added buffered version of gpu::convolve

pull/13383/head
Alexey Spizhevoy 14 years ago
parent e5d1b9eecd
commit be38864dd0
  1. 29
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 103
      modules/gpu/src/imgproc_gpu.cpp

@ -656,7 +656,34 @@ namespace cv
//! computes convolution (or cross-correlation) of two images using discrete Fourier transform //! computes convolution (or cross-correlation) of two images using discrete Fourier transform
//! supports source images of 32FC1 type only //! supports source images of 32FC1 type only
//! result matrix will have 32FC1 type //! result matrix will have 32FC1 type
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr=false); CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
bool ccorr=false);
struct CV_EXPORTS ConvolveBuf;
//! buffered version
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
bool ccorr, ConvolveBuf& buf);
struct CV_EXPORTS ConvolveBuf
{
ConvolveBuf() {}
ConvolveBuf(Size image_size, Size templ_size)
{ create(image_size, templ_size); }
void create(Size image_size, Size templ_size);
private:
static Size estimateBlockSize(Size result_size, Size templ_size);
friend void convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&);
Size result_size;
Size block_size;
Size dft_size;
int spect_len;
GpuMat image_spect, templ_spect, result_spect;
GpuMat image_block, templ_block, result_data;
};
//! computes the proximity map for the raster template and the image where the template is searched for //! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method); CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method);

@ -77,7 +77,9 @@ void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_n
void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool) { throw_nogpu(); } void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool) { throw_nogpu(); }
void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool) { throw_nogpu(); } void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool) { throw_nogpu(); }
void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int) { throw_nogpu(); } void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int) { throw_nogpu(); }
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); } void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */ #else /* !defined (HAVE_CUDA) */
@ -1211,36 +1213,65 @@ void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags)
} }
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// crossCorr // convolve
namespace
void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size)
{
result_size = Size(image_size.width - templ_size.width + 1,
image_size.height - templ_size.height + 1);
block_size = estimateBlockSize(result_size, templ_size);
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
dft_size.height = getOptimalDFTSize(block_size.width + templ_size.height - 1);
createContinuous(dft_size, CV_32F, image_block);
createContinuous(dft_size, CV_32F, templ_block);
createContinuous(dft_size, CV_32F, result_data);
spect_len = dft_size.height * (dft_size.width / 2 + 1);
createContinuous(1, spect_len, CV_32FC2, image_spect);
createContinuous(1, spect_len, CV_32FC2, templ_spect);
createContinuous(1, spect_len, CV_32FC2, result_spect);
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
}
Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size templ_size)
{ {
// Estimates optimal block size
void convolveOptBlockSize(int w, int h, int tw, int th, int& bw, int& bh)
{
int major, minor; int major, minor;
getComputeCapability(getDevice(), major, minor); getComputeCapability(getDevice(), major, minor);
int scale = 40; int scale = 40;
int bh_min = 1024; Size bsize_min(1024, 1024);
int bw_min = 1024;
// Check whether we use Fermi generation or newer GPU // Check whether we use Fermi generation or newer GPU
if (major >= 2) if (major >= 2)
{ {
bh_min = 2048; bsize_min.width = 2048;
bw_min = 2048; bsize_min.height = 2048;
} }
bw = std::max(tw * scale, bw_min); Size bsize(std::max(templ_size.width * scale, bsize_min.width),
bh = std::max(th * scale, bh_min); std::max(templ_size.height * scale, bsize_min.height));
bw = std::min(bw, w);
bh = std::min(bh, h); bsize.width = std::min(bsize.width, result_size.width);
} bsize.height = std::min(bsize.height, result_size.height);
return bsize;
} }
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr) void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
bool ccorr)
{
ConvolveBuf buf;
convolve(image, templ, result, ccorr, buf);
}
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
bool ccorr, ConvolveBuf& buf)
{ {
StaticAssert<sizeof(float) == sizeof(cufftReal)>::check(); StaticAssert<sizeof(float) == sizeof(cufftReal)>::check();
StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check(); StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check();
@ -1248,32 +1279,25 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
CV_Assert(image.type() == CV_32F); CV_Assert(image.type() == CV_32F);
CV_Assert(templ.type() == CV_32F); CV_Assert(templ.type() == CV_32F);
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); buf.create(image.size(), templ.size());
result.create(buf.result_size, CV_32F);
Size block_size;
convolveOptBlockSize(result.cols, result.rows, templ.cols, templ.rows,
block_size.width, block_size.height);
Size dft_size; Size& block_size = buf.block_size;
dft_size.width = getOptimalDFTSize(block_size.width + templ.cols - 1); Size& dft_size = buf.dft_size;
dft_size.height = getOptimalDFTSize(block_size.width + templ.rows - 1); int& spect_len = buf.spect_len;
block_size.width = std::min(dft_size.width - templ.cols + 1, result.cols); GpuMat& image_block = buf.image_block;
block_size.height = std::min(dft_size.height - templ.rows + 1, result.rows); GpuMat& templ_block = buf.templ_block;
GpuMat& result_data = buf.result_data;
int spect_len = dft_size.height * (dft_size.width / 2 + 1); GpuMat& image_spect = buf.image_spect;
GpuMat image_spect = createContinuous(1, spect_len, CV_32FC2); GpuMat& templ_spect = buf.templ_spect;
GpuMat templ_spect = createContinuous(1, spect_len, CV_32FC2); GpuMat& result_spect = buf.result_spect;
GpuMat result_spect = createContinuous(1, spect_len, CV_32FC2);
cufftHandle planR2C, planC2R; cufftHandle planR2C, planC2R;
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R)); cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C)); cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
GpuMat image_block = createContinuous(dft_size, CV_32F);
GpuMat templ_block = createContinuous(dft_size, CV_32F);
GpuMat result_data = createContinuous(dft_size, CV_32F);
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step); GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0); templ_block.cols - templ_roi.cols, 0);
@ -1288,9 +1312,10 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
{ {
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x, Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
std::min(y + dft_size.height, image.rows) - y); std::min(y + dft_size.height, image.rows) - y);
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x), image.step); GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0, image.step);
image_block.cols - image_roi.cols, 0); copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
0, image_block.cols - image_roi.cols, 0);
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(), cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
image_spect.ptr<cufftComplex>())); image_spect.ptr<cufftComplex>()));
@ -1301,8 +1326,10 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
Size result_roi_size(std::min(x + block_size.width, result.cols) - x, Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
std::min(y + block_size.height, result.rows) - y); std::min(y + block_size.height, result.rows) - y);
GpuMat result_roi(result_roi_size, result.type(), (void*)(result.ptr<float>(y) + x), result.step); GpuMat result_roi(result_roi_size, result.type(),
GpuMat result_block(result_roi_size, result_data.type(), result_data.ptr(), result_data.step); (void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, result_data.type(),
result_data.ptr(), result_data.step);
result_block.copyTo(result_roi); result_block.copyTo(result_roi);
} }
} }

Loading…
Cancel
Save