warpFrame() test draft + script generating test data

pull/22150/head
Rostislav Vasilikhin 3 years ago
parent df490c6399
commit bee410c748
  1. 113
      modules/3d/misc/python/warp_test.py
  2. 16
      modules/3d/src/rgbd/odometry.cpp
  3. 57
      modules/3d/test/test_odometry.cpp

@ -0,0 +1,113 @@
import numpy as np
from scipy.spatial.transform import Rotation
import imageio
# optional, works slower w/o it
from numba import jit
depthFactor = 5000
psize = (640, 480)
fx = 525.0
fy = 525.0
cx = psize[0]/2-0.5
cy = psize[1]/2-0.5
K = np.array([[fx, 0, cx],
[ 0, fy, cy],
[ 0, 0, 1]])
# some random transform
rmat = Rotation.from_rotvec(np.array([0.1, 0.2, 0.3])).as_dcm()
tmat = np.array([[-0.04, 0.05, 0.6]]).T
rtmat = np.vstack((np.hstack((rmat, tmat)), np.array([[0, 0, 0, 1]])))
#TODO: warp rgb image as well
testDataPath = "/path/to/sources/opencv_extra/testdata"
srcDepth = imageio.imread(testDataPath + "/cv/rgbd/depth.png")
@jit
def reproject(image, df, K):
Kinv = np.linalg.inv(K)
xsz, ysz = image.shape[1], image.shape[0]
reprojected = np.zeros((ysz, xsz, 3))
for y in range(ysz):
for x in range(xsz):
z = image[y, x]/df
v = Kinv @ np.array([x*z, y*z, z]).T
#xv = (x - cx)/fx * z
#yv = (y - cy)/fy * z
#zv = z
reprojected[y, x, :] = v[:]
return reprojected
@jit
def reprojectRtProject(image, K, depthFactor, rmat, tmat):
Kinv = np.linalg.inv(K)
xsz, ysz = image.shape[1], image.shape[0]
projected = np.zeros((ysz, xsz, 3))
for y in range(ysz):
for x in range(xsz):
z = image[y, x]/depthFactor
v = K @ (rmat @ Kinv @ np.array([x*z, y*z, z]).T + tmat[:, 0])
projected[y, x, :] = v[:]
return projected
@jit
def reprojectRt(image, K, depthFactor, rmat, tmat):
Kinv = np.linalg.inv(K)
xsz, ysz = image.shape[1], image.shape[0]
rotated = np.zeros((ysz, xsz, 3))
for y in range(ysz):
for x in range(xsz):
z = image[y, x]/depthFactor
v = rmat @ Kinv @ np.array([x*z, y*z, z]).T + tmat[:, 0]
rotated[y, x, :] = v[:]
return rotated
# put projected points on a depth map
@jit
def splat(projected, maxv):
xsz, ysz = projected.shape[1], projected.shape[0]
depth = np.full((ysz, xsz), maxv, np.float32)
for y in range(ysz):
for x in range(xsz):
p = projected[y, x, :]
z = p[2]
if z > 0:
u, v = int(p[0]/z), int(p[1]/z)
okuv = (u >= 0 and v >= 0 and u < xsz and v < ysz)
if okuv and depth[v, u] > z:
depth[v, u] = z
return depth
maxv = depthFactor
im2 = splat(reprojectRtProject(srcDepth, K, depthFactor, rmat, tmat), maxv)
im2[im2 >= maxv] = 0
im2 = im2*depthFactor
imageio.imwrite(testDataPath + "/cv/rgbd/warped.png", im2)
# debug
outObj = False
def outFile(path, ptsimg):
f = open(path, "w")
for y in range(ptsimg.shape[0]):
for x in range(ptsimg.shape[1]):
v = ptsimg[y, x, :]
if v[2] > 0:
f.write(f"v {v[0]} {v[1]} {v[2]}\n")
f.close()
if outObj:
objdir = "/path/to/objdir/"
outFile(objdir + "reproj_rot_proj.obj", reproject(im2, depthFactor, K))
outFile(objdir + "rotated.obj", reprojectRt(srcDepth, K, depthFactor, rmat, tmat))

@ -384,11 +384,15 @@ warpFrameImpl(InputArray _image, InputArray depth, InputArray _mask,
const Mat& Rt, const Mat& cameraMatrix, const Mat& distCoeff,
OutputArray _warpedImage, OutputArray warpedDepth, OutputArray warpedMask)
{
//TODO: take into account that image can be empty
//TODO: mask can also be empty
CV_Assert(_image.size() == depth.size());
Mat cloud;
depthTo3d(depth, cameraMatrix, cloud);
//TODO: replace this by channel split/merge after the function is covered by tests
Mat cloud3;
cloud3.create(cloud.size(), CV_32FC3);
for (int y = 0; y < cloud3.rows; y++)
@ -400,6 +404,8 @@ warpFrameImpl(InputArray _image, InputArray depth, InputArray _mask,
}
}
//TODO: do the following instead of the functions: K*R*Kinv*[uv1]*z + K*t
//TODO: optimize it using K's structure
std::vector<Point2f> points2d;
Mat transformedCloud;
perspectiveTransform(cloud3, transformedCloud, Rt);
@ -426,7 +432,8 @@ warpFrameImpl(InputArray _image, InputArray depth, InputArray _mask,
{
const float transformed_z = transformedCloud_row[x].z;
const Point2i p2d = points2d_row[x];
if ((!mask_row || mask_row[x]) && transformed_z > 0 && rect.contains(p2d) && /*!cvIsNaN(cloud_row[x].z) && */zBuffer.at<float>(p2d) > transformed_z)
if ((!mask_row || mask_row[x]) && transformed_z > 0 &&
rect.contains(p2d) && /*!cvIsNaN(cloud_row[x].z) && */zBuffer.at<float>(p2d) > transformed_z)
{
warpedImage.at<ImageElemType>(p2d) = image_row[x];
zBuffer.at<float>(p2d) = transformed_z;
@ -444,14 +451,17 @@ warpFrameImpl(InputArray _image, InputArray depth, InputArray _mask,
}
}
void warpFrame(InputArray image, InputArray depth, InputArray mask,
InputArray Rt, InputArray cameraMatrix, InputArray distCoeff,
OutputArray warpedImage, OutputArray warpedDepth, OutputArray warpedMask)
{
if (image.type() == CV_8UC1)
warpFrameImpl<uchar>(image, depth, mask, Rt.getMat(), cameraMatrix.getMat(), distCoeff.getMat(), warpedImage, warpedDepth, warpedMask);
warpFrameImpl<uchar>(image, depth, mask, Rt.getMat(), cameraMatrix.getMat(), distCoeff.getMat(),
warpedImage, warpedDepth, warpedMask);
else if (image.type() == CV_8UC3)
warpFrameImpl<Point3_<uchar> >(image, depth, mask, Rt.getMat(), cameraMatrix.getMat(), distCoeff.getMat(), warpedImage, warpedDepth, warpedMask);
warpFrameImpl<Point3_<uchar>>(image, depth, mask, Rt.getMat(), cameraMatrix.getMat(), distCoeff.getMat(),
warpedImage, warpedDepth, warpedMask);
else
CV_Error(Error::StsBadArg, "Image has to be type of CV_8UC1 or CV_8UC3");
}

@ -491,4 +491,61 @@ TEST(RGBD_Odometry_FastICP, prepareFrame)
test.prepareFrameCheck();
}
TEST(RGBD_Odometry_WarpFrame, compareToGold)
{
//TODO: identity transform
//TODO: finish it
std::string dataPath = cvtest::TS::ptr()->get_data_path();
std::string srcDepthFilename = dataPath + "/cv/rgbd/depth.png";
// The depth was generated using the script at 3d/misc/python/warp_test.py
std::string warpedDepthFilename = dataPath + "/cv/rgbd/warped.png";
Mat srcDepth, warpedDepth;
srcDepth = imread(srcDepthFilename, -1);
if(srcDepth.empty())
{
FAIL() << "Depth " << srcDepthFilename.c_str() << "can not be read" << std::endl;
}
warpedDepth = imread(warpedDepthFilename, -1);
if(warpedDepth.empty())
{
FAIL() << "Depth " << warpedDepthFilename.c_str() << "can not be read" << std::endl;
}
CV_DbgAssert(srcDepth.type() == CV_16UC1);
CV_DbgAssert(warpedDepth.type() == CV_16UC1);
double fx = 525.0, fy = 525.0,
cx = 319.5, cy = 239.5;
Matx33d K(fx, 0, cx,
0, fy, cy,
0, 0, 1);
cv::Affine3d rt(cv::Vec3d(0.1, 0.2, 0.3), cv::Vec3d(-0.04, 0.05, 0.6));
//TODO: check with and without scaling
Mat srcDepthCvt, warpedDepthCvt;
srcDepth.convertTo(srcDepthCvt, CV_32FC1, 1.f/5000.f);
srcDepth = srcDepthCvt;
warpedDepth.convertTo(warpedDepthCvt, CV_32FC1, 1.f/5000.f);
warpedDepth = warpedDepthCvt;
srcDepth.setTo(std::numeric_limits<float>::quiet_NaN(), srcDepth < FLT_EPSILON);
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth < FLT_EPSILON);
//TODO: check with and without image
//TODO: check with and without mask
//TODO: check with and without distCoeff
Mat image, mask, distCoeff, dstImage, dstDepth, dstMask;
warpFrame(image, srcDepth, mask, rt.matrix, K, distCoeff,
dstImage, dstDepth, dstMask);
//TODO: check this norm
double depthDiff = cv::norm(dstDepth, warpedDepth, NORM_L2);
//TODO: find true threshold, maybe based on pixcount
ASSERT_LE(0.1, depthDiff);
}
}} // namespace

Loading…
Cancel
Save