Merge pull request #1297 from SpecLad:merge-2.4

pull/1298/merge
Roman Donchenko 11 years ago committed by OpenCV Buildbot
commit beada19ad0
  1. 4
      3rdparty/libpng/CMakeLists.txt
  2. 22
      3rdparty/libpng/opencv-libpng.path
  3. 4
      3rdparty/libpng/pngpriv.h
  4. 4
      CMakeLists.txt
  5. 56
      cmake/OpenCVCRTLinkage.cmake
  6. 2
      cmake/OpenCVFindLibsGUI.cmake
  7. 2
      cmake/OpenCVFindLibsVideo.cmake
  8. 18
      cmake/OpenCVModule.cmake
  9. 13
      cmake/OpenCVPCHSupport.cmake
  10. 3
      cmake/templates/cvconfig.h.cmake
  11. 2
      doc/CMakeLists.txt
  12. 84
      doc/tutorials/calib3d/camera_calibration/camera_calibration.rst
  13. 2
      doc/tutorials/features2d/feature_detection/feature_detection.rst
  14. 1
      doc/tutorials/features2d/feature_flann_matcher/feature_flann_matcher.rst
  15. 2
      doc/tutorials/features2d/feature_homography/feature_homography.rst
  16. 1
      modules/calib3d/perf/perf_precomp.cpp
  17. 44
      modules/calib3d/src/precomp.cpp
  18. 1
      modules/calib3d/test/test_precomp.cpp
  19. 44
      modules/contrib/src/precomp.cpp
  20. 1
      modules/contrib/test/test_precomp.cpp
  21. 320
      modules/core/doc/basic_structures.rst
  22. 53
      modules/core/include/opencv2/core/persistence.hpp
  23. 3
      modules/core/include/opencv2/core/version.hpp
  24. 1
      modules/core/perf/perf_precomp.cpp
  25. 215
      modules/core/src/arithm.cpp
  26. 228
      modules/core/src/convert.cpp
  27. 51
      modules/core/src/matmul.cpp
  28. 45
      modules/core/src/precomp.cpp
  29. 155
      modules/core/src/stat.cpp
  30. 36
      modules/core/test/test_io.cpp
  31. 1
      modules/core/test/test_precomp.cpp
  32. 1
      modules/features2d/perf/perf_precomp.cpp
  33. 44
      modules/features2d/src/precomp.cpp
  34. 1
      modules/features2d/test/test_precomp.cpp
  35. 1
      modules/flann/src/precomp.cpp
  36. 1
      modules/flann/test/test_precomp.cpp
  37. 43
      modules/gpu/perf/perf_precomp.cpp
  38. 43
      modules/gpu/test/test_precomp.cpp
  39. 1
      modules/gpubgsegm/perf/perf_bgsegm.cpp
  40. 1
      modules/gpubgsegm/test/test_bgsegm.cpp
  41. 1
      modules/gpucodec/perf/perf_video.cpp
  42. 3
      modules/highgui/CMakeLists.txt
  43. 1
      modules/highgui/perf/perf_precomp.cpp
  44. 2
      modules/highgui/perf/perf_precomp.hpp
  45. 9
      modules/highgui/src/cap.cpp
  46. 12
      modules/highgui/src/cap_ffmpeg.cpp
  47. 10
      modules/highgui/src/cap_ffmpeg_impl.hpp
  48. 76
      modules/highgui/src/cap_qtkit.mm
  49. 43
      modules/highgui/src/precomp.cpp
  50. 1
      modules/highgui/test/test_precomp.cpp
  51. 3
      modules/highgui/test/test_precomp.hpp
  52. 2
      modules/imgproc/doc/filtering.rst
  53. 16
      modules/imgproc/include/opencv2/imgproc.hpp
  54. 1
      modules/imgproc/perf/perf_precomp.cpp
  55. 44
      modules/imgproc/src/precomp.cpp
  56. 1
      modules/imgproc/src/pyramids.cpp
  57. 1
      modules/imgproc/test/test_precomp.cpp
  58. 108
      modules/java/generator/gen_java.py
  59. 434
      modules/java/generator/src/cpp/VideoCapture.cpp
  60. 240
      modules/java/generator/src/java/highgui+VideoCapture.java
  61. 2
      modules/java/test/src/org/opencv/test/OpenCVTestCase.java
  62. 42
      modules/legacy/src/precomp.cpp
  63. 1
      modules/legacy/test/test_precomp.cpp
  64. 45
      modules/ml/src/precomp.cpp
  65. 1
      modules/ml/test/test_precomp.cpp
  66. 1
      modules/nonfree/perf/perf_precomp.cpp
  67. 483
      modules/nonfree/src/opencl/surf.cl
  68. 45
      modules/nonfree/src/precomp.cpp
  69. 1
      modules/nonfree/test/test_precomp.cpp
  70. 1
      modules/objdetect/perf/perf_precomp.cpp
  71. 44
      modules/objdetect/src/precomp.cpp
  72. 1
      modules/objdetect/test/test_precomp.cpp
  73. 2
      modules/ocl/include/opencv2/ocl.hpp
  74. 2
      modules/ocl/perf/main.cpp
  75. 2
      modules/ocl/perf/perf_arithm.cpp
  76. 2
      modules/ocl/perf/perf_blend.cpp
  77. 2
      modules/ocl/perf/perf_brute_force_matcher.cpp
  78. 2
      modules/ocl/perf/perf_calib3d.cpp
  79. 2
      modules/ocl/perf/perf_canny.cpp
  80. 2
      modules/ocl/perf/perf_color.cpp
  81. 2
      modules/ocl/perf/perf_fft.cpp
  82. 2
      modules/ocl/perf/perf_filters.cpp
  83. 2
      modules/ocl/perf/perf_gemm.cpp
  84. 2
      modules/ocl/perf/perf_gftt.cpp
  85. 5
      modules/ocl/perf/perf_haar.cpp
  86. 2
      modules/ocl/perf/perf_hog.cpp
  87. 2
      modules/ocl/perf/perf_hough.cpp
  88. 2
      modules/ocl/perf/perf_imgproc.cpp
  89. 2
      modules/ocl/perf/perf_match_template.cpp
  90. 2
      modules/ocl/perf/perf_matrix_operation.cpp
  91. 2
      modules/ocl/perf/perf_moments.cpp
  92. 2
      modules/ocl/perf/perf_norm.cpp
  93. 2
      modules/ocl/perf/perf_opticalflow.cpp
  94. 2
      modules/ocl/perf/perf_precomp.cpp
  95. 5
      modules/ocl/perf/perf_precomp.hpp
  96. 2
      modules/ocl/perf/perf_pyramid.cpp
  97. 2
      modules/ocl/perf/perf_split_merge.cpp
  98. 4
      modules/ocl/src/color.cpp
  99. 99
      modules/ocl/src/filtering.cpp
  100. 2
      modules/ocl/src/haar.cpp
  101. Some files were not shown because too many files have changed in this diff Show More

@ -29,6 +29,10 @@ if(MSVC)
add_definitions(-D_CRT_SECURE_NO_DEPRECATE)
endif(MSVC)
if (HAVE_WINRT)
add_definitions(-DHAVE_WINRT)
endif()
add_library(${PNG_LIBRARY} STATIC ${lib_srcs} ${lib_hdrs})
target_link_libraries(${PNG_LIBRARY} ${ZLIB_LIBRARY})

@ -0,0 +1,22 @@
diff --git a/3rdparty/libpng/pngpriv.h b/3rdparty/libpng/pngpriv.h
index 07b2b0b..e7824b8 100644
--- a/3rdparty/libpng/pngpriv.h
+++ b/3rdparty/libpng/pngpriv.h
@@ -360,7 +360,7 @@ typedef PNG_CONST png_uint_16p FAR * png_const_uint_16pp;
/* Memory model/platform independent fns */
#ifndef PNG_ABORT
-# ifdef _WINDOWS_
+# if defined(_WINDOWS_) && !defined(HAVE_WINRT)
# define PNG_ABORT() ExitProcess(0)
# else
# define PNG_ABORT() abort()
@@ -378,7 +378,7 @@ typedef PNG_CONST png_uint_16p FAR * png_const_uint_16pp;
# define png_memcpy _fmemcpy
# define png_memset _fmemset
#else
-# ifdef _WINDOWS_ /* Favor Windows over C runtime fns */
+# if defined(_WINDOWS_) && !defined(HAVE_WINRT) /* Favor Windows over C runtime fns */
# define CVT_PTR(ptr) (ptr)
# define CVT_PTR_NOCHECK(ptr) (ptr)
# define png_strlen lstrlenA

@ -360,7 +360,7 @@ typedef PNG_CONST png_uint_16p FAR * png_const_uint_16pp;
/* Memory model/platform independent fns */
#ifndef PNG_ABORT
# ifdef _WINDOWS_
# if defined(_WINDOWS_) && !defined(HAVE_WINRT)
# define PNG_ABORT() ExitProcess(0)
# else
# define PNG_ABORT() abort()
@ -378,7 +378,7 @@ typedef PNG_CONST png_uint_16p FAR * png_const_uint_16pp;
# define png_memcpy _fmemcpy
# define png_memset _fmemset
#else
# ifdef _WINDOWS_ /* Favor Windows over C runtime fns */
# if defined(_WINDOWS_) && !defined(HAVE_WINRT) /* Favor Windows over C runtime fns */
# define CVT_PTR(ptr) (ptr)
# define CVT_PTR_NOCHECK(ptr) (ptr)
# define png_strlen lstrlenA

@ -736,8 +736,8 @@ if(DEFINED WITH_GIGEAPI)
endif(DEFINED WITH_GIGEAPI)
if(DEFINED WITH_QUICKTIME)
status(" QuickTime:" WITH_QUICKTIME THEN YES ELSE NO)
status(" QTKit:" WITH_QUICKTIME THEN NO ELSE YES)
status(" QuickTime:" HAVE_QUICKTIME THEN YES ELSE NO)
status(" QTKit:" HAVE_QTKIT THEN YES ELSE NO)
endif(DEFINED WITH_QUICKTIME)
if(DEFINED WITH_UNICAP)

@ -4,37 +4,39 @@ endif()
#INCLUDE (CheckIncludeFiles)
if (ENABLE_WINRT_MODE)
set(HAVE_WINRT True)
set(HAVE_WINRT FALSE)
# search Windows Platform SDK
message(STATUS "Checking for Windows Platfrom SDK")
GET_FILENAME_COMPONENT(WINDOWS_SDK_PATH "[HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Microsoft SDKs\\Windows\\v8.0;InstallationFolder]" ABSOLUTE CACHE)
if (WINDOWS_SDK_PATH STREQUAL "")
message(ERROR "Windows Platform SDK 8.0 was not found!")
set(HAVE_WINRT False)
endif()
# search Windows Platform SDK
message(STATUS "Checking for Windows Platform SDK")
GET_FILENAME_COMPONENT(WINDOWS_SDK_PATH "[HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Microsoft SDKs\\Windows\\v8.0;InstallationFolder]" ABSOLUTE CACHE)
if (WINDOWS_SDK_PATH STREQUAL "")
set(HAVE_MSPDK FALSE)
message(STATUS "Windows Platform SDK 8.0 was not found")
else()
set(HAVE_MSPDK TRUE)
endif()
#search for Visual Studio 11.0 install directory
message(STATUS "Checking for Visual Studio 2012")
GET_FILENAME_COMPONENT(VISUAL_STUDIO_PATH [HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\VisualStudio\\11.0\\Setup\\VS;ProductDir] REALPATH CACHE)
if (VISUAL_STUDIO_PATH STREQUAL "")
message(ERROR "Visual Studio 2012 was not found!")
set(HAVE_WINRT False)
endif()
#search for Visual Studio 11.0 install directory
message(STATUS "Checking for Visual Studio 2012")
GET_FILENAME_COMPONENT(VISUAL_STUDIO_PATH [HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\VisualStudio\\11.0\\Setup\\VS;ProductDir] REALPATH CACHE)
if (VISUAL_STUDIO_PATH STREQUAL "")
set(HAVE_MSVC2012 FALSE)
message(STATUS "Visual Studio 2012 was not found")
else()
set(HAVE_MSVC2012 TRUE)
endif()
if (HAVE_WINRT)
TRY_COMPILE(HAVE_WINRT
"${OPENCV_BINARY_DIR}/CMakeFiles/CMakeTmp"
"${OpenCV_SOURCE_DIR}/cmake/checks/winrttest.cpp"
CMAKE_FLAGS "\"kernel.lib\" \"user32.lib\""
OUTPUT_VARIABLE OUTPUT)
endif()
TRY_COMPILE(HAVE_WINRT_SDK
"${OPENCV_BINARY_DIR}/CMakeFiles/CMakeTmp"
"${OpenCV_SOURCE_DIR}/cmake/checks/winrttest.cpp")
if (HAVE_WINRT)
add_definitions(/DWINVER=0x0602 /DNTDDI_VERSION=NTDDI_WIN8 /D_WIN32_WINNT=0x0602)
endif()
endif(ENABLE_WINRT_MODE)
if (ENABLE_WINRT_MODE AND HAVE_WINRT_SDK AND HAVE_MSVC2012 AND HAVE_MSPDK)
set(HAVE_WINRT TRUE)
endif()
if (HAVE_WINRT)
add_definitions(/DWINVER=0x0602 /DNTDDI_VERSION=NTDDI_WIN8 /D_WIN32_WINNT=0x0602)
endif()
if(NOT BUILD_SHARED_LIBS AND BUILD_WITH_STATIC_CRT)
foreach(flag_var

@ -70,7 +70,7 @@ endif(WITH_OPENGL)
if(APPLE)
if(WITH_CARBON)
set(HAVE_CARBON YES)
elif(NOT IOS)
elseif(NOT IOS)
set(HAVE_COCOA YES)
endif()
endif()

@ -273,4 +273,6 @@ endif()
# --- QuickTime ---
if(WITH_QUICKTIME)
set(HAVE_QUICKTIME YES)
elseif(APPLE)
set(HAVE_QTKIT YES)
endif()

@ -470,8 +470,16 @@ endmacro()
# ocv_create_module(<extra link dependencies>)
# ocv_create_module(SKIP_LINK)
macro(ocv_create_module)
# The condition we ought to be testing here is whether ocv_add_precompiled_headers will
# be called at some point in the future. We can't look into the future, though,
# so this will have to do.
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/src/precomp.hpp")
get_native_precompiled_header(${the_module} precomp.hpp)
endif()
add_library(${the_module} ${OPENCV_MODULE_TYPE} ${OPENCV_MODULE_${the_module}_HEADERS} ${OPENCV_MODULE_${the_module}_SOURCES}
"${OPENCV_CONFIG_FILE_INCLUDE_DIR}/cvconfig.h" "${OPENCV_CONFIG_FILE_INCLUDE_DIR}/opencv2/opencv_modules.hpp")
"${OPENCV_CONFIG_FILE_INCLUDE_DIR}/cvconfig.h" "${OPENCV_CONFIG_FILE_INCLUDE_DIR}/opencv2/opencv_modules.hpp"
${${the_module}_pch})
if(NOT the_module STREQUAL opencv_ts)
set_target_properties(${the_module} PROPERTIES COMPILE_DEFINITIONS OPENCV_NOSTL)
endif()
@ -640,7 +648,9 @@ function(ocv_add_perf_tests)
set(OPENCV_PERF_${the_module}_SOURCES ${perf_srcs} ${perf_hdrs})
endif()
add_executable(${the_target} ${OPENCV_PERF_${the_module}_SOURCES})
get_native_precompiled_header(${the_target} perf_precomp.hpp)
add_executable(${the_target} ${OPENCV_PERF_${the_module}_SOURCES} ${${the_target}_pch})
target_link_libraries(${the_target} ${OPENCV_MODULE_${the_module}_DEPS} ${perf_deps} ${OPENCV_LINKER_LIBS})
add_dependencies(opencv_perf_tests ${the_target})
@ -688,7 +698,9 @@ function(ocv_add_accuracy_tests)
set(OPENCV_TEST_${the_module}_SOURCES ${test_srcs} ${test_hdrs})
endif()
add_executable(${the_target} ${OPENCV_TEST_${the_module}_SOURCES})
get_native_precompiled_header(${the_target} test_precomp.hpp)
add_executable(${the_target} ${OPENCV_TEST_${the_module}_SOURCES} ${${the_target}_pch})
target_link_libraries(${the_target} ${OPENCV_MODULE_${the_module}_DEPS} ${test_deps} ${OPENCV_LINKER_LIBS})
add_dependencies(opencv_tests ${the_target})

@ -279,12 +279,9 @@ ENDMACRO(ADD_PRECOMPILED_HEADER)
MACRO(GET_NATIVE_PRECOMPILED_HEADER _targetName _input)
if(CMAKE_GENERATOR MATCHES "^Visual.*$")
SET(_dummy_str "#include \"${_input}\"\n"
"// This is required to suppress LNK4221. Very annoying.\n"
"void *g_${_targetName}Dummy = 0\;\n")
set(_dummy_str "#include \"${_input}\"\n")
# Use of cxx extension for generated files (as Qt does)
SET(${_targetName}_pch ${CMAKE_CURRENT_BINARY_DIR}/${_targetName}_pch.cxx)
set(${_targetName}_pch ${CMAKE_CURRENT_BINARY_DIR}/${_targetName}_pch.cpp)
if(EXISTS ${${_targetName}_pch})
# Check if contents is the same, if not rewrite
# todo
@ -344,11 +341,7 @@ ENDMACRO(ADD_NATIVE_PRECOMPILED_HEADER)
macro(ocv_add_precompiled_header_to_target the_target pch_header)
if(PCHSupport_FOUND AND ENABLE_PRECOMPILED_HEADERS AND EXISTS "${pch_header}")
if(CMAKE_GENERATOR MATCHES Visual)
string(REGEX REPLACE "hpp$" "cpp" ${the_target}_pch "${pch_header}")
add_native_precompiled_header(${the_target} ${pch_header})
unset(${the_target}_pch)
elseif(CMAKE_GENERATOR MATCHES Xcode)
if(CMAKE_GENERATOR MATCHES "^Visual" OR CMAKE_GENERATOR MATCHES Xcode)
add_native_precompiled_header(${the_target} ${pch_header})
elseif(CMAKE_COMPILER_IS_GNUCXX AND CMAKE_GENERATOR MATCHES "Makefiles|Ninja")
add_precompiled_header(${the_target} ${pch_header})

@ -130,6 +130,9 @@
/* QuickTime video libraries */
#cmakedefine HAVE_QUICKTIME
/* QTKit video libraries */
#cmakedefine HAVE_QTKIT
/* Intel Threading Building Blocks */
#cmakedefine HAVE_TBB

@ -49,7 +49,7 @@ if(BUILD_DOCS AND HAVE_SPHINX)
set(toc_file "${OPENCV_MODULE_opencv_${mod}_LOCATION}/doc/${mod}.rst")
if(EXISTS "${toc_file}")
file(RELATIVE_PATH toc_file "${OpenCV_SOURCE_DIR}/modules" "${toc_file}")
set(OPENCV_REFMAN_TOC "${OPENCV_REFMAN_TOC} ${toc_file}\r\n")
set(OPENCV_REFMAN_TOC "${OPENCV_REFMAN_TOC} ${toc_file}\n")
endif()
endforeach()

@ -3,42 +3,42 @@
Camera calibration With OpenCV
******************************
Cameras have been around for a long-long time. However, with the introduction of the cheap *pinhole* cameras in the late 20th century, they became a common occurrence in our everyday life. Unfortunately, this cheapness comes with its price: significant distortion. Luckily, these are constants and with a calibration and some remapping we can correct this. Furthermore, with calibration you may also determinate the relation between the camera's natural units (pixels) and the real world units (for example millimeters).
Cameras have been around for a long-long time. However, with the introduction of the cheap *pinhole* cameras in the late 20th century, they became a common occurrence in our everyday life. Unfortunately, this cheapness comes with its price: significant distortion. Luckily, these are constants and with a calibration and some remapping we can correct this. Furthermore, with calibration you may also determine the relation between the camera's natural units (pixels) and the real world units (for example millimeters).
Theory
======
For the distortion OpenCV takes into account the radial and tangential factors. For the radial one uses the following formula:
For the distortion OpenCV takes into account the radial and tangential factors. For the radial factor one uses the following formula:
.. math::
x_{corrected} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\
y_{corrected} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)
So for an old pixel point at :math:`(x,y)` coordinate in the input image, for a corrected output image its position will be :math:`(x_{corrected} y_{corrected})` . The presence of the radial distortion manifests in form of the "barrel" or "fish-eye" effect.
So for an old pixel point at :math:`(x,y)` coordinates in the input image, its position on the corrected output image will be :math:`(x_{corrected} y_{corrected})`. The presence of the radial distortion manifests in form of the "barrel" or "fish-eye" effect.
Tangential distortion occurs because the image taking lenses are not perfectly parallel to the imaging plane. Correcting this is made via the formulas:
Tangential distortion occurs because the image taking lenses are not perfectly parallel to the imaging plane. It can be corrected via the formulas:
.. math::
x_{corrected} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\
y_{corrected} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]
So we have five distortion parameters, which in OpenCV are organized in a 5 column one row matrix:
So we have five distortion parameters which in OpenCV are presented as one row matrix with 5 columns:
.. math::
Distortion_{coefficients}=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)
Now for the unit conversion, we use the following formula:
Now for the unit conversion we use the following formula:
.. math::
\left [ \begin{matrix} x \\ y \\ w \end{matrix} \right ] = \left [ \begin{matrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} X \\ Y \\ Z \end{matrix} \right ]
Here the presence of the :math:`w` is cause we use a homography coordinate system (and :math:`w=Z`). The unknown parameters are :math:`f_x` and :math:`f_y` (camera focal lengths) and :math:`(c_x, c_y)` what are the optical centers expressed in pixels coordinates. If for both axes a common focal length is used with a given :math:`a` aspect ratio (usually 1), then :math:`f_y=f_x*a` and in the upper formula we will have a single :math:`f` focal length. The matrix containing these four parameters is referred to as the *camera matrix*. While the distortion coefficients are the same regardless of the camera resolutions used, these should be scaled along with the current resolution from the calibrated resolution.
Here the presence of :math:`w` is explained by the use of homography coordinate system (and :math:`w=Z`). The unknown parameters are :math:`f_x` and :math:`f_y` (camera focal lengths) and :math:`(c_x, c_y)` which are the optical centers expressed in pixels coordinates. If for both axes a common focal length is used with a given :math:`a` aspect ratio (usually 1), then :math:`f_y=f_x*a` and in the upper formula we will have a single focal length :math:`f`. The matrix containing these four parameters is referred to as the *camera matrix*. While the distortion coefficients are the same regardless of the camera resolutions used, these should be scaled along with the current resolution from the calibrated resolution.
The process of determining these two matrices is the calibration. Calculating these parameters is done by some basic geometrical equations. The equations used depend on the calibrating objects used. Currently OpenCV supports three types of object for calibration:
The process of determining these two matrices is the calibration. Calculation of these parameters is done through basic geometrical equations. The equations used depend on the chosen calibrating objects. Currently OpenCV supports three types of objects for calibration:
.. container:: enumeratevisibleitemswithsquare
@ -46,7 +46,7 @@ The process of determining these two matrices is the calibration. Calculating th
+ Symmetrical circle pattern
+ Asymmetrical circle pattern
Basically, you need to take snapshots of these patterns with your camera and let OpenCV find them. Each found pattern equals in a new equation. To solve the equation you need at least a predetermined number of pattern snapshots to form a well-posed equation system. This number is higher for the chessboard pattern and less for the circle ones. For example, in theory the chessboard one requires at least two. However, in practice we have a good amount of noise present in our input images, so for good results you will probably want at least 10 good snapshots of the input pattern in different position.
Basically, you need to take snapshots of these patterns with your camera and let OpenCV find them. Each found pattern results in a new equation. To solve the equation you need at least a predetermined number of pattern snapshots to form a well-posed equation system. This number is higher for the chessboard pattern and less for the circle ones. For example, in theory the chessboard pattern requires at least two snapshots. However, in practice we have a good amount of noise present in our input images, so for good results you will probably need at least 10 good snapshots of the input pattern in different positions.
Goal
====
@ -55,19 +55,19 @@ The sample application will:
.. container:: enumeratevisibleitemswithsquare
+ Determinate the distortion matrix
+ Determinate the camera matrix
+ Input from Camera, Video and Image file list
+ Configuration from XML/YAML file
+ Determine the distortion matrix
+ Determine the camera matrix
+ Take input from Camera, Video and Image file list
+ Read configuration from XML/YAML file
+ Save the results into XML/YAML file
+ Calculate re-projection error
Source code
===========
You may also find the source code in the :file:`samples/cpp/tutorial_code/calib3d/camera_calibration/` folder of the OpenCV source library or :download:`download it from here <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp>`. The program has a single argument. The name of its configuration file. If none given it will try to open the one named "default.xml". :download:`Here's a sample configuration file <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/in_VID5.xml>` in XML format. In the configuration file you may choose to use as input a camera, a video file or an image list. If you opt for the later one, you need to create a configuration file where you enumerate the images to use. Here's :download:`an example of this <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/VID5.xml>`. The important part to remember is that the images needs to be specified using the absolute path or the relative one from your applications working directory. You may find all this in the beforehand mentioned directory.
You may also find the source code in the :file:`samples/cpp/tutorial_code/calib3d/camera_calibration/` folder of the OpenCV source library or :download:`download it from here <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp>`. The program has a single argument: the name of its configuration file. If none is given then it will try to open the one named "default.xml". :download:`Here's a sample configuration file <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/in_VID5.xml>` in XML format. In the configuration file you may choose to use camera as an input, a video file or an image list. If you opt for the last one, you will need to create a configuration file where you enumerate the images to use. Here's :download:`an example of this <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/VID5.xml>`. The important part to remember is that the images need to be specified using the absolute path or the relative one from your application's working directory. You may find all this in the samples directory mentioned above.
The application starts up with reading the settings from the configuration file. Although, this is an important part of it, it has nothing to do with the subject of this tutorial: *camera calibration*. Therefore, I've chosen to do not post here the code part for that. The technical background on how to do this you can find in the :ref:`fileInputOutputXMLYAML` tutorial.
The application starts up with reading the settings from the configuration file. Although, this is an important part of it, it has nothing to do with the subject of this tutorial: *camera calibration*. Therefore, I've chosen not to post the code for that part here. Technical background on how to do this you can find in the :ref:`fileInputOutputXMLYAML` tutorial.
Explanation
===========
@ -93,9 +93,9 @@ Explanation
return -1;
}
For this I've used simple OpenCV class input operation. After reading the file I've an additional post-process function that checks for the validity of the input. Only if all of them are good will be the *goodInput* variable true.
For this I've used simple OpenCV class input operation. After reading the file I've an additional post-processing function that checks validity of the input. Only if all inputs are good then *goodInput* variable will be true.
#. **Get next input, if it fails or we have enough of them calibrate**. After this we have a big loop where we do the following operations: get the next image from the image list, camera or video file. If this fails or we have enough images we run the calibration process. In case of image we step out of the loop and otherwise the remaining frames will be undistorted (if the option is set) via changing from *DETECTION* mode to *CALIBRATED* one.
#. **Get next input, if it fails or we have enough of them - calibrate**. After this we have a big loop where we do the following operations: get the next image from the image list, camera or video file. If this fails or we have enough images then we run the calibration process. In case of image we step out of the loop and otherwise the remaining frames will be undistorted (if the option is set) via changing from *DETECTION* mode to the *CALIBRATED* one.
.. code-block:: cpp
@ -125,7 +125,7 @@ Explanation
For some cameras we may need to flip the input image. Here we do this too.
#. **Find the pattern in the current input**. The formation of the equations I mentioned above consists of finding the major patterns in the input: in case of the chessboard this is their corners of the squares and for the circles, well, the circles itself. The position of these will form the result and is collected into the *pointBuf* vector.
#. **Find the pattern in the current input**. The formation of the equations I mentioned above aims to finding major patterns in the input: in case of the chessboard this are corners of the squares and for the circles, well, the circles themselves. The position of these will form the result which will be written into the *pointBuf* vector.
.. code-block:: cpp
@ -146,9 +146,9 @@ Explanation
break;
}
Depending on the type of the input pattern you use either the :calib3d:`findChessboardCorners <findchessboardcorners>` or the :calib3d:`findCirclesGrid <findcirclesgrid>` function. For both of them you pass on the current image, the size of the board and you'll get back the positions of the patterns. Furthermore, they return a boolean variable that states if in the input we could find or not the pattern (we only need to take into account images where this is true!).
Depending on the type of the input pattern you use either the :calib3d:`findChessboardCorners <findchessboardcorners>` or the :calib3d:`findCirclesGrid <findcirclesgrid>` function. For both of them you pass the current image and the size of the board and you'll get the positions of the patterns. Furthermore, they return a boolean variable which states if the pattern was found in the input (we only need to take into account those images where this is true!).
Then again in case of cameras we only take camera images after an input delay time passed. This is in order to allow for the user to move the chessboard around and as getting different images. Same images mean same equations, and same equations at the calibration will form an ill-posed problem, so the calibration will fail. For square images the position of the corners are only approximate. We may improve this by calling the :feature2d:`cornerSubPix <cornersubpix>` function. This way will get a better calibration result. After this we add a valid inputs result to the *imagePoints* vector to collect all of the equations into a single container. Finally, for visualization feedback purposes we will draw the found points on the input image with the :calib3d:`findChessboardCorners <drawchessboardcorners>` function.
Then again in case of cameras we only take camera images when an input delay time is passed. This is done in order to allow user moving the chessboard around and getting different images. Similar images result in similar equations, and similar equations at the calibration step will form an ill-posed problem, so the calibration will fail. For square images the positions of the corners are only approximate. We may improve this by calling the :feature2d:`cornerSubPix <cornersubpix>` function. It will produce better calibration result. After this we add a valid inputs result to the *imagePoints* vector to collect all of the equations into a single container. Finally, for visualization feedback purposes we will draw the found points on the input image using :calib3d:`findChessboardCorners <drawchessboardcorners>` function.
.. code-block:: cpp
@ -175,7 +175,7 @@ Explanation
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}
#. **Show state and result for the user, plus command line control of the application**. The showing part consists of a text output on the live feed, and for video or camera input to show the "capturing" frame we simply bitwise negate the input image.
#. **Show state and result to the user, plus command line control of the application**. This part shows text output on the image.
.. code-block:: cpp
@ -199,7 +199,7 @@ Explanation
if( blinkOutput )
bitwise_not(view, view);
If we only ran the calibration and got the camera matrix plus the distortion coefficients we may just as correct the image with the :imgproc_geometric:`undistort <undistort>` function:
If we ran calibration and got camera's matrix with the distortion coefficients we may want to correct the image using :imgproc_geometric:`undistort <undistort>` function:
.. code-block:: cpp
@ -212,7 +212,7 @@ Explanation
//------------------------------ Show image and check for input commands -------------------
imshow("Image View", view);
Then we wait for an input key and if this is *u* we toggle the distortion removal, if it is *g* we start all over the detection process (or simply start it), and finally for the *ESC* key quit the application:
Then we wait for an input key and if this is *u* we toggle the distortion removal, if it is *g* we start again the detection process, and finally for the *ESC* key we quit the application:
.. code-block:: cpp
@ -229,7 +229,7 @@ Explanation
imagePoints.clear();
}
#. **Show the distortion removal for the images too**. When you work with an image list it is not possible to remove the distortion inside the loop. Therefore, you must append this after the loop. Taking advantage of this now I'll expand the :imgproc_geometric:`undistort <undistort>` function, which is in fact first a call of the :imgproc_geometric:`initUndistortRectifyMap <initundistortrectifymap>` to find out the transformation matrices and then doing the transformation with the :imgproc_geometric:`remap <remap>` function. Because, after a successful calibration the map calculation needs to be done only once, by using this expanded form you may speed up your application:
#. **Show the distortion removal for the images too**. When you work with an image list it is not possible to remove the distortion inside the loop. Therefore, you must do this after the loop. Taking advantage of this now I'll expand the :imgproc_geometric:`undistort <undistort>` function, which is in fact first calls :imgproc_geometric:`initUndistortRectifyMap <initundistortrectifymap>` to find transformation matrices and then performs transformation using :imgproc_geometric:`remap <remap>` function. Because, after successful calibration map calculation needs to be done only once, by using this expanded form you may speed up your application:
.. code-block:: cpp
@ -256,7 +256,7 @@ Explanation
The calibration and save
========================
Because the calibration needs to be only once per camera it makes sense to save them after a successful calibration. This way later on you can just load these values into your program. Due to this we first make the calibration, and if it succeeds we save the result into an OpenCV style XML or YAML file, depending on the extension you give in the configuration file.
Because the calibration needs to be done only once per camera, it makes sense to save it after a successful calibration. This way later on you can just load these values into your program. Due to this we first make the calibration, and if it succeeds we save the result into an OpenCV style XML or YAML file, depending on the extension you give in the configuration file.
Therefore in the first function we just split up these two processes. Because we want to save many of the calibration variables we'll create these variables here and pass on both of them to the calibration and saving function. Again, I'll not show the saving part as that has little in common with the calibration. Explore the source file in order to find out how and what:
@ -280,7 +280,7 @@ Therefore in the first function we just split up these two processes. Because we
return ok;
}
We do the calibration with the help of the :calib3d:`calibrateCamera <calibratecamera>` function. This has the following parameters:
We do the calibration with the help of the :calib3d:`calibrateCamera <calibratecamera>` function. It has the following parameters:
.. container:: enumeratevisibleitemswithsquare
@ -318,11 +318,11 @@ We do the calibration with the help of the :calib3d:`calibrateCamera <calibratec
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
objectPoints.resize(imagePoints.size(),objectPoints[0]);
+ The image points. This is a vector of *Point2f* vector that for each input image contains where the important points (corners for chessboard, and center of circles for the circle patterns) were found. We already collected this from what the :calib3d:`findChessboardCorners <findchessboardcorners>` or the :calib3d:`findCirclesGrid <findcirclesgrid>` function returned. We just need to pass it on.
+ The image points. This is a vector of *Point2f* vector which for each input image contains coordinates of the important points (corners for chessboard and centers of the circles for the circle pattern). We have already collected this from :calib3d:`findChessboardCorners <findchessboardcorners>` or :calib3d:`findCirclesGrid <findcirclesgrid>` function. We just need to pass it on.
+ The size of the image acquired from the camera, video file or the images.
+ The camera matrix. If we used the fix aspect ratio option we need to set the :math:`f_x` to zero:
+ The camera matrix. If we used the fixed aspect ratio option we need to set the :math:`f_x` to zero:
.. code-block:: cpp
@ -336,16 +336,16 @@ We do the calibration with the help of the :calib3d:`calibrateCamera <calibratec
distCoeffs = Mat::zeros(8, 1, CV_64F);
+ The function will calculate for all the views the rotation and translation vector that transform the object points (given in the model coordinate space) to the image points (given in the world coordinate space). The 7th and 8th parameters are an output vector of matrices containing in the ith position the rotation and translation vector for the ith object point to the ith image point.
+ For all the views the function will calculate rotation and translation vectors which transform the object points (given in the model coordinate space) to the image points (given in the world coordinate space). The 7-th and 8-th parameters are the output vector of matrices containing in the i-th position the rotation and translation vector for the i-th object point to the i-th image point.
+ The final argument is a flag. You need to specify here options like fix the aspect ratio for the focal length, assume zero tangential distortion or to fix the principal point.
+ The final argument is the flag. You need to specify here options like fix the aspect ratio for the focal length, assume zero tangential distortion or to fix the principal point.
.. code-block:: cpp
double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
distCoeffs, rvecs, tvecs, s.flag|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5);
+ The function returns the average re-projection error. This number gives a good estimation of just how exact is the found parameters. This should be as close to zero as possible. Given the intrinsic, distortion, rotation and translation matrices we may calculate the error for one view by using the :calib3d:`projectPoints <projectpoints>` to first transform the object point to image point. Then we calculate the absolute norm between what we got with our transformation and the corner/circle finding algorithm. To find the average error we calculate the arithmetical mean of the errors calculate for all the calibration images.
+ The function returns the average re-projection error. This number gives a good estimation of precision of the found parameters. This should be as close to zero as possible. Given the intrinsic, distortion, rotation and translation matrices we may calculate the error for one view by using the :calib3d:`projectPoints <projectpoints>` to first transform the object point to image point. Then we calculate the absolute norm between what we got with our transformation and the corner/circle finding algorithm. To find the average error we calculate the arithmetical mean of the errors calculated for all the calibration images.
.. code-block:: cpp
@ -378,25 +378,25 @@ We do the calibration with the help of the :calib3d:`calibrateCamera <calibratec
Results
=======
Let there be :download:`this input chessboard pattern <../../../pattern.png>` that has a size of 9 X 6. I've used an AXIS IP camera to create a couple of snapshots of the board and saved it into a VID5 directory. I've put this inside the :file:`images/CameraCalibraation` folder of my working directory and created the following :file:`VID5.XML` file that describes which images to use:
Let there be :download:`this input chessboard pattern <../../../pattern.png>` which has a size of 9 X 6. I've used an AXIS IP camera to create a couple of snapshots of the board and saved it into VID5 directory. I've put this inside the :file:`images/CameraCalibration` folder of my working directory and created the following :file:`VID5.XML` file that describes which images to use:
.. code-block:: xml
<?xml version="1.0"?>
<opencv_storage>
<images>
images/CameraCalibraation/VID5/xx1.jpg
images/CameraCalibraation/VID5/xx2.jpg
images/CameraCalibraation/VID5/xx3.jpg
images/CameraCalibraation/VID5/xx4.jpg
images/CameraCalibraation/VID5/xx5.jpg
images/CameraCalibraation/VID5/xx6.jpg
images/CameraCalibraation/VID5/xx7.jpg
images/CameraCalibraation/VID5/xx8.jpg
images/CameraCalibration/VID5/xx1.jpg
images/CameraCalibration/VID5/xx2.jpg
images/CameraCalibration/VID5/xx3.jpg
images/CameraCalibration/VID5/xx4.jpg
images/CameraCalibration/VID5/xx5.jpg
images/CameraCalibration/VID5/xx6.jpg
images/CameraCalibration/VID5/xx7.jpg
images/CameraCalibration/VID5/xx8.jpg
</images>
</opencv_storage>
Then specified the :file:`images/CameraCalibraation/VID5/VID5.XML` as input in the configuration file. Here's a chessboard pattern found during the runtime of the application:
Then passed :file:`images/CameraCalibration/VID5/VID5.XML` as an input in the configuration file. Here's a chessboard pattern found during the runtime of the application:
.. image:: images/fileListImage.jpg
:alt: A found chessboard
@ -433,7 +433,7 @@ In both cases in the specified output XML/YAML file you'll find the camera and d
-4.1802327176423804e-001 5.0715244063187526e-001 0. 0.
-5.7843597214487474e-001</data></Distortion_Coefficients>
Add these values as constants to your program, call the :imgproc_geometric:`initUndistortRectifyMap <initundistortrectifymap>` and the :imgproc_geometric:`remap <remap>` function to remove distortion and enjoy distortion free inputs with cheap and low quality cameras.
Add these values as constants to your program, call the :imgproc_geometric:`initUndistortRectifyMap <initundistortrectifymap>` and the :imgproc_geometric:`remap <remap>` function to remove distortion and enjoy distortion free inputs for cheap and low quality cameras.
You may observe a runtime instance of this on the `YouTube here <https://www.youtube.com/watch?v=ViPN810E0SU>`_.

@ -31,6 +31,7 @@ This tutorial code's is shown lines below. You can also download it from `here <
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/nonfree.hpp"
using namespace cv;
@ -94,4 +95,3 @@ Result
.. image:: images/Feature_Detection_Result_b.jpg
:align: center
:height: 200pt

@ -28,6 +28,7 @@ This tutorial code's is shown lines below. You can also download it from `here <
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/nonfree.hpp"
using namespace cv;

@ -30,6 +30,7 @@ This tutorial code's is shown lines below. You can also download it from `here <
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/nonfree.hpp"
using namespace cv;
@ -145,4 +146,3 @@ Result
.. image:: images/Feature_Homography_Result.jpg
:align: center
:height: 200pt

@ -1 +0,0 @@
#include "perf_precomp.hpp"

@ -1,44 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -1,44 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -49,6 +49,43 @@ Point\_
-------
.. ocv:class:: Point_
::
template<typename _Tp> class CV_EXPORTS Point_
{
public:
typedef _Tp value_type;
// various constructors
Point_();
Point_(_Tp _x, _Tp _y);
Point_(const Point_& pt);
Point_(const CvPoint& pt);
Point_(const CvPoint2D32f& pt);
Point_(const Size_<_Tp>& sz);
Point_(const Vec<_Tp, 2>& v);
Point_& operator = (const Point_& pt);
//! conversion to another data type
template<typename _Tp2> operator Point_<_Tp2>() const;
//! conversion to the old-style C structures
operator CvPoint() const;
operator CvPoint2D32f() const;
operator Vec<_Tp, 2>() const;
//! dot product
_Tp dot(const Point_& pt) const;
//! dot product computed in double-precision arithmetics
double ddot(const Point_& pt) const;
//! cross-product
double cross(const Point_& pt) const;
//! checks whether the point is inside the specified rectangle
bool inside(const Rect_<_Tp>& r) const;
_Tp x, y; //< the point coordinates
};
Template class for 2D points specified by its coordinates
:math:`x` and
:math:`y` .
@ -84,6 +121,39 @@ Point3\_
--------
.. ocv:class:: Point3_
::
template<typename _Tp> class CV_EXPORTS Point3_
{
public:
typedef _Tp value_type;
// various constructors
Point3_();
Point3_(_Tp _x, _Tp _y, _Tp _z);
Point3_(const Point3_& pt);
explicit Point3_(const Point_<_Tp>& pt);
Point3_(const CvPoint3D32f& pt);
Point3_(const Vec<_Tp, 3>& v);
Point3_& operator = (const Point3_& pt);
//! conversion to another data type
template<typename _Tp2> operator Point3_<_Tp2>() const;
//! conversion to the old-style CvPoint...
operator CvPoint3D32f() const;
//! conversion to cv::Vec<>
operator Vec<_Tp, 3>() const;
//! dot product
_Tp dot(const Point3_& pt) const;
//! dot product computed in double-precision arithmetics
double ddot(const Point3_& pt) const;
//! cross product of the 2 3D points
Point3_ cross(const Point3_& pt) const;
_Tp x, y, z; //< the point coordinates
};
Template class for 3D points specified by its coordinates
:math:`x`,
:math:`y` and
@ -100,6 +170,35 @@ Size\_
------
.. ocv:class:: Size_
::
template<typename _Tp> class CV_EXPORTS Size_
{
public:
typedef _Tp value_type;
//! various constructors
Size_();
Size_(_Tp _width, _Tp _height);
Size_(const Size_& sz);
Size_(const CvSize& sz);
Size_(const CvSize2D32f& sz);
Size_(const Point_<_Tp>& pt);
Size_& operator = (const Size_& sz);
//! the area (width*height)
_Tp area() const;
//! conversion of another data type.
template<typename _Tp2> operator Size_<_Tp2>() const;
//! conversion to the old-style OpenCV types
operator CvSize() const;
operator CvSize2D32f() const;
_Tp width, height; // the width and the height
};
Template class for specifying the size of an image or rectangle. The class includes two members called ``width`` and ``height``. The structure can be converted to and from the old OpenCV structures
``CvSize`` and ``CvSize2D32f`` . The same set of arithmetic and comparison operations as for ``Point_`` is available.
@ -113,6 +212,43 @@ Rect\_
------
.. ocv:class:: Rect_
::
template<typename _Tp> class CV_EXPORTS Rect_
{
public:
typedef _Tp value_type;
//! various constructors
Rect_();
Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height);
Rect_(const Rect_& r);
Rect_(const CvRect& r);
Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz);
Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2);
Rect_& operator = ( const Rect_& r );
//! the top-left corner
Point_<_Tp> tl() const;
//! the bottom-right corner
Point_<_Tp> br() const;
//! size (width, height) of the rectangle
Size_<_Tp> size() const;
//! area (width*height) of the rectangle
_Tp area() const;
//! conversion to another data type
template<typename _Tp2> operator Rect_<_Tp2>() const;
//! conversion to the old-style CvRect
operator CvRect() const;
//! checks whether the rectangle contains the point
bool contains(const Point_<_Tp>& pt) const;
_Tp x, y, width, height; //< the top-left corner, as well as width and height of the rectangle
};
Template class for 2D rectangles, described by the following parameters:
* Coordinates of the top-left corner. This is a default interpretation of ``Rect_::x`` and ``Rect_::y`` in OpenCV. Though, in your algorithms you may count ``x`` and ``y`` from the bottom-left corner.
@ -171,6 +307,28 @@ RotatedRect
-----------
.. ocv:class:: RotatedRect
::
class CV_EXPORTS RotatedRect
{
public:
//! various constructors
RotatedRect();
RotatedRect(const Point2f& center, const Size2f& size, float angle);
RotatedRect(const CvBox2D& box);
//! returns 4 vertices of the rectangle
void points(Point2f pts[]) const;
//! returns the minimal up-right rectangle containing the rotated rectangle
Rect boundingRect() const;
//! conversion to the old-style CvBox2D structure
operator CvBox2D() const;
Point2f center; //< the rectangle mass center
Size2f size; //< width and height of the rectangle
float angle; //< the rotation angle. When the angle is 0, 90, 180, 270 etc., the rectangle becomes an up-right rectangle.
};
The class represents rotated (i.e. not up-right) rectangles on a plane. Each rectangle is specified by the center point (mass center), length of each side (represented by cv::Size2f structure) and the rotation angle in degrees.
.. ocv:function:: RotatedRect::RotatedRect()
@ -217,7 +375,33 @@ TermCriteria
------------
.. ocv:class:: TermCriteria
The class defining termination criteria for iterative algorithms. You can initialize it by default constructor and then override any parameters, or the structure may be fully initialized using the advanced variant of the constructor.
::
class CV_EXPORTS TermCriteria
{
public:
enum
{
COUNT=1, //!< the maximum number of iterations or elements to compute
MAX_ITER=COUNT, //!< ditto
EPS=2 //!< the desired accuracy or change in parameters at which the iterative algorithm stops
};
//! default constructor
TermCriteria();
//! full constructor
TermCriteria(int type, int maxCount, double epsilon);
//! conversion from CvTermCriteria
TermCriteria(const CvTermCriteria& criteria);
//! conversion to CvTermCriteria
operator CvTermCriteria() const;
int type; //!< the type of termination criteria: COUNT, EPS or COUNT + EPS
int maxCount; // the maximum number of iterations/elements
double epsilon; // the desired accuracy
};
The class defining termination criteria for iterative algorithms. You can initialize it by default constructor and then override any parameters, or the structure may be fully initialized using the advanced variant of the constructor.
TermCriteria::TermCriteria
--------------------------
@ -321,9 +505,36 @@ Scalar\_
--------
.. ocv:class:: Scalar_
Template class for a 4-element vector derived from Vec. ::
Template class for a 4-element vector derived from Vec.
::
template<typename _Tp> class CV_EXPORTS Scalar_ : public Vec<_Tp, 4>
{
public:
//! various constructors
Scalar_();
Scalar_(_Tp v0, _Tp v1, _Tp v2=0, _Tp v3=0);
Scalar_(const CvScalar& s);
Scalar_(_Tp v0);
//! returns a scalar with all elements set to v0
static Scalar_<_Tp> all(_Tp v0);
//! conversion to the old-style CvScalar
operator CvScalar() const;
//! conversion to another data type
template<typename T2> operator Scalar_<T2>() const;
template<typename _Tp> class Scalar_ : public Vec<_Tp, 4> { ... };
//! per-element product
Scalar_<_Tp> mul(const Scalar_<_Tp>& t, double scale=1 ) const;
// returns (v0, -v1, -v2, -v3)
Scalar_<_Tp> conj() const;
// returns true iff v1 == v2 == v3 == 0
bool isReal() const;
};
typedef Scalar_<double> Scalar;
@ -333,12 +544,21 @@ Range
-----
.. ocv:class:: Range
Template class specifying a continuous subsequence (slice) of a sequence. ::
Template class specifying a continuous subsequence (slice) of a sequence.
::
class Range
class CV_EXPORTS Range
{
public:
...
Range();
Range(int _start, int _end);
Range(const CvSlice& slice);
int size() const;
bool empty() const;
static Range all();
operator CvSlice() const;
int start, end;
};
@ -617,8 +837,8 @@ Ptr::operator ->
----------------
Provide access to the object fields and methods.
.. ocv:function:: template<typename _Tp> _Tp* Ptr::operator -> ()
.. ocv:function:: template<typename _Tp> const _Tp* Ptr::operator -> () const
.. ocv:function:: template<typename _Tp> _Tp* Ptr::operator -> ()
.. ocv:function:: template<typename _Tp> const _Tp* Ptr::operator -> () const
Ptr::operator _Tp*
@ -626,15 +846,16 @@ Ptr::operator _Tp*
Returns the underlying object pointer. Thanks to the methods, the ``Ptr<_Tp>`` can be used instead
of ``_Tp*``.
.. ocv:function:: template<typename _Tp> Ptr::operator _Tp* ()
.. ocv:function:: template<typename _Tp> Ptr::operator const _Tp*() const
.. ocv:function:: template<typename _Tp> Ptr::operator _Tp* ()
.. ocv:function:: template<typename _Tp> Ptr::operator const _Tp*() const
Mat
---
.. ocv:class:: Mat
OpenCV C++ n-dimensional dense array class ::
OpenCV C++ n-dimensional dense array class
::
class CV_EXPORTS Mat
{
@ -664,7 +885,6 @@ OpenCV C++ n-dimensional dense array class ::
...
};
The class ``Mat`` represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a ``SparseMat`` ). The data layout of the array
:math:`M` is defined by the array ``M.step[]``, so that the address of element
:math:`(i_0,...,i_{M.dims-1})`, where
@ -2491,6 +2711,82 @@ Algorithm
---------
.. ocv:class:: Algorithm
::
class CV_EXPORTS_W Algorithm
{
public:
Algorithm();
virtual ~Algorithm();
string name() const;
template<typename _Tp> typename ParamType<_Tp>::member_type get(const string& name) const;
template<typename _Tp> typename ParamType<_Tp>::member_type get(const char* name) const;
CV_WRAP int getInt(const string& name) const;
CV_WRAP double getDouble(const string& name) const;
CV_WRAP bool getBool(const string& name) const;
CV_WRAP string getString(const string& name) const;
CV_WRAP Mat getMat(const string& name) const;
CV_WRAP vector<Mat> getMatVector(const string& name) const;
CV_WRAP Ptr<Algorithm> getAlgorithm(const string& name) const;
void set(const string& name, int value);
void set(const string& name, double value);
void set(const string& name, bool value);
void set(const string& name, const string& value);
void set(const string& name, const Mat& value);
void set(const string& name, const vector<Mat>& value);
void set(const string& name, const Ptr<Algorithm>& value);
template<typename _Tp> void set(const string& name, const Ptr<_Tp>& value);
CV_WRAP void setInt(const string& name, int value);
CV_WRAP void setDouble(const string& name, double value);
CV_WRAP void setBool(const string& name, bool value);
CV_WRAP void setString(const string& name, const string& value);
CV_WRAP void setMat(const string& name, const Mat& value);
CV_WRAP void setMatVector(const string& name, const vector<Mat>& value);
CV_WRAP void setAlgorithm(const string& name, const Ptr<Algorithm>& value);
template<typename _Tp> void setAlgorithm(const string& name, const Ptr<_Tp>& value);
void set(const char* name, int value);
void set(const char* name, double value);
void set(const char* name, bool value);
void set(const char* name, const string& value);
void set(const char* name, const Mat& value);
void set(const char* name, const vector<Mat>& value);
void set(const char* name, const Ptr<Algorithm>& value);
template<typename _Tp> void set(const char* name, const Ptr<_Tp>& value);
void setInt(const char* name, int value);
void setDouble(const char* name, double value);
void setBool(const char* name, bool value);
void setString(const char* name, const string& value);
void setMat(const char* name, const Mat& value);
void setMatVector(const char* name, const vector<Mat>& value);
void setAlgorithm(const char* name, const Ptr<Algorithm>& value);
template<typename _Tp> void setAlgorithm(const char* name, const Ptr<_Tp>& value);
CV_WRAP string paramHelp(const string& name) const;
int paramType(const char* name) const;
CV_WRAP int paramType(const string& name) const;
CV_WRAP void getParams(CV_OUT vector<string>& names) const;
virtual void write(FileStorage& fs) const;
virtual void read(const FileNode& fn);
typedef Algorithm* (*Constructor)(void);
typedef int (Algorithm::*Getter)() const;
typedef void (Algorithm::*Setter)(int);
CV_WRAP static void getList(CV_OUT vector<string>& algorithms);
CV_WRAP static Ptr<Algorithm> _create(const string& name);
template<typename _Tp> static Ptr<_Tp> create(const string& name);
virtual AlgorithmInfo* info() const /* TODO: make it = 0;*/ { return 0; }
};
This is a base class for all more or less complex algorithms in OpenCV, especially for classes of algorithms, for which there can be multiple implementations. The examples are stereo correspondence (for which there are algorithms like block matching, semi-global block matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck etc.).
The class provides the following features for all derived classes:

@ -406,6 +406,59 @@ CV_EXPORTS void read(const FileNode& node, Mat& mat, const Mat& default_mat = Ma
CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat = SparseMat() );
CV_EXPORTS void read(const FileNode& node, std::vector<KeyPoint>& keypoints);
template<typename _Tp> static inline void read(const FileNode& node, Point_<_Tp>& value, const Point_<_Tp>& default_value)
{
std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
value = temp.size() != 2 ? default_value : Point_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]));
}
template<typename _Tp> static inline void read(const FileNode& node, Point3_<_Tp>& value, const Point3_<_Tp>& default_value)
{
std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
value = temp.size() != 3 ? default_value : Point3_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]),
saturate_cast<_Tp>(temp[2]));
}
template<typename _Tp> static inline void read(const FileNode& node, Size_<_Tp>& value, const Size_<_Tp>& default_value)
{
std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
value = temp.size() != 2 ? default_value : Size_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]));
}
template<typename _Tp> static inline void read(const FileNode& node, Complex<_Tp>& value, const Complex<_Tp>& default_value)
{
std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
value = temp.size() != 2 ? default_value : Complex<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]));
}
template<typename _Tp> static inline void read(const FileNode& node, Rect_<_Tp>& value, const Rect_<_Tp>& default_value)
{
std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
value = temp.size() != 4 ? default_value : Rect_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]),
saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3]));
}
template<typename _Tp, int cn> static inline void read(const FileNode& node, Vec<_Tp, cn>& value, const Vec<_Tp, cn>& default_value)
{
std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
value = temp.size() != cn ? default_value : Vec<_Tp, cn>(&temp[0]);
}
template<typename _Tp> static inline void read(const FileNode& node, Scalar_<_Tp>& value, const Scalar_<_Tp>& default_value)
{
std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
value = temp.size() != 4 ? default_value : Scalar_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]),
saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3]));
}
static inline void read(const FileNode& node, Range& value, const Range& default_value)
{
Point2i temp(value.start, value.end); const Point2i default_temp = Point2i(default_value.start, default_value.end);
read(node, temp, default_temp);
value.start = temp.x; value.end = temp.y;
}
CV_EXPORTS FileStorage& operator << (FileStorage& fs, const String& str);

@ -56,6 +56,9 @@
#define CVAUX_STR_EXP(__A) #__A
#define CVAUX_STR(__A) CVAUX_STR_EXP(__A)
#define CVAUX_STRW_EXP(__A) L#__A
#define CVAUX_STRW(__A) CVAUX_STRW_EXP(__A)
#if CV_VERSION_REVISION
# define CV_VERSION CVAUX_STR(CV_VERSION_EPOCH) "." CVAUX_STR(CV_VERSION_MAJOR) "." CVAUX_STR(CV_VERSION_MINOR) "." CVAUX_STR(CV_VERSION_REVISION)
#else

@ -1 +0,0 @@
#include "perf_precomp.hpp"

@ -1131,23 +1131,33 @@ static void binary_op(InputArray _src1, InputArray _src2, OutputArray _dst,
}
}
static BinaryFunc maxTab[] =
static BinaryFunc* getMaxTab()
{
(BinaryFunc)GET_OPTIMIZED(max8u), (BinaryFunc)GET_OPTIMIZED(max8s),
(BinaryFunc)GET_OPTIMIZED(max16u), (BinaryFunc)GET_OPTIMIZED(max16s),
(BinaryFunc)GET_OPTIMIZED(max32s),
(BinaryFunc)GET_OPTIMIZED(max32f), (BinaryFunc)max64f,
0
};
static BinaryFunc maxTab[] =
{
(BinaryFunc)GET_OPTIMIZED(max8u), (BinaryFunc)GET_OPTIMIZED(max8s),
(BinaryFunc)GET_OPTIMIZED(max16u), (BinaryFunc)GET_OPTIMIZED(max16s),
(BinaryFunc)GET_OPTIMIZED(max32s),
(BinaryFunc)GET_OPTIMIZED(max32f), (BinaryFunc)max64f,
0
};
return maxTab;
}
static BinaryFunc minTab[] =
static BinaryFunc* getMinTab()
{
(BinaryFunc)GET_OPTIMIZED(min8u), (BinaryFunc)GET_OPTIMIZED(min8s),
(BinaryFunc)GET_OPTIMIZED(min16u), (BinaryFunc)GET_OPTIMIZED(min16s),
(BinaryFunc)GET_OPTIMIZED(min32s),
(BinaryFunc)GET_OPTIMIZED(min32f), (BinaryFunc)min64f,
0
};
static BinaryFunc minTab[] =
{
(BinaryFunc)GET_OPTIMIZED(min8u), (BinaryFunc)GET_OPTIMIZED(min8s),
(BinaryFunc)GET_OPTIMIZED(min16u), (BinaryFunc)GET_OPTIMIZED(min16s),
(BinaryFunc)GET_OPTIMIZED(min32s),
(BinaryFunc)GET_OPTIMIZED(min32f), (BinaryFunc)min64f,
0
};
return minTab;
}
}
@ -1177,24 +1187,24 @@ void cv::bitwise_not(InputArray a, OutputArray c, InputArray mask)
void cv::max( InputArray src1, InputArray src2, OutputArray dst )
{
binary_op(src1, src2, dst, noArray(), maxTab, false );
binary_op(src1, src2, dst, noArray(), getMaxTab(), false );
}
void cv::min( InputArray src1, InputArray src2, OutputArray dst )
{
binary_op(src1, src2, dst, noArray(), minTab, false );
binary_op(src1, src2, dst, noArray(), getMinTab(), false );
}
void cv::max(const Mat& src1, const Mat& src2, Mat& dst)
{
OutputArray _dst(dst);
binary_op(src1, src2, _dst, noArray(), maxTab, false );
binary_op(src1, src2, _dst, noArray(), getMaxTab(), false );
}
void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
{
OutputArray _dst(dst);
binary_op(src1, src2, _dst, noArray(), minTab, false );
binary_op(src1, src2, _dst, noArray(), getMinTab(), false );
}
@ -1482,39 +1492,54 @@ static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
}
}
static BinaryFunc addTab[] =
static BinaryFunc* getAddTab()
{
(BinaryFunc)GET_OPTIMIZED(add8u), (BinaryFunc)GET_OPTIMIZED(add8s),
(BinaryFunc)GET_OPTIMIZED(add16u), (BinaryFunc)GET_OPTIMIZED(add16s),
(BinaryFunc)GET_OPTIMIZED(add32s),
(BinaryFunc)GET_OPTIMIZED(add32f), (BinaryFunc)add64f,
0
};
static BinaryFunc addTab[] =
{
(BinaryFunc)GET_OPTIMIZED(add8u), (BinaryFunc)GET_OPTIMIZED(add8s),
(BinaryFunc)GET_OPTIMIZED(add16u), (BinaryFunc)GET_OPTIMIZED(add16s),
(BinaryFunc)GET_OPTIMIZED(add32s),
(BinaryFunc)GET_OPTIMIZED(add32f), (BinaryFunc)add64f,
0
};
static BinaryFunc subTab[] =
return addTab;
}
static BinaryFunc* getSubTab()
{
(BinaryFunc)GET_OPTIMIZED(sub8u), (BinaryFunc)GET_OPTIMIZED(sub8s),
(BinaryFunc)GET_OPTIMIZED(sub16u), (BinaryFunc)GET_OPTIMIZED(sub16s),
(BinaryFunc)GET_OPTIMIZED(sub32s),
(BinaryFunc)GET_OPTIMIZED(sub32f), (BinaryFunc)sub64f,
0
};
static BinaryFunc subTab[] =
{
(BinaryFunc)GET_OPTIMIZED(sub8u), (BinaryFunc)GET_OPTIMIZED(sub8s),
(BinaryFunc)GET_OPTIMIZED(sub16u), (BinaryFunc)GET_OPTIMIZED(sub16s),
(BinaryFunc)GET_OPTIMIZED(sub32s),
(BinaryFunc)GET_OPTIMIZED(sub32f), (BinaryFunc)sub64f,
0
};
return subTab;
}
static BinaryFunc absdiffTab[] =
static BinaryFunc* getAbsDiffTab()
{
(BinaryFunc)GET_OPTIMIZED(absdiff8u), (BinaryFunc)GET_OPTIMIZED(absdiff8s),
(BinaryFunc)GET_OPTIMIZED(absdiff16u), (BinaryFunc)GET_OPTIMIZED(absdiff16s),
(BinaryFunc)GET_OPTIMIZED(absdiff32s),
(BinaryFunc)GET_OPTIMIZED(absdiff32f), (BinaryFunc)absdiff64f,
0
};
static BinaryFunc absDiffTab[] =
{
(BinaryFunc)GET_OPTIMIZED(absdiff8u), (BinaryFunc)GET_OPTIMIZED(absdiff8s),
(BinaryFunc)GET_OPTIMIZED(absdiff16u), (BinaryFunc)GET_OPTIMIZED(absdiff16s),
(BinaryFunc)GET_OPTIMIZED(absdiff32s),
(BinaryFunc)GET_OPTIMIZED(absdiff32f), (BinaryFunc)absdiff64f,
0
};
return absDiffTab;
}
}
void cv::add( InputArray src1, InputArray src2, OutputArray dst,
InputArray mask, int dtype )
{
arithm_op(src1, src2, dst, mask, dtype, addTab );
arithm_op(src1, src2, dst, mask, dtype, getAddTab() );
}
void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
@ -1549,12 +1574,12 @@ void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
}
}
#endif
arithm_op(src1, src2, dst, mask, dtype, subTab );
arithm_op(src1, src2, dst, mask, dtype, getSubTab() );
}
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst )
{
arithm_op(src1, src2, dst, noArray(), -1, absdiffTab);
arithm_op(src1, src2, dst, noArray(), -1, getAbsDiffTab());
}
/****************************************************************************************\
@ -1844,46 +1869,60 @@ static void recip64f( const double* src1, size_t step1, const double* src2, size
}
static BinaryFunc mulTab[] =
static BinaryFunc* getMulTab()
{
(BinaryFunc)mul8u, (BinaryFunc)mul8s, (BinaryFunc)mul16u,
(BinaryFunc)mul16s, (BinaryFunc)mul32s, (BinaryFunc)mul32f,
(BinaryFunc)mul64f, 0
};
static BinaryFunc mulTab[] =
{
(BinaryFunc)mul8u, (BinaryFunc)mul8s, (BinaryFunc)mul16u,
(BinaryFunc)mul16s, (BinaryFunc)mul32s, (BinaryFunc)mul32f,
(BinaryFunc)mul64f, 0
};
return mulTab;
}
static BinaryFunc divTab[] =
static BinaryFunc* getDivTab()
{
(BinaryFunc)div8u, (BinaryFunc)div8s, (BinaryFunc)div16u,
(BinaryFunc)div16s, (BinaryFunc)div32s, (BinaryFunc)div32f,
(BinaryFunc)div64f, 0
};
static BinaryFunc divTab[] =
{
(BinaryFunc)div8u, (BinaryFunc)div8s, (BinaryFunc)div16u,
(BinaryFunc)div16s, (BinaryFunc)div32s, (BinaryFunc)div32f,
(BinaryFunc)div64f, 0
};
static BinaryFunc recipTab[] =
return divTab;
}
static BinaryFunc* getRecipTab()
{
(BinaryFunc)recip8u, (BinaryFunc)recip8s, (BinaryFunc)recip16u,
(BinaryFunc)recip16s, (BinaryFunc)recip32s, (BinaryFunc)recip32f,
(BinaryFunc)recip64f, 0
};
static BinaryFunc recipTab[] =
{
(BinaryFunc)recip8u, (BinaryFunc)recip8s, (BinaryFunc)recip16u,
(BinaryFunc)recip16s, (BinaryFunc)recip32s, (BinaryFunc)recip32f,
(BinaryFunc)recip64f, 0
};
return recipTab;
}
}
void cv::multiply(InputArray src1, InputArray src2,
OutputArray dst, double scale, int dtype)
{
arithm_op(src1, src2, dst, noArray(), dtype, mulTab, true, &scale);
arithm_op(src1, src2, dst, noArray(), dtype, getMulTab(), true, &scale);
}
void cv::divide(InputArray src1, InputArray src2,
OutputArray dst, double scale, int dtype)
{
arithm_op(src1, src2, dst, noArray(), dtype, divTab, true, &scale);
arithm_op(src1, src2, dst, noArray(), dtype, getDivTab(), true, &scale);
}
void cv::divide(double scale, InputArray src2,
OutputArray dst, int dtype)
{
arithm_op(src2, src2, dst, noArray(), dtype, recipTab, true, &scale);
arithm_op(src2, src2, dst, noArray(), dtype, getRecipTab(), true, &scale);
}
/****************************************************************************************\
@ -2026,12 +2065,17 @@ static void addWeighted64f( const double* src1, size_t step1, const double* src2
addWeighted_<double, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
static BinaryFunc addWeightedTab[] =
static BinaryFunc* getAddWeightedTab()
{
(BinaryFunc)GET_OPTIMIZED(addWeighted8u), (BinaryFunc)GET_OPTIMIZED(addWeighted8s), (BinaryFunc)GET_OPTIMIZED(addWeighted16u),
(BinaryFunc)GET_OPTIMIZED(addWeighted16s), (BinaryFunc)GET_OPTIMIZED(addWeighted32s), (BinaryFunc)addWeighted32f,
(BinaryFunc)addWeighted64f, 0
};
static BinaryFunc addWeightedTab[] =
{
(BinaryFunc)GET_OPTIMIZED(addWeighted8u), (BinaryFunc)GET_OPTIMIZED(addWeighted8s), (BinaryFunc)GET_OPTIMIZED(addWeighted16u),
(BinaryFunc)GET_OPTIMIZED(addWeighted16s), (BinaryFunc)GET_OPTIMIZED(addWeighted32s), (BinaryFunc)addWeighted32f,
(BinaryFunc)addWeighted64f, 0
};
return addWeightedTab;
}
}
@ -2039,7 +2083,7 @@ void cv::addWeighted( InputArray src1, double alpha, InputArray src2,
double beta, double gamma, OutputArray dst, int dtype )
{
double scalars[] = {alpha, beta, gamma};
arithm_op(src1, src2, dst, noArray(), dtype, addWeightedTab, true, scalars);
arithm_op(src1, src2, dst, noArray(), dtype, getAddWeightedTab(), true, scalars);
}
@ -2299,15 +2343,19 @@ static void cmp64f(const double* src1, size_t step1, const double* src2, size_t
cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
static BinaryFunc cmpTab[] =
static BinaryFunc getCmpFunc(int depth)
{
(BinaryFunc)GET_OPTIMIZED(cmp8u), (BinaryFunc)GET_OPTIMIZED(cmp8s),
(BinaryFunc)GET_OPTIMIZED(cmp16u), (BinaryFunc)GET_OPTIMIZED(cmp16s),
(BinaryFunc)GET_OPTIMIZED(cmp32s),
(BinaryFunc)GET_OPTIMIZED(cmp32f), (BinaryFunc)cmp64f,
0
};
static BinaryFunc cmpTab[] =
{
(BinaryFunc)GET_OPTIMIZED(cmp8u), (BinaryFunc)GET_OPTIMIZED(cmp8s),
(BinaryFunc)GET_OPTIMIZED(cmp16u), (BinaryFunc)GET_OPTIMIZED(cmp16s),
(BinaryFunc)GET_OPTIMIZED(cmp32s),
(BinaryFunc)GET_OPTIMIZED(cmp32f), (BinaryFunc)cmp64f,
0
};
return cmpTab[depth];
}
static double getMinVal(int depth)
{
@ -2337,7 +2385,7 @@ void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
_dst.create(src1.size(), CV_8UC(cn));
Mat dst = _dst.getMat();
Size sz = getContinuousSize(src1, src2, dst, src1.channels());
cmpTab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op);
getCmpFunc(src1.depth())(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op);
return;
}
@ -2369,7 +2417,7 @@ void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
size_t esz = src1.elemSize();
size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
BinaryFunc func = cmpTab[depth1];
BinaryFunc func = getCmpFunc(depth1);
if( !haveScalar )
{
@ -2546,12 +2594,17 @@ static void inRangeReduce(const uchar* src, uchar* dst, size_t len, int cn)
typedef void (*InRangeFunc)( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
const uchar* src3, size_t step3, uchar* dst, size_t step, Size sz );
static InRangeFunc inRangeTab[] =
static InRangeFunc getInRangeFunc(int depth)
{
(InRangeFunc)GET_OPTIMIZED(inRange8u), (InRangeFunc)GET_OPTIMIZED(inRange8s), (InRangeFunc)GET_OPTIMIZED(inRange16u),
(InRangeFunc)GET_OPTIMIZED(inRange16s), (InRangeFunc)GET_OPTIMIZED(inRange32s), (InRangeFunc)GET_OPTIMIZED(inRange32f),
(InRangeFunc)inRange64f, 0
};
static InRangeFunc inRangeTab[] =
{
(InRangeFunc)GET_OPTIMIZED(inRange8u), (InRangeFunc)GET_OPTIMIZED(inRange8s), (InRangeFunc)GET_OPTIMIZED(inRange16u),
(InRangeFunc)GET_OPTIMIZED(inRange16s), (InRangeFunc)GET_OPTIMIZED(inRange32s), (InRangeFunc)GET_OPTIMIZED(inRange32f),
(InRangeFunc)inRange64f, 0
};
return inRangeTab[depth];
}
}
@ -2590,7 +2643,7 @@ void cv::inRange(InputArray _src, InputArray _lowerb,
_dst.create(src.dims, src.size, CV_8U);
Mat dst = _dst.getMat();
InRangeFunc func = inRangeTab[depth];
InRangeFunc func = getInRangeFunc(depth);
const Mat* arrays_sc[] = { &src, &dst, 0 };
const Mat* arrays_nosc[] = { &src, &dst, &lb, &ub, 0 };

@ -194,17 +194,27 @@ static void merge64s(const int64** src, int64* dst, int len, int cn )
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn);
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
static SplitFunc splitTab[] =
static SplitFunc getSplitFunc(int depth)
{
(SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split16u), (SplitFunc)GET_OPTIMIZED(split16u),
(SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split64s), 0
};
static SplitFunc splitTab[] =
{
(SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split16u), (SplitFunc)GET_OPTIMIZED(split16u),
(SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split64s), 0
};
return splitTab[depth];
}
static MergeFunc mergeTab[] =
static MergeFunc getMergeFunc(int depth)
{
(MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge16u), (MergeFunc)GET_OPTIMIZED(merge16u),
(MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge64s), 0
};
static MergeFunc mergeTab[] =
{
(MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge16u), (MergeFunc)GET_OPTIMIZED(merge16u),
(MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge64s), 0
};
return mergeTab[depth];
}
}
@ -217,7 +227,7 @@ void cv::split(const Mat& src, Mat* mv)
return;
}
SplitFunc func = splitTab[depth];
SplitFunc func = getSplitFunc(depth);
CV_Assert( func != 0 );
int esz = (int)src.elemSize(), esz1 = (int)src.elemSize1();
@ -323,7 +333,7 @@ void cv::merge(const Mat* mv, size_t n, OutputArray _dst)
NAryMatIterator it(arrays, ptrs, cn+1);
int total = (int)it.size, blocksize = cn <= 4 ? total : std::min(total, blocksize0);
MergeFunc func = mergeTab[depth];
MergeFunc func = getMergeFunc(depth);
for( i = 0; i < it.nplanes; i++, ++it )
{
@ -419,12 +429,17 @@ static void mixChannels64s( const int64** src, const int* sdelta,
typedef void (*MixChannelsFunc)( const uchar** src, const int* sdelta,
uchar** dst, const int* ddelta, int len, int npairs );
static MixChannelsFunc mixchTab[] =
static MixChannelsFunc getMixchFunc(int depth)
{
(MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels16u,
(MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels32s,
(MixChannelsFunc)mixChannels64s, 0
};
static MixChannelsFunc mixchTab[] =
{
(MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels16u,
(MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels32s,
(MixChannelsFunc)mixChannels64s, 0
};
return mixchTab[depth];
}
}
@ -479,7 +494,7 @@ void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, cons
NAryMatIterator it(arrays, ptrs, (int)(nsrcs + ndsts));
int total = (int)it.size, blocksize = std::min(total, (int)((BLOCK_SIZE + esz1-1)/esz1));
MixChannelsFunc func = mixchTab[depth];
MixChannelsFunc func = getMixchFunc(depth);
for( i = 0; i < it.nplanes; i++, ++it )
{
@ -947,104 +962,109 @@ DEF_CVT_FUNC(32s64f, int, double);
DEF_CVT_FUNC(32f64f, float, double);
DEF_CPY_FUNC(64s, int64);
static BinaryFunc cvtScaleAbsTab[] =
{
(BinaryFunc)cvtScaleAbs8u, (BinaryFunc)cvtScaleAbs8s8u, (BinaryFunc)cvtScaleAbs16u8u,
(BinaryFunc)cvtScaleAbs16s8u, (BinaryFunc)cvtScaleAbs32s8u, (BinaryFunc)cvtScaleAbs32f8u,
(BinaryFunc)cvtScaleAbs64f8u, 0
};
static BinaryFunc cvtScaleTab[][8] =
static BinaryFunc getCvtScaleAbsFunc(int depth)
{
static BinaryFunc cvtScaleAbsTab[] =
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8u),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8u),
(BinaryFunc)cvtScale64f8u, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8s),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8s),
(BinaryFunc)cvtScale64f8s, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16u),
(BinaryFunc)cvtScale64f16u, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u16s),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16s),
(BinaryFunc)cvtScale64f16s, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32s),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f32s),
(BinaryFunc)cvtScale64f32s, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32f),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32f),
(BinaryFunc)cvtScale64f32f, 0
},
{
(BinaryFunc)cvtScale8u64f, (BinaryFunc)cvtScale8s64f, (BinaryFunc)cvtScale16u64f,
(BinaryFunc)cvtScale16s64f, (BinaryFunc)cvtScale32s64f, (BinaryFunc)cvtScale32f64f,
(BinaryFunc)cvtScale64f, 0
},
{
0, 0, 0, 0, 0, 0, 0, 0
}
};
(BinaryFunc)cvtScaleAbs8u, (BinaryFunc)cvtScaleAbs8s8u, (BinaryFunc)cvtScaleAbs16u8u,
(BinaryFunc)cvtScaleAbs16s8u, (BinaryFunc)cvtScaleAbs32s8u, (BinaryFunc)cvtScaleAbs32f8u,
(BinaryFunc)cvtScaleAbs64f8u, 0
};
static BinaryFunc cvtTab[][8] =
{
{
(BinaryFunc)(cvt8u), (BinaryFunc)GET_OPTIMIZED(cvt8s8u), (BinaryFunc)GET_OPTIMIZED(cvt16u8u),
(BinaryFunc)GET_OPTIMIZED(cvt16s8u), (BinaryFunc)GET_OPTIMIZED(cvt32s8u), (BinaryFunc)GET_OPTIMIZED(cvt32f8u),
(BinaryFunc)GET_OPTIMIZED(cvt64f8u), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u8s), (BinaryFunc)cvt8u, (BinaryFunc)GET_OPTIMIZED(cvt16u8s),
(BinaryFunc)GET_OPTIMIZED(cvt16s8s), (BinaryFunc)GET_OPTIMIZED(cvt32s8s), (BinaryFunc)GET_OPTIMIZED(cvt32f8s),
(BinaryFunc)GET_OPTIMIZED(cvt64f8s), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u16u), (BinaryFunc)GET_OPTIMIZED(cvt8s16u), (BinaryFunc)cvt16u,
(BinaryFunc)GET_OPTIMIZED(cvt16s16u), (BinaryFunc)GET_OPTIMIZED(cvt32s16u), (BinaryFunc)GET_OPTIMIZED(cvt32f16u),
(BinaryFunc)GET_OPTIMIZED(cvt64f16u), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u16s), (BinaryFunc)GET_OPTIMIZED(cvt8s16s), (BinaryFunc)GET_OPTIMIZED(cvt16u16s),
(BinaryFunc)cvt16u, (BinaryFunc)GET_OPTIMIZED(cvt32s16s), (BinaryFunc)GET_OPTIMIZED(cvt32f16s),
(BinaryFunc)GET_OPTIMIZED(cvt64f16s), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u32s), (BinaryFunc)GET_OPTIMIZED(cvt8s32s), (BinaryFunc)GET_OPTIMIZED(cvt16u32s),
(BinaryFunc)GET_OPTIMIZED(cvt16s32s), (BinaryFunc)cvt32s, (BinaryFunc)GET_OPTIMIZED(cvt32f32s),
(BinaryFunc)GET_OPTIMIZED(cvt64f32s), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u32f), (BinaryFunc)GET_OPTIMIZED(cvt8s32f), (BinaryFunc)GET_OPTIMIZED(cvt16u32f),
(BinaryFunc)GET_OPTIMIZED(cvt16s32f), (BinaryFunc)GET_OPTIMIZED(cvt32s32f), (BinaryFunc)cvt32s,
(BinaryFunc)GET_OPTIMIZED(cvt64f32f), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u64f), (BinaryFunc)GET_OPTIMIZED(cvt8s64f), (BinaryFunc)GET_OPTIMIZED(cvt16u64f),
(BinaryFunc)GET_OPTIMIZED(cvt16s64f), (BinaryFunc)GET_OPTIMIZED(cvt32s64f), (BinaryFunc)GET_OPTIMIZED(cvt32f64f),
(BinaryFunc)(cvt64s), 0
},
{
0, 0, 0, 0, 0, 0, 0, 0
}
};
return cvtScaleAbsTab[depth];
}
BinaryFunc getConvertFunc(int sdepth, int ddepth)
{
static BinaryFunc cvtTab[][8] =
{
{
(BinaryFunc)(cvt8u), (BinaryFunc)GET_OPTIMIZED(cvt8s8u), (BinaryFunc)GET_OPTIMIZED(cvt16u8u),
(BinaryFunc)GET_OPTIMIZED(cvt16s8u), (BinaryFunc)GET_OPTIMIZED(cvt32s8u), (BinaryFunc)GET_OPTIMIZED(cvt32f8u),
(BinaryFunc)GET_OPTIMIZED(cvt64f8u), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u8s), (BinaryFunc)cvt8u, (BinaryFunc)GET_OPTIMIZED(cvt16u8s),
(BinaryFunc)GET_OPTIMIZED(cvt16s8s), (BinaryFunc)GET_OPTIMIZED(cvt32s8s), (BinaryFunc)GET_OPTIMIZED(cvt32f8s),
(BinaryFunc)GET_OPTIMIZED(cvt64f8s), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u16u), (BinaryFunc)GET_OPTIMIZED(cvt8s16u), (BinaryFunc)cvt16u,
(BinaryFunc)GET_OPTIMIZED(cvt16s16u), (BinaryFunc)GET_OPTIMIZED(cvt32s16u), (BinaryFunc)GET_OPTIMIZED(cvt32f16u),
(BinaryFunc)GET_OPTIMIZED(cvt64f16u), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u16s), (BinaryFunc)GET_OPTIMIZED(cvt8s16s), (BinaryFunc)GET_OPTIMIZED(cvt16u16s),
(BinaryFunc)cvt16u, (BinaryFunc)GET_OPTIMIZED(cvt32s16s), (BinaryFunc)GET_OPTIMIZED(cvt32f16s),
(BinaryFunc)GET_OPTIMIZED(cvt64f16s), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u32s), (BinaryFunc)GET_OPTIMIZED(cvt8s32s), (BinaryFunc)GET_OPTIMIZED(cvt16u32s),
(BinaryFunc)GET_OPTIMIZED(cvt16s32s), (BinaryFunc)cvt32s, (BinaryFunc)GET_OPTIMIZED(cvt32f32s),
(BinaryFunc)GET_OPTIMIZED(cvt64f32s), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u32f), (BinaryFunc)GET_OPTIMIZED(cvt8s32f), (BinaryFunc)GET_OPTIMIZED(cvt16u32f),
(BinaryFunc)GET_OPTIMIZED(cvt16s32f), (BinaryFunc)GET_OPTIMIZED(cvt32s32f), (BinaryFunc)cvt32s,
(BinaryFunc)GET_OPTIMIZED(cvt64f32f), 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvt8u64f), (BinaryFunc)GET_OPTIMIZED(cvt8s64f), (BinaryFunc)GET_OPTIMIZED(cvt16u64f),
(BinaryFunc)GET_OPTIMIZED(cvt16s64f), (BinaryFunc)GET_OPTIMIZED(cvt32s64f), (BinaryFunc)GET_OPTIMIZED(cvt32f64f),
(BinaryFunc)(cvt64s), 0
},
{
0, 0, 0, 0, 0, 0, 0, 0
}
};
return cvtTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
}
static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
{
static BinaryFunc cvtScaleTab[][8] =
{
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8u),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8u),
(BinaryFunc)cvtScale64f8u, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8s),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8s),
(BinaryFunc)cvtScale64f8s, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16u),
(BinaryFunc)cvtScale64f16u, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u16s),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16s),
(BinaryFunc)cvtScale64f16s, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32s),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f32s),
(BinaryFunc)cvtScale64f32s, 0
},
{
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32f),
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32f),
(BinaryFunc)cvtScale64f32f, 0
},
{
(BinaryFunc)cvtScale8u64f, (BinaryFunc)cvtScale8s64f, (BinaryFunc)cvtScale16u64f,
(BinaryFunc)cvtScale16s64f, (BinaryFunc)cvtScale32s64f, (BinaryFunc)cvtScale32f64f,
(BinaryFunc)cvtScale64f, 0
},
{
0, 0, 0, 0, 0, 0, 0, 0
}
};
return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
}
@ -1057,7 +1077,7 @@ void cv::convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, doubl
double scale[] = {alpha, beta};
_dst.create( src.dims, src.size, CV_8UC(cn) );
Mat dst = _dst.getMat();
BinaryFunc func = cvtScaleAbsTab[src.depth()];
BinaryFunc func = getCvtScaleAbsFunc(src.depth());
CV_Assert( func != 0 );
if( src.dims <= 2 )

@ -1725,19 +1725,29 @@ diagtransform_64f(const double* src, double* dst, const double* m, int len, int
typedef void (*TransformFunc)( const uchar* src, uchar* dst, const uchar* m, int, int, int );
static TransformFunc transformTab[] =
static TransformFunc getTransformFunc(int depth)
{
(TransformFunc)transform_8u, (TransformFunc)transform_8s, (TransformFunc)transform_16u,
(TransformFunc)transform_16s, (TransformFunc)transform_32s, (TransformFunc)transform_32f,
(TransformFunc)transform_64f, 0
};
static TransformFunc transformTab[] =
{
(TransformFunc)transform_8u, (TransformFunc)transform_8s, (TransformFunc)transform_16u,
(TransformFunc)transform_16s, (TransformFunc)transform_32s, (TransformFunc)transform_32f,
(TransformFunc)transform_64f, 0
};
return transformTab[depth];
}
static TransformFunc diagTransformTab[] =
static TransformFunc getDiagTransformFunc(int depth)
{
(TransformFunc)diagtransform_8u, (TransformFunc)diagtransform_8s, (TransformFunc)diagtransform_16u,
(TransformFunc)diagtransform_16s, (TransformFunc)diagtransform_32s, (TransformFunc)diagtransform_32f,
(TransformFunc)diagtransform_64f, 0
};
static TransformFunc diagTransformTab[] =
{
(TransformFunc)diagtransform_8u, (TransformFunc)diagtransform_8s, (TransformFunc)diagtransform_16u,
(TransformFunc)diagtransform_16s, (TransformFunc)diagtransform_32s, (TransformFunc)diagtransform_32f,
(TransformFunc)diagtransform_64f, 0
};
return diagTransformTab[depth];
}
}
@ -1800,7 +1810,7 @@ void cv::transform( InputArray _src, OutputArray _dst, InputArray _mtx )
}
}
TransformFunc func = isDiag ? diagTransformTab[depth] : transformTab[depth];
TransformFunc func = isDiag ? getDiagTransformFunc(depth): getTransformFunc(depth);
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &dst, 0};
@ -2761,19 +2771,24 @@ static double dotProd_64f(const double* src1, const double* src2, int len)
typedef double (*DotProdFunc)(const uchar* src1, const uchar* src2, int len);
static DotProdFunc dotProdTab[] =
static DotProdFunc getDotProdFunc(int depth)
{
(DotProdFunc)GET_OPTIMIZED(dotProd_8u), (DotProdFunc)GET_OPTIMIZED(dotProd_8s),
(DotProdFunc)dotProd_16u, (DotProdFunc)dotProd_16s,
(DotProdFunc)dotProd_32s, (DotProdFunc)GET_OPTIMIZED(dotProd_32f),
(DotProdFunc)dotProd_64f, 0
};
static DotProdFunc dotProdTab[] =
{
(DotProdFunc)GET_OPTIMIZED(dotProd_8u), (DotProdFunc)GET_OPTIMIZED(dotProd_8s),
(DotProdFunc)dotProd_16u, (DotProdFunc)dotProd_16s,
(DotProdFunc)dotProd_32s, (DotProdFunc)GET_OPTIMIZED(dotProd_32f),
(DotProdFunc)dotProd_64f, 0
};
return dotProdTab[depth];
}
double Mat::dot(InputArray _mat) const
{
Mat mat = _mat.getMat();
int cn = channels();
DotProdFunc func = dotProdTab[depth()];
DotProdFunc func = getDotProdFunc(depth());
CV_Assert( mat.type() == type() && mat.size == size && func != 0 );
if( isContinuous() && mat.isContinuous() )

@ -1,45 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -200,14 +200,19 @@ static int sum64f( const double* src, const uchar* mask, double* dst, int len, i
typedef int (*SumFunc)(const uchar*, const uchar* mask, uchar*, int, int);
static SumFunc sumTab[] =
static SumFunc getSumFunc(int depth)
{
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s,
(SumFunc)sum16u, (SumFunc)sum16s,
(SumFunc)sum32s,
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f,
0
};
static SumFunc sumTab[] =
{
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s,
(SumFunc)sum16u, (SumFunc)sum16s,
(SumFunc)sum32s,
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f,
0
};
return sumTab[depth];
}
template<typename T>
static int countNonZero_(const T* src, int len )
@ -272,14 +277,18 @@ static int countNonZero64f( const double* src, int len )
typedef int (*CountNonZeroFunc)(const uchar*, int);
static CountNonZeroFunc countNonZeroTab[] =
static CountNonZeroFunc getCountNonZeroTab(int depth)
{
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0
};
static CountNonZeroFunc countNonZeroTab[] =
{
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0
};
return countNonZeroTab[depth];
}
template<typename T, typename ST, typename SQT>
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn )
@ -428,11 +437,16 @@ static int sqsum64f( const double* src, const uchar* mask, double* sum, double*
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int);
static SumSqrFunc sumSqrTab[] =
static SumSqrFunc getSumSqrTab(int depth)
{
(SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s,
(SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0
};
static SumSqrFunc sumSqrTab[] =
{
(SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s,
(SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0
};
return sumSqrTab[depth];
}
}
@ -479,7 +493,7 @@ cv::Scalar cv::sum( InputArray _src )
}
#endif
SumFunc func = sumTab[depth];
SumFunc func = getSumFunc(depth);
CV_Assert( cn <= 4 && func != 0 );
@ -531,7 +545,7 @@ cv::Scalar cv::sum( InputArray _src )
int cv::countNonZero( InputArray _src )
{
Mat src = _src.getMat();
CountNonZeroFunc func = countNonZeroTab[src.depth()];
CountNonZeroFunc func = getCountNonZeroTab(src.depth());
CV_Assert( src.channels() == 1 && func != 0 );
@ -627,7 +641,7 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
}
#endif
SumFunc func = sumTab[depth];
SumFunc func = getSumFunc(depth);
CV_Assert( cn <= 4 && func != 0 );
@ -686,7 +700,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
CV_Assert( mask.empty() || mask.type() == CV_8U );
int k, cn = src.channels(), depth = src.depth();
SumSqrFunc func = sumSqrTab[depth];
SumSqrFunc func = getSumSqrTab(depth);
CV_Assert( func != 0 );
@ -860,14 +874,19 @@ static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval,
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t);
static MinMaxIdxFunc minmaxTab[] =
static MinMaxIdxFunc getMinmaxTab(int depth)
{
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f),
0
};
static MinMaxIdxFunc minmaxTab[] =
{
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f),
0
};
return minmaxTab[depth];
}
static void ofs2idx(const Mat& a, size_t ofs, int* idx)
{
@ -900,7 +919,7 @@ void cv::minMaxIdx(InputArray _src, double* minVal,
CV_Assert( (cn == 1 && (mask.empty() || mask.type() == CV_8U)) ||
(cn >= 1 && mask.empty() && !minIdx && !maxIdx) );
MinMaxIdxFunc func = minmaxTab[depth];
MinMaxIdxFunc func = getMinmaxTab(depth);
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
@ -1365,43 +1384,53 @@ CV_DEF_NORM_ALL(64f, double, double, double, double)
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int);
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int);
static NormFunc normTab[3][8] =
static NormFunc getNormFunc(int normType, int depth)
{
static NormFunc normTab[3][8] =
{
(NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s),
(NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0
},
{
(NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s),
(NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0
},
{
(NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s),
(NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0
}
};
{
(NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s),
(NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0
},
{
(NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s),
(NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0
},
{
(NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s),
(NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0
}
};
static NormDiffFunc normDiffTab[3][8] =
return normTab[normType][depth];
}
static NormDiffFunc getNormDiffFunc(int normType, int depth)
{
static NormDiffFunc normDiffTab[3][8] =
{
(NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s,
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s,
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f),
(NormDiffFunc)normDiffInf_64f, 0
},
{
(NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s,
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s,
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f),
(NormDiffFunc)normDiffL1_64f, 0
},
{
(NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s,
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s,
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f),
(NormDiffFunc)normDiffL2_64f, 0
}
};
{
(NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s,
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s,
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f),
(NormDiffFunc)normDiffInf_64f, 0
},
{
(NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s,
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s,
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f),
(NormDiffFunc)normDiffL1_64f, 0
},
{
(NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s,
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s,
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f),
(NormDiffFunc)normDiffL2_64f, 0
}
};
return normDiffTab[normType][depth];
}
}
@ -1485,7 +1514,7 @@ double cv::norm( InputArray _src, int normType, InputArray _mask )
return result;
}
NormFunc func = normTab[normType >> 1][depth];
NormFunc func = getNormFunc(normType >> 1, depth);
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
@ -1626,7 +1655,7 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
return result;
}
NormDiffFunc func = normDiffTab[normType >> 1][depth];
NormDiffFunc func = getNormDiffFunc(normType >> 1, depth);
CV_Assert( func != 0 );
const Mat* arrays[] = {&src1, &src2, &mask, 0};

@ -391,7 +391,6 @@ protected:
try
{
string fname = cv::tempfile(".xml");
FileStorage fs(fname, FileStorage::WRITE);
vector<int> mi, mi2, mi3, mi4;
vector<Mat> mv, mv2, mv3, mv4;
Mat m(10, 9, CV_32F);
@ -399,24 +398,59 @@ protected:
randu(m, 0, 1);
mi3.push_back(5);
mv3.push_back(m);
Point_<float> p1(1.1f, 2.2f), op1;
Point3i p2(3, 4, 5), op2;
Size s1(6, 7), os1;
Complex<int> c1(9, 10), oc1;
Rect r1(11, 12, 13, 14), or1;
Vec<int, 5> v1(15, 16, 17, 18, 19), ov1;
Scalar sc1(20.0, 21.1, 22.2, 23.3), osc1;
Range g1(7, 8), og1;
FileStorage fs(fname, FileStorage::WRITE);
fs << "mi" << mi;
fs << "mv" << mv;
fs << "mi3" << mi3;
fs << "mv3" << mv3;
fs << "empty" << empty;
fs << "p1" << p1;
fs << "p2" << p2;
fs << "s1" << s1;
fs << "c1" << c1;
fs << "r1" << r1;
fs << "v1" << v1;
fs << "sc1" << sc1;
fs << "g1" << g1;
fs.release();
fs.open(fname, FileStorage::READ);
fs["mi"] >> mi2;
fs["mv"] >> mv2;
fs["mi3"] >> mi4;
fs["mv3"] >> mv4;
fs["empty"] >> empty;
fs["p1"] >> op1;
fs["p2"] >> op2;
fs["s1"] >> os1;
fs["c1"] >> oc1;
fs["r1"] >> or1;
fs["v1"] >> ov1;
fs["sc1"] >> osc1;
fs["g1"] >> og1;
CV_Assert( mi2.empty() );
CV_Assert( mv2.empty() );
CV_Assert( norm(mi3, mi4, CV_C) == 0 );
CV_Assert( mv4.size() == 1 );
double n = norm(mv3[0], mv4[0], CV_C);
CV_Assert( n == 0 );
CV_Assert( op1 == p1 );
CV_Assert( op2 == p2 );
CV_Assert( os1 == s1 );
CV_Assert( oc1 == c1 );
CV_Assert( or1 == r1 );
CV_Assert( ov1 == v1 );
CV_Assert( osc1 == sc1 );
CV_Assert( og1 == g1 );
}
catch(...)
{

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -1 +0,0 @@
#include "perf_precomp.hpp"

@ -1,44 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -1 +0,0 @@
#include "precomp.hpp"

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -1,43 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"

@ -1,43 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"

@ -57,6 +57,7 @@ using namespace perf;
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(WIN32) /* assume that we have ffmpeg */

@ -53,6 +53,7 @@ using namespace cvtest;
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(WIN32) /* assume that we have ffmpeg */

@ -50,6 +50,7 @@ using namespace perf;
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(WIN32) /* assume that we have ffmpeg */

@ -64,7 +64,6 @@ set(highgui_srcs
src/cap_images.cpp
src/cap_ffmpeg.cpp
src/loadsave.cpp
src/precomp.cpp
src/utils.cpp
src/window.cpp
)
@ -216,7 +215,7 @@ endif()
if(HAVE_QUICKTIME)
list(APPEND highgui_srcs src/cap_qt.cpp)
list(APPEND HIGHGUI_LIBRARIES "-framework Carbon" "-framework QuickTime" "-framework CoreFoundation" "-framework QuartzCore")
elseif(APPLE)
elseif(HAVE_QTKIT)
list(APPEND highgui_srcs src/cap_qtkit.mm)
list(APPEND HIGHGUI_LIBRARIES "-framework QTKit" "-framework QuartzCore" "-framework AppKit")
endif()

@ -1 +0,0 @@
#include "perf_precomp.hpp"

@ -19,6 +19,7 @@
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(HAVE_MSMF) || \
@ -33,6 +34,7 @@
#if /*defined(HAVE_XINE) || */\
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(HAVE_MSMF) || \

@ -135,7 +135,7 @@ CV_IMPL CvCapture * cvCreateCameraCapture (int index)
#ifdef HAVE_MIL
CV_CAP_MIL,
#endif
#ifdef HAVE_QUICKTIME
#if defined(HAVE_QUICKTIME) || defined(HAVE_QTKIT)
CV_CAP_QT,
#endif
#ifdef HAVE_UNICAP
@ -185,6 +185,7 @@ CV_IMPL CvCapture * cvCreateCameraCapture (int index)
defined(HAVE_CMU1394) || \
defined(HAVE_MIL) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_UNICAP) || \
defined(HAVE_PVAPI) || \
defined(HAVE_OPENNI) || \
@ -277,7 +278,7 @@ CV_IMPL CvCapture * cvCreateCameraCapture (int index)
break;
#endif
#ifdef HAVE_QUICKTIME
#if defined(HAVE_QUICKTIME) || defined(HAVE_QTKIT)
case CV_CAP_QT:
capture = cvCreateCameraCapture_QT (index);
if (capture)
@ -379,7 +380,7 @@ CV_IMPL CvCapture * cvCreateFileCapture (const char * filename)
result = cvCreateCapture_GStreamer (CV_CAP_GSTREAMER_FILE, filename);
#endif
#ifdef HAVE_QUICKTIME
#if defined(HAVE_QUICKTIME) || defined(HAVE_QTKIT)
if (! result)
result = cvCreateFileCapture_QT (filename);
#endif
@ -437,7 +438,7 @@ CV_IMPL CvVideoWriter* cvCreateVideoWriter( const char* filename, int fourcc,
result = cvCreateVideoWriter_AVFoundation(filename, fourcc, fps, frameSize, is_color);
#endif
#ifdef HAVE_QUICKTIME
#if defined(HAVE_QUICKTIME) || defined(HAVE_QTKIT)
if(!result)
result = cvCreateVideoWriter_QT(filename, fourcc, fps, frameSize, is_color);
#endif

@ -85,6 +85,16 @@ private:
icvInitFFMPEG()
{
#if defined WIN32 || defined _WIN32
# ifdef HAVE_WINRT
const wchar_t* module_name = L"opencv_ffmpeg"
CVAUX_STRW(CV_MAJOR_VERSION) CVAUX_STRW(CV_MINOR_VERSION) CVAUX_STRW(CV_SUBMINOR_VERSION)
#if (defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__)
L"_64"
#endif
L".dll";
icvFFOpenCV = LoadPackagedLibrary( module_name, 0 );
# else
const char* module_name = "opencv_ffmpeg"
CVAUX_STR(CV_MAJOR_VERSION) CVAUX_STR(CV_MINOR_VERSION) CVAUX_STR(CV_SUBMINOR_VERSION)
#if (defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__)
@ -93,6 +103,8 @@ private:
".dll";
icvFFOpenCV = LoadLibrary( module_name );
# endif
if( icvFFOpenCV )
{
icvCreateFileCapture_FFMPEG_p =

@ -374,7 +374,15 @@ private:
struct ImplMutex::Impl
{
void init() { InitializeCriticalSection(&cs); refcount = 1; }
void init()
{
#if (_WIN32_WINNT >= 0x0600)
::InitializeCriticalSectionEx(&cs, 1000, 0);
#else
::InitializeCriticalSection(&cs);
#endif
refcount = 1;
}
void destroy() { DeleteCriticalSection(&cs); }
void lock() { EnterCriticalSection(&cs); }

@ -1,32 +1,44 @@
/*
* CvCapture.mm
*
* Created by Nicholas Butko on 11/3/09.
* Copyright 2009. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the contributor be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*////////////////////////////////////////////////////////////////////////////////////////
#include "precomp.hpp"
#include "opencv2/imgproc.hpp"
@ -399,6 +411,9 @@ int CvCaptureCAM::startCaptureDevice(int cameraNum) {
void CvCaptureCAM::setWidthHeight() {
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
[mCaptureSession stopRunning];
NSDictionary* pixelBufferOptions = [NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithDouble:1.0*width], (id)kCVPixelBufferWidthKey,
[NSNumber numberWithDouble:1.0*height], (id)kCVPixelBufferHeightKey,
@ -407,6 +422,9 @@ void CvCaptureCAM::setWidthHeight() {
nil];
[mCaptureDecompressedVideoOutput setPixelBufferAttributes:pixelBufferOptions];
[mCaptureSession startRunning];
grabFrame(60);
[localpool drain];
}

@ -1,43 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -28,6 +28,7 @@
defined(HAVE_CMU1394) || \
defined(HAVE_MIL) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_UNICAP) || \
defined(HAVE_PVAPI) || \
defined(HAVE_OPENNI) || \
@ -44,6 +45,7 @@
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
/*defined(HAVE_OPENNI) || too specialized */ \
defined(HAVE_FFMPEG) || \
@ -56,6 +58,7 @@
#if /*defined(HAVE_XINE) || */\
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_QTKIT) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(HAVE_MSMF)

@ -1378,7 +1378,7 @@ Applies a separable linear filter to an image.
:param kernelY: Coefficients for filtering each column.
:param anchor: Anchor position within the kernel. The default value :math:`(-1, 1)` means that the anchor is at the kernel center.
:param anchor: Anchor position within the kernel. The default value :math:`(-1,-1)` means that the anchor is at the kernel center.
:param delta: Value added to the filtered results before storing them.

@ -795,18 +795,18 @@ public:
};
class CV_EXPORTS CLAHE : public Algorithm
class CV_EXPORTS_W CLAHE : public Algorithm
{
public:
virtual void apply(InputArray src, OutputArray dst) = 0;
CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
virtual void setClipLimit(double clipLimit) = 0;
virtual double getClipLimit() const = 0;
CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
CV_WRAP virtual double getClipLimit() const = 0;
virtual void setTilesGridSize(Size tileGridSize) = 0;
virtual Size getTilesGridSize() const = 0;
CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
CV_WRAP virtual Size getTilesGridSize() const = 0;
virtual void collectGarbage() = 0;
CV_WRAP virtual void collectGarbage() = 0;
};
@ -1479,7 +1479,7 @@ CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
CV_EXPORTS Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Detects position only without traslation and rotation

@ -1 +0,0 @@
#include "perf_precomp.hpp"

@ -1,44 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -191,6 +191,7 @@ pyrDown_( const Mat& _src, Mat& _dst, int borderType )
typedef typename CastOp::type1 WT;
typedef typename CastOp::rtype T;
CV_Assert( !_src.empty() );
Size ssize = _src.size(), dsize = _dst.size();
int cn = _src.channels();
int bufstep = (int)alignSize(dsize.width*cn, 16);

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -12,7 +12,7 @@ class_ignore_list = (
#core
"FileNode", "FileStorage", "KDTree", "KeyPoint", "DMatch",
#highgui
"VideoWriter", "VideoCapture",
"VideoWriter",
)
const_ignore_list = (
@ -510,6 +510,54 @@ JNIEXPORT jdoubleArray JNICALL Java_org_opencv_core_Core_n_1getTextSize
"resizeWindow" : {'j_code' : '', 'jn_code' : '', 'cpp_code' : '' },
}, # Highgui
'VideoCapture' :
{
"getSupportedPreviewSizes" :
{
'j_code' :
"""
public java.util.List<org.opencv.core.Size> getSupportedPreviewSizes()
{
String[] sizes_str = getSupportedPreviewSizes_0(nativeObj).split(",");
java.util.List<org.opencv.core.Size> sizes = new java.util.ArrayList<org.opencv.core.Size>(sizes_str.length);
for (String str : sizes_str) {
String[] wh = str.split("x");
sizes.add(new org.opencv.core.Size(Double.parseDouble(wh[0]), Double.parseDouble(wh[1])));
}
return sizes;
}
""",
'jn_code' :
"""\n private static native String getSupportedPreviewSizes_0(long nativeObj);\n""",
'cpp_code' :
"""
JNIEXPORT jstring JNICALL Java_org_opencv_highgui_VideoCapture_getSupportedPreviewSizes_10
(JNIEnv *env, jclass, jlong self);
JNIEXPORT jstring JNICALL Java_org_opencv_highgui_VideoCapture_getSupportedPreviewSizes_10
(JNIEnv *env, jclass, jlong self)
{
static const char method_name[] = "highgui::VideoCapture_getSupportedPreviewSizes_10()";
try {
LOGD(%s, method_name);
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
union {double prop; const char* name;} u;
u.prop = me->get(CAP_PROP_ANDROID_PREVIEW_SIZES_STRING);
return env->NewStringUTF(u.name);
} catch(const std::exception &e) {
throwJavaException(env, &e, method_name);
} catch (...) {
throwJavaException(env, 0, method_name);
}
return env->NewStringUTF("");
}
""",
}, # getSupportedPreviewSizes
}, # VideoCapture
}
# { class : { func : { arg_name : {"ctype" : ctype, "attrib" : [attrib]} } } }
@ -898,21 +946,51 @@ public class %(jc)s {
self.add_func(decl)
self.cpp_code = StringIO()
self.cpp_code.write("""
self.cpp_code.write(Template("""
//
// This file is auto-generated, please don't edit!
//
#define LOG_TAG "org.opencv.%(m)s"
#define LOG_TAG "org.opencv.$m"
#include "common.h"
#include "opencv2/%(m)s.hpp"
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_$M
#include <string>
#include "opencv2/$m.hpp"
using namespace cv;
/// throw java exception
static void throwJavaException(JNIEnv *env, const std::exception *e, const char *method) {
std::string what = "unknown exception";
jclass je = 0;
if(e) {
std::string exception_type = "std::exception";
if(dynamic_cast<const cv::Exception*>(e)) {
exception_type = "cv::Exception";
je = env->FindClass("org/opencv/core/CvException");
}
what = exception_type + ": " + e->what();
}
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, what.c_str());
LOGE("%s caught %s", method, what.c_str());
(void)method; // avoid "unused" warning
}
extern "C" {
""" % {'m' : module} )
""").substitute( m = module, M = module.upper() ) )
# generate code for the classes
for name in self.classes.keys():
@ -927,7 +1005,7 @@ extern "C" {
java_code = Template(java_code).substitute(imports = imports)
self.save("%s/%s+%s.java" % (output_path, module, self.classes[name].jname), java_code)
self.cpp_code.write( '\n} // extern "C"\n' )
self.cpp_code.write( '\n} // extern "C"\n\n#endif // HAVE_OPENCV_%s\n' % module.upper() )
self.save(output_path+"/"+module+".cpp", self.cpp_code.getvalue())
# report
@ -1293,23 +1371,18 @@ JNIEXPORT $rtype JNICALL Java_org_opencv_${module}_${clazz}_$fname ($argst);
JNIEXPORT $rtype JNICALL Java_org_opencv_${module}_${clazz}_$fname
($args)
{
static const char method_name[] = "$module::$fname()";
try {
LOGD("$module::$fname()");
LOGD("%s", method_name);
$prologue
$retval$cvname( $cvargs );
$epilogue$ret
} catch(cv::Exception e) {
LOGD("$module::$fname() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
$default
} catch(const std::exception &e) {
throwJavaException(env, &e, method_name);
} catch (...) {
LOGD("$module::$fname() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {$module::$fname()}");
$default
throwJavaException(env, 0, method_name);
}
$default
}
@ -1442,4 +1515,3 @@ if __name__ == "__main__":
#print "Generating module '" + module + "' from headers:\n\t" + "\n\t".join(srcfiles)
generator = JavaWrapperGenerator()
generator.gen(srcfiles, module, dstdir)

@ -1,434 +0,0 @@
#define LOG_TAG "org.opencv.highgui.VideoCapture"
#include "common.h"
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_HIGHGUI
#include "opencv2/highgui.hpp"
using namespace cv;
extern "C" {
//
// VideoCapture::VideoCapture()
//
JNIEXPORT jlong JNICALL Java_org_opencv_highgui_VideoCapture_n_1VideoCapture__
(JNIEnv* env, jclass);
JNIEXPORT jlong JNICALL Java_org_opencv_highgui_VideoCapture_n_1VideoCapture__
(JNIEnv* env, jclass)
{
try {
LOGD("highgui::VideoCapture_n_1VideoCapture__()");
VideoCapture* _retval_ = new VideoCapture( );
return (jlong) _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1VideoCapture__() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1VideoCapture__() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
return 0;
}
}
//
// VideoCapture::VideoCapture(int device)
//
JNIEXPORT jlong JNICALL Java_org_opencv_highgui_VideoCapture_n_1VideoCapture__I
(JNIEnv* env, jclass, jint device);
JNIEXPORT jlong JNICALL Java_org_opencv_highgui_VideoCapture_n_1VideoCapture__I
(JNIEnv* env, jclass, jint device)
{
try {
LOGD("highgui::VideoCapture_n_1VideoCapture__I()");
VideoCapture* _retval_ = new VideoCapture( device );
return (jlong) _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1VideoCapture__I() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1VideoCapture__I() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__I()}");
return 0;
}
}
//
// double VideoCapture::get(int propId)
//
JNIEXPORT jdouble JNICALL Java_org_opencv_highgui_VideoCapture_n_1get
(JNIEnv* env, jclass, jlong self, jint propId);
JNIEXPORT jdouble JNICALL Java_org_opencv_highgui_VideoCapture_n_1get
(JNIEnv* env, jclass, jlong self, jint propId)
{
try {
LOGD("highgui::VideoCapture_n_1get()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
double _retval_ = me->get( propId );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1get() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1get() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1get()}");
return 0;
}
}
//
// bool VideoCapture::grab()
//
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1grab
(JNIEnv* env, jclass, jlong self);
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1grab
(JNIEnv* env, jclass, jlong self)
{
try {
LOGD("highgui::VideoCapture_n_1grab()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
bool _retval_ = me->grab( );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1grab() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1grab() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1grab()}");
return 0;
}
}
//
// bool VideoCapture::isOpened()
//
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1isOpened
(JNIEnv* env, jclass, jlong self);
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1isOpened
(JNIEnv* env, jclass, jlong self)
{
try {
LOGD("highgui::VideoCapture_n_1isOpened()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
bool _retval_ = me->isOpened( );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1isOpened() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1isOpened() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1isOpened()}");
return 0;
}
}
//
// bool VideoCapture::open(int device)
//
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1open__JI
(JNIEnv* env, jclass, jlong self, jint device);
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1open__JI
(JNIEnv* env, jclass, jlong self, jint device)
{
try {
LOGD("highgui::VideoCapture_n_1open__JI()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
bool _retval_ = me->open( device );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1open__JI() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1open__JI() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1open__JI()}");
return 0;
}
}
//
// bool VideoCapture::read(Mat image)
//
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1read
(JNIEnv* env, jclass, jlong self, jlong image_nativeObj);
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1read
(JNIEnv* env, jclass, jlong self, jlong image_nativeObj)
{
try {
LOGD("highgui::VideoCapture_n_1read()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
Mat& image = *((Mat*)image_nativeObj);
bool _retval_ = me->read( image );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1read() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1read() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1read()}");
return 0;
}
}
//
// void VideoCapture::release()
//
JNIEXPORT void JNICALL Java_org_opencv_highgui_VideoCapture_n_1release
(JNIEnv* env, jclass, jlong self);
JNIEXPORT void JNICALL Java_org_opencv_highgui_VideoCapture_n_1release
(JNIEnv* env, jclass, jlong self)
{
try {
LOGD("highgui::VideoCapture_n_1release()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
me->release( );
return;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1release() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return;
} catch (...) {
LOGD("highgui::VideoCapture_n_1release() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1release()}");
return;
}
}
//
// bool VideoCapture::retrieve(Mat image, int channel = 0)
//
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1retrieve__JJI
(JNIEnv* env, jclass, jlong self, jlong image_nativeObj, jint channel);
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1retrieve__JJI
(JNIEnv* env, jclass, jlong self, jlong image_nativeObj, jint channel)
{
try {
LOGD("highgui::VideoCapture_n_1retrieve__JJI()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
Mat& image = *((Mat*)image_nativeObj);
bool _retval_ = me->retrieve( image, channel );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1retrieve__JJI() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1retrieve__JJI() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1retrieve__JJI()}");
return 0;
}
}
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1retrieve__JJ
(JNIEnv* env, jclass, jlong self, jlong image_nativeObj);
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1retrieve__JJ
(JNIEnv* env, jclass, jlong self, jlong image_nativeObj)
{
try {
LOGD("highgui::VideoCapture_n_1retrieve__JJ()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
Mat& image = *((Mat*)image_nativeObj);
bool _retval_ = me->retrieve( image );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1retrieve__JJ() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1retrieve__JJ() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1retrieve__JJ()}");
return 0;
}
}
//
// bool VideoCapture::set(int propId, double value)
//
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1set
(JNIEnv* env, jclass, jlong self, jint propId, jdouble value);
JNIEXPORT jboolean JNICALL Java_org_opencv_highgui_VideoCapture_n_1set
(JNIEnv* env, jclass, jlong self, jint propId, jdouble value)
{
try {
LOGD("highgui::VideoCapture_n_1set()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
bool _retval_ = me->set( propId, value );
return _retval_;
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1set() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return 0;
} catch (...) {
LOGD("highgui::VideoCapture_n_1set() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1set()}");
return 0;
}
}
JNIEXPORT jstring JNICALL Java_org_opencv_highgui_VideoCapture_n_1getSupportedPreviewSizes
(JNIEnv *env, jclass, jlong self);
JNIEXPORT jstring JNICALL Java_org_opencv_highgui_VideoCapture_n_1getSupportedPreviewSizes
(JNIEnv *env, jclass, jlong self)
{
try {
LOGD("highgui::VideoCapture_n_1set()");
VideoCapture* me = (VideoCapture*) self; //TODO: check for NULL
union {double prop; const char* name;} u;
u.prop = me->get(CAP_PROP_ANDROID_PREVIEW_SIZES_STRING);
return env->NewStringUTF(u.name);
} catch(cv::Exception e) {
LOGD("highgui::VideoCapture_n_1getSupportedPreviewSizes() catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return env->NewStringUTF("");
} catch (...) {
LOGD("highgui::VideoCapture_n_1getSupportedPreviewSizes() catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1getSupportedPreviewSizes()}");
return env->NewStringUTF("");
}
}
//
// native support for java finalize()
// static void VideoCapture::n_delete( __int64 self )
//
JNIEXPORT void JNICALL Java_org_opencv_highgui_VideoCapture_n_1delete
(JNIEnv*, jclass, jlong self);
JNIEXPORT void JNICALL Java_org_opencv_highgui_VideoCapture_n_1delete
(JNIEnv*, jclass, jlong self)
{
delete (VideoCapture*) self;
}
} // extern "C"
#endif // HAVE_OPENCV_HIGHGUI

@ -1,240 +0,0 @@
package org.opencv.highgui;
import java.util.List;
import java.util.LinkedList;
import org.opencv.core.Mat;
import org.opencv.core.Size;
// C++: class VideoCapture
//javadoc: VideoCapture
public class VideoCapture {
protected final long nativeObj;
protected VideoCapture(long addr) {
nativeObj = addr;
}
//
// C++: VideoCapture::VideoCapture()
//
// javadoc: VideoCapture::VideoCapture()
public VideoCapture()
{
nativeObj = n_VideoCapture();
return;
}
//
// C++: VideoCapture::VideoCapture(int device)
//
// javadoc: VideoCapture::VideoCapture(device)
public VideoCapture(int device)
{
nativeObj = n_VideoCapture(device);
return;
}
//
// C++: double VideoCapture::get(int propId)
//
/**
* Returns the specified "VideoCapture" property.
*
* Note: When querying a property that is not supported by the backend used by
* the "VideoCapture" class, value 0 is returned.
*
* @param propId property identifier; it can be one of the following:
* * CV_CAP_PROP_FRAME_WIDTH width of the frames in the video stream.
* * CV_CAP_PROP_FRAME_HEIGHT height of the frames in the video stream.
*
* @see <a href="http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get">org.opencv.highgui.VideoCapture.get</a>
*/
public double get(int propId)
{
double retVal = n_get(nativeObj, propId);
return retVal;
}
public List<Size> getSupportedPreviewSizes()
{
String[] sizes_str = n_getSupportedPreviewSizes(nativeObj).split(",");
List<Size> sizes = new LinkedList<Size>();
for (String str : sizes_str) {
String[] wh = str.split("x");
sizes.add(new Size(Double.parseDouble(wh[0]), Double.parseDouble(wh[1])));
}
return sizes;
}
//
// C++: bool VideoCapture::grab()
//
// javadoc: VideoCapture::grab()
public boolean grab()
{
boolean retVal = n_grab(nativeObj);
return retVal;
}
//
// C++: bool VideoCapture::isOpened()
//
// javadoc: VideoCapture::isOpened()
public boolean isOpened()
{
boolean retVal = n_isOpened(nativeObj);
return retVal;
}
//
// C++: bool VideoCapture::open(int device)
//
// javadoc: VideoCapture::open(device)
public boolean open(int device)
{
boolean retVal = n_open(nativeObj, device);
return retVal;
}
//
// C++: bool VideoCapture::read(Mat image)
//
// javadoc: VideoCapture::read(image)
public boolean read(Mat image)
{
boolean retVal = n_read(nativeObj, image.nativeObj);
return retVal;
}
//
// C++: void VideoCapture::release()
//
// javadoc: VideoCapture::release()
public void release()
{
n_release(nativeObj);
return;
}
//
// C++: bool VideoCapture::retrieve(Mat image, int channel = 0)
//
// javadoc: VideoCapture::retrieve(image, channel)
public boolean retrieve(Mat image, int channel)
{
boolean retVal = n_retrieve(nativeObj, image.nativeObj, channel);
return retVal;
}
// javadoc: VideoCapture::retrieve(image)
public boolean retrieve(Mat image)
{
boolean retVal = n_retrieve(nativeObj, image.nativeObj);
return retVal;
}
//
// C++: bool VideoCapture::set(int propId, double value)
//
/**
* Sets a property in the "VideoCapture".
*
* @param propId property identifier; it can be one of the following:
* * CV_CAP_PROP_FRAME_WIDTH width of the frames in the video stream.
* * CV_CAP_PROP_FRAME_HEIGHT height of the frames in the video stream.
* @param value value of the property.
*
* @see <a href="http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-set">org.opencv.highgui.VideoCapture.set</a>
*/
public boolean set(int propId, double value)
{
boolean retVal = n_set(nativeObj, propId, value);
return retVal;
}
@Override
protected void finalize() throws Throwable {
n_delete(nativeObj);
super.finalize();
}
// C++: VideoCapture::VideoCapture()
private static native long n_VideoCapture();
// C++: VideoCapture::VideoCapture(string filename)
private static native long n_VideoCapture(java.lang.String filename);
// C++: VideoCapture::VideoCapture(int device)
private static native long n_VideoCapture(int device);
// C++: double VideoCapture::get(int propId)
private static native double n_get(long nativeObj, int propId);
// C++: bool VideoCapture::grab()
private static native boolean n_grab(long nativeObj);
// C++: bool VideoCapture::isOpened()
private static native boolean n_isOpened(long nativeObj);
// C++: bool VideoCapture::open(string filename)
private static native boolean n_open(long nativeObj, java.lang.String filename);
// C++: bool VideoCapture::open(int device)
private static native boolean n_open(long nativeObj, int device);
// C++: bool VideoCapture::read(Mat image)
private static native boolean n_read(long nativeObj, long image_nativeObj);
// C++: void VideoCapture::release()
private static native void n_release(long nativeObj);
// C++: bool VideoCapture::retrieve(Mat image, int channel = 0)
private static native boolean n_retrieve(long nativeObj, long image_nativeObj, int channel);
private static native boolean n_retrieve(long nativeObj, long image_nativeObj);
// C++: bool VideoCapture::set(int propId, double value)
private static native boolean n_set(long nativeObj, int propId, double value);
private static native String n_getSupportedPreviewSizes(long nativeObj);
// native support for java finalize()
private static native void n_delete(long nativeObj);
}

@ -97,7 +97,7 @@ public class OpenCVTestCase extends TestCase {
super.setUp();
try {
System.loadLibrary("opencv_java");
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
} catch (SecurityException e) {
System.out.println(e.toString());
System.exit(-1);

@ -1,42 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -1,45 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -1 +0,0 @@
#include "perf_precomp.hpp"

@ -16,6 +16,7 @@
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
// Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
@ -43,9 +44,6 @@
//
//M*/
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
// specialized for non-image2d_t supported platform, intel HD4000, for example
#ifdef DISABLE_IMAGE2D
#define IMAGE_INT32 __global uint *
@ -105,7 +103,7 @@ __constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAM
// for simple haar paatern
float icvCalcHaarPatternSum_2(
IMAGE_INT32 sumTex,
__constant float src[2][5],
__constant float2 *src,
int oldSize,
int newSize,
int y, int x,
@ -116,21 +114,24 @@ float icvCalcHaarPatternSum_2(
F d = 0;
#pragma unroll
for (int k = 0; k < 2; ++k)
{
int dx1 = convert_int_rte(ratio * src[k][0]);
int dy1 = convert_int_rte(ratio * src[k][1]);
int dx2 = convert_int_rte(ratio * src[k][2]);
int dy2 = convert_int_rte(ratio * src[k][3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
}
int2 dx1 = convert_int2_rte(ratio * src[0]);
int2 dy1 = convert_int2_rte(ratio * src[1]);
int2 dx2 = convert_int2_rte(ratio * src[2]);
int2 dy2 = convert_int2_rte(ratio * src[3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
return (float)d;
}
@ -138,7 +139,7 @@ float icvCalcHaarPatternSum_2(
// N = 3
float icvCalcHaarPatternSum_3(
IMAGE_INT32 sumTex,
__constant float src[2][5],
__constant float4 *src,
int oldSize,
int newSize,
int y, int x,
@ -149,21 +150,31 @@ float icvCalcHaarPatternSum_3(
F d = 0;
#pragma unroll
for (int k = 0; k < 3; ++k)
{
int dx1 = convert_int_rte(ratio * src[k][0]);
int dy1 = convert_int_rte(ratio * src[k][1]);
int dx2 = convert_int_rte(ratio * src[k][2]);
int dy2 = convert_int_rte(ratio * src[k][3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
}
int4 dx1 = convert_int4_rte(ratio * src[0]);
int4 dy1 = convert_int4_rte(ratio * src[1]);
int4 dx2 = convert_int4_rte(ratio * src[2]);
int4 dy2 = convert_int4_rte(ratio * src[3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy1.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy2.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy1.z), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy2.z), rows, cols, elemPerRow );
d += t * src[4].z / ((dx2.z - dx1.z) * (dy2.z - dy1.z));
return (float)d;
}
@ -171,7 +182,7 @@ float icvCalcHaarPatternSum_3(
// N = 4
float icvCalcHaarPatternSum_4(
IMAGE_INT32 sumTex,
__constant float src[2][5],
__constant float4 *src,
int oldSize,
int newSize,
int y, int x,
@ -182,21 +193,38 @@ float icvCalcHaarPatternSum_4(
F d = 0;
#pragma unroll
for (int k = 0; k < 4; ++k)
{
int dx1 = convert_int_rte(ratio * src[k][0]);
int dy1 = convert_int_rte(ratio * src[k][1]);
int dx2 = convert_int_rte(ratio * src[k][2]);
int dy2 = convert_int_rte(ratio * src[k][3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
}
int4 dx1 = convert_int4_rte(ratio * src[0]);
int4 dy1 = convert_int4_rte(ratio * src[1]);
int4 dx2 = convert_int4_rte(ratio * src[2]);
int4 dy2 = convert_int4_rte(ratio * src[3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy1.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy2.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy1.z), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy2.z), rows, cols, elemPerRow );
d += t * src[4].z / ((dx2.z - dx1.z) * (dy2.z - dy1.z));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.w, y + dy1.w), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.w, y + dy2.w), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.w, y + dy1.w), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.w, y + dy2.w), rows, cols, elemPerRow );
d += t * src[4].w / ((dx2.w - dx1.w) * (dy2.w - dy1.w));
return (float)d;
}
@ -204,9 +232,9 @@ float icvCalcHaarPatternSum_4(
////////////////////////////////////////////////////////////////////////
// Hessian
__constant float c_DX [3][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
__constant float c_DY [3][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
__constant float c_DXY[4][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };
__constant float4 c_DX[5] = { (float4)(0, 3, 6, 0), (float4)(2, 2, 2, 0), (float4)(3, 6, 9, 0), (float4)(7, 7, 7, 0), (float4)(1, -2, 1, 0) };
__constant float4 c_DY[5] = { (float4)(2, 2, 2, 0), (float4)(0, 3, 6, 0), (float4)(7, 7, 7, 0), (float4)(3, 6, 9, 0), (float4)(1, -2, 1, 0) };
__constant float4 c_DXY[5] = { (float4)(1, 5, 1, 5), (float4)(1, 1, 5, 5), (float4)(4, 8, 4, 8), (float4)(4, 4, 8, 8), (float4)(1, -1, -1, 1) };// Use integral image to calculate haar wavelets.
__inline int calcSize(int octave, int layer)
{
@ -236,7 +264,7 @@ __kernel void icvCalcLayerDetAndTrace(
int c_octave,
int c_layer_rows,
int sumTex_step
)
)
{
det_step /= sizeof(*det);
trace_step /= sizeof(*trace);
@ -300,7 +328,7 @@ bool within_check(IMAGE_INT32 maskSumTex, int sum_i, int sum_j, int size, int ro
// Non-maximal suppression to further filtering the candidates from previous step
__kernel
void icvFindMaximaInLayer_withmask(
void icvFindMaximaInLayer_withmask(
__global const float * det,
__global const float * trace,
__global int4 * maxPosBuffer,
@ -318,7 +346,7 @@ __kernel
float c_hessianThreshold,
IMAGE_INT32 maskSumTex,
int mask_step
)
)
{
volatile __local float N9[768]; // threads.x * threads.y * 3
@ -347,26 +375,26 @@ __kernel
const int localLin = get_local_id(0) + get_local_id(1) * get_local_size(0) + zoff;
N9[localLin - zoff] =
det[det_step *
(c_layer_rows * (layer - 1) + min(max(i, 0), c_img_rows - 1)) // y
+ min(max(j, 0), c_img_cols - 1)]; // x
(c_layer_rows * (layer - 1) + min(max(i, 0), c_img_rows - 1)) // y
+ min(max(j, 0), c_img_cols - 1)]; // x
N9[localLin ] =
det[det_step *
(c_layer_rows * (layer ) + min(max(i, 0), c_img_rows - 1)) // y
+ min(max(j, 0), c_img_cols - 1)]; // x
(c_layer_rows * (layer ) + min(max(i, 0), c_img_rows - 1)) // y
+ min(max(j, 0), c_img_cols - 1)]; // x
N9[localLin + zoff] =
det[det_step *
(c_layer_rows * (layer + 1) + min(max(i, 0), c_img_rows - 1)) // y
+ min(max(j, 0), c_img_cols - 1)]; // x
(c_layer_rows * (layer + 1) + min(max(i, 0), c_img_rows - 1)) // y
+ min(max(j, 0), c_img_cols - 1)]; // x
barrier(CLK_LOCAL_MEM_FENCE);
if (i < c_layer_rows - margin
&& j < c_layer_cols - margin
&& get_local_id(0) > 0
&& get_local_id(0) < get_local_size(0) - 1
&& get_local_id(1) > 0
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
)
&& j < c_layer_cols - margin
&& get_local_id(0) > 0
&& get_local_id(0) < get_local_size(0) - 1
&& get_local_id(1) > 0
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
)
{
float val0 = N9[localLin];
@ -382,34 +410,34 @@ __kernel
{
// Check to see if we have a max (in its 26 neighbours)
const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
&& val0 > N9[localLin - get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - zoff]
&& val0 > N9[localLin - zoff]
&& val0 > N9[localLin + 1 - zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin + get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - get_local_size(0)]
&& val0 > N9[localLin - get_local_size(0)]
&& val0 > N9[localLin + 1 - get_local_size(0)]
&& val0 > N9[localLin - 1 ]
&& val0 > N9[localLin + 1 ]
&& val0 > N9[localLin - 1 + get_local_size(0)]
&& val0 > N9[localLin + get_local_size(0)]
&& val0 > N9[localLin + 1 + get_local_size(0)]
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - 1 + zoff]
&& val0 > N9[localLin + zoff]
&& val0 > N9[localLin + 1 + zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
&& val0 > N9[localLin + get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
;
&& val0 > N9[localLin - get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - zoff]
&& val0 > N9[localLin - zoff]
&& val0 > N9[localLin + 1 - zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin + get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - get_local_size(0)]
&& val0 > N9[localLin - get_local_size(0)]
&& val0 > N9[localLin + 1 - get_local_size(0)]
&& val0 > N9[localLin - 1 ]
&& val0 > N9[localLin + 1 ]
&& val0 > N9[localLin - 1 + get_local_size(0)]
&& val0 > N9[localLin + get_local_size(0)]
&& val0 > N9[localLin + 1 + get_local_size(0)]
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - 1 + zoff]
&& val0 > N9[localLin + zoff]
&& val0 > N9[localLin + 1 + zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
&& val0 > N9[localLin + get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
;
if(condmax)
{
@ -428,7 +456,7 @@ __kernel
}
__kernel
void icvFindMaximaInLayer(
void icvFindMaximaInLayer(
__global float * det,
__global float * trace,
__global int4 * maxPosBuffer,
@ -444,7 +472,7 @@ __kernel
int c_layer_cols,
int c_max_candidates,
float c_hessianThreshold
)
)
{
volatile __local float N9[768]; // threads.x * threads.y * 3
@ -483,12 +511,12 @@ __kernel
barrier(CLK_LOCAL_MEM_FENCE);
if (i < c_layer_rows - margin
&& j < c_layer_cols - margin
&& get_local_id(0) > 0
&& get_local_id(0) < get_local_size(0) - 1
&& get_local_id(1) > 0
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
)
&& j < c_layer_cols - margin
&& get_local_id(0) > 0
&& get_local_id(0) < get_local_size(0) - 1
&& get_local_id(1) > 0
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
)
{
float val0 = N9[localLin];
if (val0 > c_hessianThreshold)
@ -499,38 +527,38 @@ __kernel
// Check to see if we have a max (in its 26 neighbours)
const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
&& val0 > N9[localLin - get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - zoff]
&& val0 > N9[localLin - zoff]
&& val0 > N9[localLin + 1 - zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin + get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - get_local_size(0)]
&& val0 > N9[localLin - get_local_size(0)]
&& val0 > N9[localLin + 1 - get_local_size(0)]
&& val0 > N9[localLin - 1 ]
&& val0 > N9[localLin + 1 ]
&& val0 > N9[localLin - 1 + get_local_size(0)]
&& val0 > N9[localLin + get_local_size(0)]
&& val0 > N9[localLin + 1 + get_local_size(0)]
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - 1 + zoff]
&& val0 > N9[localLin + zoff]
&& val0 > N9[localLin + 1 + zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
&& val0 > N9[localLin + get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
;
&& val0 > N9[localLin - get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - zoff]
&& val0 > N9[localLin - zoff]
&& val0 > N9[localLin + 1 - zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin + get_local_size(0) - zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
&& val0 > N9[localLin - 1 - get_local_size(0)]
&& val0 > N9[localLin - get_local_size(0)]
&& val0 > N9[localLin + 1 - get_local_size(0)]
&& val0 > N9[localLin - 1 ]
&& val0 > N9[localLin + 1 ]
&& val0 > N9[localLin - 1 + get_local_size(0)]
&& val0 > N9[localLin + get_local_size(0)]
&& val0 > N9[localLin + 1 + get_local_size(0)]
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
&& val0 > N9[localLin - 1 + zoff]
&& val0 > N9[localLin + zoff]
&& val0 > N9[localLin + 1 + zoff]
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
&& val0 > N9[localLin + get_local_size(0) + zoff]
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
;
if(condmax)
{
int ind = atomic_inc(maxCounter);
int ind = atomic_inc(maxCounter);
if (ind < c_max_candidates)
{
@ -544,30 +572,30 @@ __kernel
}
// solve 3x3 linear system Ax=b for floating point input
inline bool solve3x3_float(volatile __local const float A[3][3], volatile __local const float b[3], volatile __local float x[3])
inline bool solve3x3_float(volatile __local const float4 *A, volatile __local const float *b, volatile __local float *x)
{
float det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1])
- A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0])
+ A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]);
float det = A[0].x * (A[1].y * A[2].z - A[1].z * A[2].y)
- A[0].y * (A[1].x * A[2].z - A[1].z * A[2].x)
+ A[0].z * (A[1].x * A[2].y - A[1].y * A[2].x);
if (det != 0)
{
F invdet = 1.0 / det;
x[0] = invdet *
(b[0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) -
A[0][1] * (b[1] * A[2][2] - A[1][2] * b[2] ) +
A[0][2] * (b[1] * A[2][1] - A[1][1] * b[2] ));
(b[0] * (A[1].y * A[2].z - A[1].z * A[2].y) -
A[0].y * (b[1] * A[2].z - A[1].z * b[2] ) +
A[0].z * (b[1] * A[2].y - A[1].y * b[2] ));
x[1] = invdet *
(A[0][0] * (b[1] * A[2][2] - A[1][2] * b[2] ) -
b[0] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) +
A[0][2] * (A[1][0] * b[2] - b[1] * A[2][0]));
(A[0].x * (b[1] * A[2].z - A[1].z * b[2] ) -
b[0] * (A[1].x * A[2].z - A[1].z * A[2].x) +
A[0].z * (A[1].x * b[2] - b[1] * A[2].x));
x[2] = invdet *
(A[0][0] * (A[1][1] * b[2] - b[1] * A[2][1]) -
A[0][1] * (A[1][0] * b[2] - b[1] * A[2][0]) +
b[0] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]));
(A[0].x * (A[1].y * b[2] - b[1] * A[2].y) -
A[0].y * (A[1].x * b[2] - b[1] * A[2].x) +
b[0] * (A[1].x * A[2].y - A[1].y * A[2].x));
return true;
}
@ -586,7 +614,7 @@ inline bool solve3x3_float(volatile __local const float A[3][3], volatile __loc
////////////////////////////////////////////////////////////////////////
// INTERPOLATION
__kernel
void icvInterpolateKeypoint(
void icvInterpolateKeypoint(
__global const float * det,
__global const int4 * maxPosBuffer,
__global float * keypoints,
@ -598,7 +626,7 @@ __kernel
int c_octave,
int c_layer_rows,
int c_max_features
)
)
{
det_step /= sizeof(*det);
keypoints_step /= sizeof(*keypoints);
@ -632,26 +660,26 @@ __kernel
//ds
dD[2] = -0.5f * (N9[2][1][1] - N9[0][1][1]);
volatile __local float H[3][3];
volatile __local float4 H[3];
//dxx
H[0][0] = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
H[0].x = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
//dxy
H[0][1]= 0.25f * (N9[1][2][2] - N9[1][2][0] - N9[1][0][2] + N9[1][0][0]);
H[0].y= 0.25f * (N9[1][2][2] - N9[1][2][0] - N9[1][0][2] + N9[1][0][0]);
//dxs
H[0][2]= 0.25f * (N9[2][1][2] - N9[2][1][0] - N9[0][1][2] + N9[0][1][0]);
H[0].z= 0.25f * (N9[2][1][2] - N9[2][1][0] - N9[0][1][2] + N9[0][1][0]);
//dyx = dxy
H[1][0] = H[0][1];
H[1].x = H[0].y;
//dyy
H[1][1] = N9[1][0][1] - 2.0f * N9[1][1][1] + N9[1][2][1];
H[1].y = N9[1][0][1] - 2.0f * N9[1][1][1] + N9[1][2][1];
//dys
H[1][2]= 0.25f * (N9[2][2][1] - N9[2][0][1] - N9[0][2][1] + N9[0][0][1]);
H[1].z= 0.25f * (N9[2][2][1] - N9[2][0][1] - N9[0][2][1] + N9[0][0][1]);
//dsx = dxs
H[2][0] = H[0][2];
H[2].x = H[0].z;
//dsy = dys
H[2][1] = H[1][2];
H[2].y = H[1].z;
//dss
H[2][2] = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];
H[2].z = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];
volatile __local float x[3];
@ -689,7 +717,7 @@ __kernel
if ((c_img_rows + 1) >= grad_wav_size && (c_img_cols + 1) >= grad_wav_size)
{
// Get a new feature index.
int ind = atomic_inc(featureCounter);
int ind = atomic_inc(featureCounter);
if (ind < c_max_features)
{
@ -716,31 +744,32 @@ __kernel
__constant float c_aptX[ORI_SAMPLES] = {-6, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6};
__constant float c_aptY[ORI_SAMPLES] = {0, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, 0};
__constant float c_aptW[ORI_SAMPLES] = {0.001455130288377404f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f,
0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f,
0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f,
0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f,
0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f,
0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f,
0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f,
0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f,
0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f,
0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f,
0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f,
0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f,
0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f,
0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f,
0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f,
0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f,
0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f,
0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f,
0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f,
0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f,
0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f,
0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f,
0.001707611023448408f, 0.001455130288377404f};
__constant float c_NX[2][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
__constant float c_NY[2][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};
0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f,
0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f,
0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f,
0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f,
0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f,
0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f,
0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f,
0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f,
0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f,
0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f,
0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f,
0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f,
0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f,
0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f,
0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f,
0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f,
0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f,
0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f,
0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f,
0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f,
0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f,
0.001707611023448408f, 0.001455130288377404f
};
__constant float2 c_NX[5] = { (float2)(0, 2), (float2)(0, 0), (float2)(2, 4), (float2)(4, 4), (float2)(-1, 1) };
__constant float2 c_NY[5] = { (float2)(0, 0), (float2)(0, 2), (float2)(4, 4), (float2)(2, 4), (float2)(1, -1) };
void reduce_32_sum(volatile __local float * data, volatile float* partial_reduction, int tid)
{
@ -759,14 +788,14 @@ void reduce_32_sum(volatile __local float * data, volatile float* partial_reduc
if (tid < 8)
{
#endif
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 8 ]);
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 8]);
#if WAVE_SIZE < 8
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
{
#endif
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 4 ]);
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 4]);
#if WAVE_SIZE < 4
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -787,14 +816,14 @@ void reduce_32_sum(volatile __local float * data, volatile float* partial_reduc
}
__kernel
void icvCalcOrientation(
void icvCalcOrientation(
IMAGE_INT32 sumTex,
__global float * keypoints,
int keypoints_step,
int c_img_rows,
int c_img_cols,
int sum_step
)
)
{
keypoints_step /= sizeof(*keypoints);
sum_step /= sizeof(uint);
@ -838,7 +867,7 @@ __kernel
const int y = convert_int_rte(featureY[get_group_id(0)] + c_aptY[tid] * s - margin);
if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
{
X = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NX, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
Y = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NY, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
@ -934,11 +963,11 @@ __kernel
__kernel
void icvSetUpright(
void icvSetUpright(
__global float * keypoints,
int keypoints_step,
int nFeatures
)
)
{
keypoints_step /= sizeof(*keypoints);
__global float* featureDir = keypoints + ANGLE_ROW * keypoints_step;
@ -988,7 +1017,7 @@ inline uchar readerGet(
IMAGE_INT8 src,
const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
int i, int j, int rows, int cols, int elemPerRow
)
)
{
float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
float pixel_y = centerY - (win_offset + j) * sin_dir + (win_offset + i) * cos_dir;
@ -999,7 +1028,7 @@ inline float linearFilter(
IMAGE_INT8 src,
const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
float y, float x, int rows, int cols, int elemPerRow
)
)
{
x -= 0.5f;
y -= 0.5f;
@ -1028,9 +1057,9 @@ inline float linearFilter(
void calc_dx_dy(
IMAGE_INT8 imgTex,
volatile __local float s_dx_bin[25],
volatile __local float s_dy_bin[25],
volatile __local float s_PATCH[6][6],
volatile __local float *s_dx_bin,
volatile __local float *s_dy_bin,
volatile __local float *s_PATCH,
__global const float* featureX,
__global const float* featureY,
__global const float* featureSize,
@ -1038,7 +1067,7 @@ void calc_dx_dy(
int rows,
int cols,
int elemPerRow
)
)
{
const float centerX = featureX[get_group_id(0)];
const float centerY = featureY[get_group_id(0)];
@ -1048,6 +1077,7 @@ void calc_dx_dy(
{
descriptor_dir = 0.0f;
}
descriptor_dir *= (float)(CV_PI_F / 180.0f);
/* The sampling intervals and wavelet sized for selecting an orientation
@ -1074,7 +1104,7 @@ void calc_dx_dy(
const float icoo = ((float)yIndex / (PATCH_SZ + 1)) * win_size;
const float jcoo = ((float)xIndex / (PATCH_SZ + 1)) * win_size;
s_PATCH[get_local_id(1)][get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo, rows, cols, elemPerRow);
s_PATCH[get_local_id(1) * 6 + get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo, rows, cols, elemPerRow);
barrier(CLK_LOCAL_MEM_FENCE);
@ -1085,17 +1115,17 @@ void calc_dx_dy(
const float dw = c_DW[yIndex * PATCH_SZ + xIndex];
const float vx = (
s_PATCH[get_local_id(1) ][get_local_id(0) + 1] -
s_PATCH[get_local_id(1) ][get_local_id(0) ] +
s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] -
s_PATCH[get_local_id(1) + 1][get_local_id(0) ])
* dw;
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) + 1] -
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) ] +
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) + 1] -
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) ])
* dw;
const float vy = (
s_PATCH[get_local_id(1) + 1][get_local_id(0) ] -
s_PATCH[get_local_id(1) ][get_local_id(0) ] +
s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] -
s_PATCH[get_local_id(1) ][get_local_id(0) + 1])
* dw;
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) ] -
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) ] +
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) + 1] -
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) + 1])
* dw;
s_dx_bin[tid] = vx;
s_dy_bin[tid] = vy;
}
@ -1106,7 +1136,7 @@ void reduce_sum25(
volatile __local float* sdata3,
volatile __local float* sdata4,
int tid
)
)
{
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
@ -1125,11 +1155,8 @@ void reduce_sum25(
{
#endif
sdata1[tid] += sdata1[tid + 8];
sdata2[tid] += sdata2[tid + 8];
sdata3[tid] += sdata3[tid + 8];
sdata4[tid] += sdata4[tid + 8];
#if WAVE_SIZE < 8
}
@ -1166,7 +1193,7 @@ void reduce_sum25(
}
__kernel
void compute_descriptors64(
void compute_descriptors64(
IMAGE_INT8 imgTex,
__global float * descriptors,
__global const float * keypoints,
@ -1175,7 +1202,7 @@ __kernel
int rows,
int cols,
int img_step
)
)
{
descriptors_step /= sizeof(float);
keypoints_step /= sizeof(float);
@ -1189,7 +1216,7 @@ __kernel
volatile __local float sdy[25];
volatile __local float sdxabs[25];
volatile __local float sdyabs[25];
volatile __local float s_PATCH[6][6];
volatile __local float s_PATCH[6*6];
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
barrier(CLK_LOCAL_MEM_FENCE);
@ -1203,7 +1230,7 @@ __kernel
}
barrier(CLK_LOCAL_MEM_FENCE);
reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);
reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 25)
@ -1221,7 +1248,7 @@ __kernel
}
}
__kernel
void compute_descriptors128(
void compute_descriptors128(
IMAGE_INT8 imgTex,
__global float * descriptors,
__global float * keypoints,
@ -1230,7 +1257,7 @@ __kernel
int rows,
int cols,
int img_step
)
)
{
descriptors_step /= sizeof(*descriptors);
keypoints_step /= sizeof(*keypoints);
@ -1249,7 +1276,7 @@ __kernel
volatile __local float sd2[25];
volatile __local float sdabs1[25];
volatile __local float sdabs2[25];
volatile __local float s_PATCH[6][6];
volatile __local float s_PATCH[6*6];
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
barrier(CLK_LOCAL_MEM_FENCE);
@ -1275,7 +1302,7 @@ __kernel
}
barrier(CLK_LOCAL_MEM_FENCE);
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
__global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 3);
@ -1306,8 +1333,7 @@ __kernel
}
}
barrier(CLK_LOCAL_MEM_FENCE);
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 25)
@ -1322,11 +1348,13 @@ __kernel
}
}
}
void reduce_sum128(volatile __local float* smem, int tid)
{
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif
if (tid < 64)
{
smem[tid] += smem[tid + 64];
@ -1374,6 +1402,8 @@ void reduce_sum128(volatile __local float* smem, int tid)
smem[tid] += smem[tid + 1];
}
}
void reduce_sum64(volatile __local float* smem, int tid)
{
#ifndef WAVE_SIZE
@ -1421,7 +1451,7 @@ void reduce_sum64(volatile __local float* smem, int tid)
}
__kernel
void normalize_descriptors128(__global float * descriptors, int descriptors_step)
void normalize_descriptors128(__global float * descriptors, int descriptors_step)
{
descriptors_step /= sizeof(*descriptors);
// no need for thread ID
@ -1436,8 +1466,6 @@ __kernel
reduce_sum128(sqDesc, get_local_id(0));
barrier(CLK_LOCAL_MEM_FENCE);
// compute length (square root)
volatile __local float len;
if (get_local_id(0) == 0)
@ -1450,7 +1478,7 @@ __kernel
descriptor_base[get_local_id(0)] = lookup / len;
}
__kernel
void normalize_descriptors64(__global float * descriptors, int descriptors_step)
void normalize_descriptors64(__global float * descriptors, int descriptors_step)
{
descriptors_step /= sizeof(*descriptors);
// no need for thread ID
@ -1462,7 +1490,6 @@ __kernel
sqDesc[get_local_id(0)] = lookup * lookup;
barrier(CLK_LOCAL_MEM_FENCE);
reduce_sum64(sqDesc, get_local_id(0));
barrier(CLK_LOCAL_MEM_FENCE);

@ -1,45 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -1 +0,0 @@
#include "perf_precomp.hpp"

@ -1,44 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -1 +0,0 @@
#include "test_precomp.hpp"

@ -710,7 +710,7 @@ namespace cv
//! returns 2D filter with the specified kernel
// supports CV_8UC1 and CV_8UC4 types
CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Size &ksize,
Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
//! returns the non-separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat &kernel,

@ -40,7 +40,7 @@
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
static int cvErrorCallback(int /*status*/, const char * /*func_name*/,
const char *err_msg, const char * /*file_name*/,

@ -44,7 +44,7 @@
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// Lut ////////////////////////
PERFTEST(lut)
{

@ -44,7 +44,7 @@
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// blend ////////////////////////
template <typename T>
void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &weights1, const cv::Mat &weights2, cv::Mat &result_gold)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
//////////////////// BruteForceMatch /////////////////
PERFTEST(BruteForceMatcher)

@ -44,7 +44,7 @@
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// StereoMatchBM ////////////////////////
PERFTEST(StereoMatchBM)
{

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// Canny ////////////////////////
PERFTEST(Canny)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// cvtColor////////////////////////
PERFTEST(cvtColor)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// dft ////////////////////////
PERFTEST(dft)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// Blur////////////////////////
PERFTEST(Blur)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// gemm ////////////////////////
PERFTEST(gemm)

@ -44,7 +44,7 @@
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// GoodFeaturesToTrack ////////////////////////
PERFTEST(GoodFeaturesToTrack)

@ -43,7 +43,8 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// Haar ////////////////////////
PERFTEST(Haar)
@ -103,4 +104,4 @@ PERFTEST(Haar)
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
GPU_FULL_OFF;
}
}

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// HOG////////////////////////

@ -40,7 +40,7 @@
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
#ifdef HAVE_OPENCL

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// equalizeHist ////////////////////////
PERFTEST(equalizeHist)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
/////////// matchTemplate ////////////////////////
//void InitMatchTemplate()

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// ConvertTo////////////////////////
PERFTEST(ConvertTo)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// Moments ////////////////////////
PERFTEST(Moments)
{

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// norm////////////////////////
PERFTEST(norm)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// PyrLKOpticalFlow ////////////////////////
PERFTEST(PyrLKOpticalFlow)

@ -40,7 +40,7 @@
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
#if GTEST_OS_WINDOWS
#ifndef NOMINMAX
#define NOMINMAX

@ -40,6 +40,9 @@
//
//M*/
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
@ -515,3 +518,5 @@ struct name##_test: Runnable { \
#define WARMUP_OFF \
ocl::finish(); \
} TestSystem::instance().warmupComplete()
#endif

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// pyrDown //////////////////////
PERFTEST(pyrDown)

@ -43,7 +43,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "perf_precomp.hpp"
///////////// Merge////////////////////////
PERFTEST(Merge)

@ -213,7 +213,7 @@ void cvtColor_caller(const oclMat &src, oclMat &dst, int code, int dcn)
case COLOR_RGB2YUV:
{
CV_Assert(scn == 3 || scn == 4);
bidx = code == COLOR_BGR2YUV ? 0 : 2;
bidx = code == COLOR_RGB2YUV ? 0 : 2;
dst.create(sz, CV_MAKETYPE(depth, 3));
RGB2YUV_caller(src, dst, bidx);
break;
@ -222,7 +222,7 @@ void cvtColor_caller(const oclMat &src, oclMat &dst, int code, int dcn)
case COLOR_YUV2RGB:
{
CV_Assert(scn == 3 || scn == 4);
bidx = code == COLOR_YUV2BGR ? 0 : 2;
bidx = code == COLOR_YUV2RGB ? 0 : 2;
dst.create(sz, CV_MAKETYPE(depth, 3));
YUV2RGB_caller(src, dst, bidx);
break;

@ -572,7 +572,7 @@ void cv::ocl::morphologyEx(const oclMat &src, oclMat &dst, int op, const Mat &ke
namespace
{
typedef void (*GPUFilter2D_t)(const oclMat & , oclMat & , oclMat & , Size &, const Point, const int);
typedef void (*GPUFilter2D_t)(const oclMat & , oclMat & , const oclMat & , const Size &, const Point&, const int);
class LinearFilter_GPU : public BaseFilter_GPU
{
@ -591,21 +591,22 @@ public:
};
}
static void GPUFilter2D(const oclMat &src, oclMat &dst, oclMat &mat_kernel,
Size &ksize, const Point anchor, const int borderType)
static void GPUFilter2D(const oclMat &src, oclMat &dst, const oclMat &mat_kernel,
const Size &ksize, const Point& anchor, const int borderType)
{
CV_Assert(src.clCxt == dst.clCxt);
CV_Assert((src.cols == dst.cols) &&
(src.rows == dst.rows));
CV_Assert((src.oclchannels() == dst.oclchannels()));
CV_Assert((borderType != 0));
CV_Assert(ksize.height > 0 && ksize.width > 0 && ((ksize.height & 1) == 1) && ((ksize.width & 1) == 1));
CV_Assert((anchor.x == -1 && anchor.y == -1) || (anchor.x == ksize.width >> 1 && anchor.y == ksize.height >> 1));
CV_Assert(ksize.width == ksize.height);
Context *clCxt = src.clCxt;
int cn = src.oclchannels();
int depth = src.depth();
String kernelName = "filter2D";
int filterWidth = ksize.width;
bool ksize_3x3 = filterWidth == 3 && src.type() != CV_32FC4; // CV_32FC4 is not tuned up with filter2d_3x3 kernel
String kernelName = ksize_3x3 ? "filter2D_3x3" : "filter2D";
size_t src_offset_x = (src.offset % src.step) / src.elemSize();
size_t src_offset_y = src.offset / src.step;
@ -613,55 +614,81 @@ static void GPUFilter2D(const oclMat &src, oclMat &dst, oclMat &mat_kernel,
size_t dst_offset_x = (dst.offset % dst.step) / dst.elemSize();
size_t dst_offset_y = dst.offset / dst.step;
int vector_lengths[4][7] = {{4, 4, 4, 4, 4, 4, 4},
{4, 4, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1},
{4, 4, 4, 4, 1, 1, 4}
};
int paddingPixels = filterWidth & (-2);
size_t localThreads[3] = {ksize_3x3 ? 256 : 16, ksize_3x3 ? 1 : 16, 1};
size_t globalThreads[3] = {src.wholecols, src.wholerows, 1};
int vector_length = vector_lengths[cn - 1][depth];
int offset_cols = (dst_offset_x) & (vector_length - 1);
int cols = dst.cols + offset_cols;
int rows = divUp(dst.rows, vector_length);
int cn = src.oclchannels();
int src_step = (int)(src.step/src.elemSize());
int dst_step = (int)(dst.step/src.elemSize());
size_t localThreads[3] = {256, 1, 1};
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
divUp(rows, localThreads[1]) *localThreads[1], 1
};
int localWidth = localThreads[0] + paddingPixels;
int localHeight = localThreads[1] + paddingPixels;
// 260 = divup((localThreads[0] + filterWidth * 2), 4) * 4
// 6 = (ROWS_PER_GROUP_WHICH_IS_4 + filterWidth * 2)
size_t localMemSize = ksize_3x3 ? 260 * 6 * src.elemSize() : (localWidth * localHeight) * src.elemSize();
int vector_lengths[4][7] = {{4, 4, 4, 4, 4, 4, 4},
{4, 4, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1},
{4, 4, 4, 4, 1, 1, 4}
};
int cols = dst.cols + ((dst_offset_x) & (vector_lengths[cn - 1][src.depth()] - 1));
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src_step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst_step));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&mat_kernel.data));
args.push_back(std::make_pair(localMemSize, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholerows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholecols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src_offset_x));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src_offset_y));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst_offset_x));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst_offset_y));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&mat_kernel.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholecols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholerows));
const int buffer_size = 100;
char opt_buffer [buffer_size] = "";
sprintf(opt_buffer, "-DANCHOR=%d -DANX=%d -DANY=%d", ksize.width, anchor.x, anchor.y);
openCLExecuteKernel(clCxt, &filtering_laplacian, kernelName, globalThreads, localThreads, args, cn, depth, opt_buffer);
char btype[30];
switch (borderType)
{
case 0:
sprintf(btype, "BORDER_CONSTANT");
break;
case 1:
sprintf(btype, "BORDER_REPLICATE");
break;
case 2:
sprintf(btype, "BORDER_REFLECT");
break;
case 3:
CV_Error(CV_StsUnsupportedFormat, "BORDER_WRAP is not supported!");
return;
case 4:
sprintf(btype, "BORDER_REFLECT_101");
break;
}
int type = src.depth();
char build_options[150];
sprintf(build_options, "-D %s -D IMG_C_%d_%d -D CN=%d -D FILTER_SIZE=%d", btype, cn, type, cn, ksize.width);
openCLExecuteKernel(clCxt, &filtering_laplacian, kernelName, globalThreads, localThreads, args, -1, -1, build_options);
}
Ptr<BaseFilter_GPU> cv::ocl::getLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Size &ksize,
Point anchor, int borderType)
const Point &anchor, int borderType)
{
static const GPUFilter2D_t GPUFilter2D_callers[] = {0, GPUFilter2D, 0, GPUFilter2D, GPUFilter2D};
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC3 || srcType == CV_8UC4 || srcType == CV_32FC1 || srcType == CV_32FC3 || srcType == CV_32FC4) && dstType == srcType);
oclMat gpu_krnl;
int nDivisor;
normalizeKernel(kernel, gpu_krnl, CV_32S, &nDivisor, false);
normalizeAnchor(anchor, ksize);
Point norm_archor = anchor;
normalizeKernel(kernel, gpu_krnl, CV_32FC1);
normalizeAnchor(norm_archor, ksize);
return Ptr<BaseFilter_GPU>(new LinearFilter_GPU(ksize, anchor, gpu_krnl, GPUFilter2D_callers[CV_MAT_CN(srcType)],
borderType));

@ -258,7 +258,7 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl
int datasize;
int total_classifiers = 0;
int total_nodes = 0;
char errorstr[100];
char errorstr[256];
GpuHidHaarStageClassifier *stage_classifier_ptr;
GpuHidHaarClassifier *haar_classifier_ptr;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save