|
|
|
w /= channels;
|
|
|
|
|
weight_sum += w; |
|
|
|
|
for(int channel = 0; channel < channels; channel++) { |
|
|
|
|
sum[channel] += w * (log_response.at<float>(img_ptr[channel], channel) - exp_times[im]); |
|
|
|
|
} |
|
|
|
|
if(response.empty()) { |
|
|
|
|
response = linearResponse(channels); |
|
|
|
|
} |
|
|
|
|
log(response, response); |
|
|
|
|
CV_Assert(response.rows == 256 && response.cols == 1 &&
|
|
|
|
|
response.channels() == channels); |
|
|
|
|
|
|
|
|
|
Mat exp_values(times); |
|
|
|
|
log(exp_values, exp_values); |
|
|
|
|
|
|
|
|
|
result = Mat::zeros(size, CV_32FCC); |
|
|
|
|
std::vector<Mat> result_split; |
|
|
|
|
split(result, result_split); |
|
|
|
|
Mat weight_sum = Mat::zeros(size, CV_32F); |
|
|
|
|
|
|
|
|
|
for(size_t i = 0; i < images.size(); i++) { |
|
|
|
|
std::vector<Mat> splitted; |
|
|
|
|
split(images[i], splitted); |
|
|
|
|
|
|
|
|
|
Mat w = Mat::zeros(size, CV_32F); |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
LUT(splitted[c], weights, splitted[c]); |
|
|
|
|
w += splitted[c]; |
|
|
|
|
} |
|
|
|
|
for(int channel = 0; channel < channels; channel++) { |
|
|
|
|
res_ptr[channel] = exp(sum[channel] / weight_sum); |
|
|
|
|
w /= channels; |
|
|
|
|
|
|
|
|
|
Mat response_img; |
|
|
|
|
LUT(images[i], response, response_img); |
|
|
|
|
split(response_img, splitted); |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
result_split[c] += w.mul(splitted[c] - exp_values.at<float>(i)); |
|
|
|
|
} |
|
|
|
|
weight_sum += w; |
|
|
|
|
} |
|
|
|
|
weight_sum = 1.0f / weight_sum; |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
result_split[c] = result_split[c].mul(weight_sum); |
|
|
|
|
} |
|
|
|
|
merge(result_split, result); |
|
|
|
|
exp(result, result); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times) |
|
|
|
|
{ |
|
|
|
|
Mat response(256, 3, CV_32F); |
|
|
|
|
for(int i = 0; i < 256; i++) { |
|
|
|
|
for(int j = 0; j < 3; j++) { |
|
|
|
|
response.at<float>(i, j) = static_cast<float>(max(i, 1)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
process(src, dst, times, response); |
|
|
|
|
process(src, dst, times, Mat()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
|
String name; |
|
|
|
|
Mat weights; |
|
|
|
|
|
|
|
|
|
Mat linearResponse(int channels) |
|
|
|
|
{ |
|
|
|
|
Mat single_response = Mat(256, 1, CV_32F); |
|
|
|
|
for(int i = 1; i < 256; i++) { |
|
|
|
|
single_response.at<float>(i) = static_cast<float>(i); |
|
|
|
|
} |
|
|
|
|
single_response.at<float>(0) = static_cast<float>(1); |
|
|
|
|
|
|
|
|
|
std::vector<Mat> splitted(channels); |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
splitted[c] = single_response; |
|
|
|
|
} |
|
|
|
|
Mat result; |
|
|
|
|
merge(splitted, result); |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
Ptr<MergeDebevec> createMergeDebevec() |
|
|
|
@ -146,33 +171,48 @@ public: |
|
|
|
|
src.getMatVector(images); |
|
|
|
|
checkImageDimensions(images); |
|
|
|
|
|
|
|
|
|
int channels = images[0].channels(); |
|
|
|
|
CV_Assert(channels == 1 || channels == 3); |
|
|
|
|
Size size = images[0].size(); |
|
|
|
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
|
|
|
|
|
|
|
|
std::vector<Mat> weights(images.size()); |
|
|
|
|
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1); |
|
|
|
|
for(size_t im = 0; im < images.size(); im++) { |
|
|
|
|
Mat weight_sum = Mat::zeros(size, CV_32F); |
|
|
|
|
|
|
|
|
|
for(size_t i = 0; i < images.size(); i++) { |
|
|
|
|
Mat img, gray, contrast, saturation, wellexp; |
|
|
|
|
std::vector<Mat> channels(3); |
|
|
|
|
std::vector<Mat> splitted(channels); |
|
|
|
|
|
|
|
|
|
images[im].convertTo(img, CV_32FC3, 1.0/255.0); |
|
|
|
|
cvtColor(img, gray, COLOR_RGB2GRAY); |
|
|
|
|
split(img, channels); |
|
|
|
|
images[i].convertTo(img, CV_32F, 1.0f/255.0f); |
|
|
|
|
if(channels == 3) { |
|
|
|
|
cvtColor(img, gray, COLOR_RGB2GRAY); |
|
|
|
|
} else { |
|
|
|
|
img.copyTo(gray); |
|
|
|
|
} |
|
|
|
|
split(img, splitted); |
|
|
|
|
|
|
|
|
|
Laplacian(gray, contrast, CV_32F); |
|
|
|
|
contrast = abs(contrast); |
|
|
|
|
|
|
|
|
|
Mat mean = (channels[0] + channels[1] + channels[2]) / 3.0f; |
|
|
|
|
saturation = Mat::zeros(channels[0].size(), CV_32FC1); |
|
|
|
|
for(int i = 0; i < 3; i++) { |
|
|
|
|
Mat deviation = channels[i] - mean; |
|
|
|
|
pow(deviation, 2.0, deviation); |
|
|
|
|
Mat mean = Mat::zeros(size, CV_32F); |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
mean += splitted[c]; |
|
|
|
|
} |
|
|
|
|
mean /= channels; |
|
|
|
|
|
|
|
|
|
saturation = Mat::zeros(size, CV_32F); |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
Mat deviation = splitted[c] - mean; |
|
|
|
|
pow(deviation, 2.0f, deviation); |
|
|
|
|
saturation += deviation; |
|
|
|
|
} |
|
|
|
|
sqrt(saturation, saturation); |
|
|
|
|
|
|
|
|
|
wellexp = Mat::ones(gray.size(), CV_32FC1); |
|
|
|
|
for(int i = 0; i < 3; i++) { |
|
|
|
|
Mat exp = channels[i] - 0.5f; |
|
|
|
|
pow(exp, 2, exp); |
|
|
|
|
exp = -exp / 0.08; |
|
|
|
|
wellexp = Mat::ones(size, CV_32F); |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
Mat exp = splitted[c] - 0.5f; |
|
|
|
|
pow(exp, 2.0f, exp); |
|
|
|
|
exp = -exp / 0.08f; |
|
|
|
|
wellexp = wellexp.mul(exp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -180,33 +220,37 @@ public: |
|
|
|
|
pow(saturation, wsat, saturation); |
|
|
|
|
pow(wellexp, wexp, wellexp); |
|
|
|
|
|
|
|
|
|
weights[im] = contrast; |
|
|
|
|
weights[im] = weights[im].mul(saturation); |
|
|
|
|
weights[im] = weights[im].mul(wellexp); |
|
|
|
|
weight_sum += weights[im]; |
|
|
|
|
weights[i] = contrast; |
|
|
|
|
if(channels == 3) { |
|
|
|
|
weights[i] = weights[i].mul(saturation); |
|
|
|
|
} |
|
|
|
|
weights[i] = weights[i].mul(wellexp); |
|
|
|
|
weight_sum += weights[i]; |
|
|
|
|
} |
|
|
|
|
int maxlevel = static_cast<int>(logf(static_cast<float>(max(images[0].rows, images[0].cols))) / logf(2.0)) - 1; |
|
|
|
|
int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f)); |
|
|
|
|
std::vector<Mat> res_pyr(maxlevel + 1); |
|
|
|
|
|
|
|
|
|
for(size_t im = 0; im < images.size(); im++) { |
|
|
|
|
weights[im] /= weight_sum; |
|
|
|
|
for(size_t i = 0; i < images.size(); i++) { |
|
|
|
|
weights[i] /= weight_sum; |
|
|
|
|
Mat img; |
|
|
|
|
images[im].convertTo(img, CV_32FC3, 1/255.0); |
|
|
|
|
images[i].convertTo(img, CV_32F, 1.0f/255.0f); |
|
|
|
|
|
|
|
|
|
std::vector<Mat> img_pyr, weight_pyr; |
|
|
|
|
buildPyramid(img, img_pyr, maxlevel); |
|
|
|
|
buildPyramid(weights[im], weight_pyr, maxlevel); |
|
|
|
|
buildPyramid(weights[i], weight_pyr, maxlevel); |
|
|
|
|
|
|
|
|
|
for(int lvl = 0; lvl < maxlevel; lvl++) { |
|
|
|
|
Mat up; |
|
|
|
|
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size()); |
|
|
|
|
img_pyr[lvl] -= up; |
|
|
|
|
} |
|
|
|
|
for(int lvl = 0; lvl <= maxlevel; lvl++) { |
|
|
|
|
std::vector<Mat> channels(3); |
|
|
|
|
split(img_pyr[lvl], channels); |
|
|
|
|
for(int i = 0; i < 3; i++) { |
|
|
|
|
channels[i] = channels[i].mul(weight_pyr[lvl]); |
|
|
|
|
std::vector<Mat> splitted(channels); |
|
|
|
|
split(img_pyr[lvl], splitted); |
|
|
|
|
for(int c = 0; c < channels; c++) { |
|
|
|
|
splitted[c] = splitted[c].mul(weight_pyr[lvl]); |
|
|
|
|
} |
|
|
|
|
merge(channels, img_pyr[lvl]); |
|
|
|
|
merge(splitted, img_pyr[lvl]); |
|
|
|
|
if(res_pyr[lvl].empty()) { |
|
|
|
|
res_pyr[lvl] = img_pyr[lvl]; |
|
|
|
|
} else { |
|
|
|
@ -219,7 +263,7 @@ public: |
|
|
|
|
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size()); |
|
|
|
|
res_pyr[lvl - 1] += up; |
|
|
|
|
} |
|
|
|
|
dst.create(images[0].size(), CV_32FC3); |
|
|
|
|
dst.create(size, CV_32FCC); |
|
|
|
|
res_pyr[0].copyTo(dst.getMat()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|