Refactored Tegra related macro usage

pull/13383/head
Andrey Kamaev 13 years ago
parent 48ea65e69c
commit bdfd4c3062
  1. 174
      modules/core/src/matrix.cpp
  2. 100
      modules/core/src/stat.cpp

@ -1942,7 +1942,53 @@ reduceC_( const Mat& srcmat, Mat& dstmat )
typedef void (*ReduceFunc)( const Mat& src, Mat& dst );
}
#define reduceSumR8u32s reduceR_<uchar, int, OpAdd<int> >
#define reduceSumR8u32f reduceR_<uchar, float, OpAdd<int> >
#define reduceSumR8u64f reduceR_<uchar, double,OpAdd<int> >
#define reduceSumR16u32f reduceR_<ushort,float, OpAdd<float> >
#define reduceSumR16u64f reduceR_<ushort,double,OpAdd<double> >
#define reduceSumR16s32f reduceR_<short, float, OpAdd<float> >
#define reduceSumR16s64f reduceR_<short, double,OpAdd<double> >
#define reduceSumR32f32f reduceR_<float, float, OpAdd<float> >
#define reduceSumR32f64f reduceR_<float, double,OpAdd<double> >
#define reduceSumR64f64f reduceR_<double,double,OpAdd<double> >
#define reduceMaxR8u reduceR_<uchar, uchar, OpMax<uchar> >
#define reduceMaxR16u reduceR_<ushort,ushort,OpMax<ushort> >
#define reduceMaxR16s reduceR_<short, short, OpMax<short> >
#define reduceMaxR32f reduceR_<float, float, OpMax<float> >
#define reduceMaxR64f reduceR_<double,double,OpMax<double> >
#define reduceMinR8u reduceR_<uchar, uchar, OpMin<uchar> >
#define reduceMinR16u reduceR_<ushort,ushort,OpMin<ushort> >
#define reduceMinR16s reduceR_<short, short, OpMin<short> >
#define reduceMinR32f reduceR_<float, float, OpMin<float> >
#define reduceMinR64f reduceR_<double,double,OpMin<double> >
#define reduceSumC8u32s reduceC_<uchar, int, OpAdd<int> >
#define reduceSumC8u32f reduceC_<uchar, float, OpAdd<int> >
#define reduceSumC8u64f reduceC_<uchar, double,OpAdd<int> >
#define reduceSumC16u32f reduceC_<ushort,float, OpAdd<float> >
#define reduceSumC16u64f reduceC_<ushort,double,OpAdd<double> >
#define reduceSumC16s32f reduceC_<short, float, OpAdd<float> >
#define reduceSumC16s64f reduceC_<short, double,OpAdd<double> >
#define reduceSumC32f32f reduceC_<float, float, OpAdd<float> >
#define reduceSumC32f64f reduceC_<float, double,OpAdd<double> >
#define reduceSumC64f64f reduceC_<double,double,OpAdd<double> >
#define reduceMaxC8u reduceC_<uchar, uchar, OpMax<uchar> >
#define reduceMaxC16u reduceC_<ushort,ushort,OpMax<ushort> >
#define reduceMaxC16s reduceC_<short, short, OpMax<short> >
#define reduceMaxC32f reduceC_<float, float, OpMax<float> >
#define reduceMaxC64f reduceC_<double,double,OpMax<double> >
#define reduceMinC8u reduceC_<uchar, uchar, OpMin<uchar> >
#define reduceMinC16u reduceC_<ushort,ushort,OpMin<ushort> >
#define reduceMinC16s reduceC_<short, short, OpMin<short> >
#define reduceMinC32f reduceC_<float, float, OpMin<float> >
#define reduceMinC64f reduceC_<double,double,OpMin<double> >
void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype)
{
Mat src = _src.getMat();
@ -1958,7 +2004,7 @@ void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype)
Mat dst = _dst.getMat(), temp = dst;
CV_Assert( op == CV_REDUCE_SUM || op == CV_REDUCE_MAX ||
op == CV_REDUCE_MIN || op == CV_REDUCE_AVG );
op == CV_REDUCE_MIN || op == CV_REDUCE_AVG );
CV_Assert( src.channels() == dst.channels() );
if( op == CV_REDUCE_AVG )
@ -1977,75 +2023,51 @@ void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype)
if( op == CV_REDUCE_SUM )
{
if(sdepth == CV_8U && ddepth == CV_32S)
#ifdef HAVE_TEGRA_OPTIMIZATION
func = tegra::getTegraOptimized_reduceR8uAdd(tegra::reduceR8uAdd);
#else
func = reduceR_<uchar,int,OpAdd<int> >;
#endif
func = GET_OPTIMIZED(reduceSumR8u32s);
else if(sdepth == CV_8U && ddepth == CV_32F)
func = reduceR_<uchar,float,OpAdd<int> >;
func = reduceSumR8u32f;
else if(sdepth == CV_8U && ddepth == CV_64F)
func = reduceR_<uchar,double,OpAdd<int> >;
func = reduceSumR8u64f;
else if(sdepth == CV_16U && ddepth == CV_32F)
func = reduceR_<ushort,float,OpAdd<float> >;
func = reduceSumR16u32f;
else if(sdepth == CV_16U && ddepth == CV_64F)
func = reduceR_<ushort,double,OpAdd<double> >;
func = reduceSumR16u64f;
else if(sdepth == CV_16S && ddepth == CV_32F)
func = reduceR_<short,float,OpAdd<float> >;
func = reduceSumR16s32f;
else if(sdepth == CV_16S && ddepth == CV_64F)
func = reduceR_<short,double,OpAdd<double> >;
else if(sdepth == CV_32F && ddepth == CV_32F)
#ifdef HAVE_TEGRA_OPTIMIZATION
func = tegra::getTegraOptimized_reduceR32fAdd(tegra::reduceR32fAdd);
#else
func = reduceR_<float,float,OpAdd<float> >;
#endif
func = reduceSumR16s64f;
else if(sdepth == CV_32F && ddepth == CV_32F)
func = GET_OPTIMIZED(reduceSumR32f32f);
else if(sdepth == CV_32F && ddepth == CV_64F)
func = reduceR_<float,double,OpAdd<double> >;
func = reduceSumR32f64f;
else if(sdepth == CV_64F && ddepth == CV_64F)
func = reduceR_<double,double,OpAdd<double> >;
func = reduceSumR64f64f;
}
else if(op == CV_REDUCE_MAX)
{
if(sdepth == CV_8U && ddepth == CV_8U)
#ifdef HAVE_TEGRA_OPTIMIZATION
func = tegra::getTegraOptimized_reduceR8uMax(tegra::reduceR8uMax);
#else
func = reduceR_<uchar, uchar, OpMax<uchar> >;
#endif
else if(sdepth == CV_16U && ddepth == CV_16U)
func = reduceR_<ushort, ushort, OpMax<ushort> >;
func = GET_OPTIMIZED(reduceMaxR8u);
else if(sdepth == CV_16U && ddepth == CV_16U)
func = reduceMaxR16u;
else if(sdepth == CV_16S && ddepth == CV_16S)
func = reduceR_<short, short, OpMax<short> >;
func = reduceMaxR16s;
else if(sdepth == CV_32F && ddepth == CV_32F)
#ifdef HAVE_TEGRA_OPTIMIZATION
func = tegra::getTegraOptimized_reduceR32fMax(tegra::reduceR32fMax);
#else
func = reduceR_<float, float, OpMax<float> >;
#endif
else if(sdepth == CV_64F && ddepth == CV_64F)
func = reduceR_<double, double, OpMax<double> >;
func = GET_OPTIMIZED(reduceMaxR32f);
else if(sdepth == CV_64F && ddepth == CV_64F)
func = reduceMaxR64f;
}
else if(op == CV_REDUCE_MIN)
{
if(sdepth == CV_8U && ddepth == CV_8U)
#ifdef HAVE_TEGRA_OPTIMIZATION
func = tegra::getTegraOptimized_reduceR8uMin(tegra::reduceR8uMin);
#else
func = reduceR_<uchar, uchar, OpMin<uchar> >;
#endif
func = GET_OPTIMIZED(reduceMinR8u);
else if(sdepth == CV_16U && ddepth == CV_16U)
func = reduceR_<ushort, ushort, OpMin<ushort> >;
func = reduceMinR16u;
else if(sdepth == CV_16S && ddepth == CV_16S)
func = reduceR_<short, short, OpMin<short> >;
func = reduceMinR16s;
else if(sdepth == CV_32F && ddepth == CV_32F)
#ifdef HAVE_TEGRA_OPTIMIZATION
func = tegra::getTegraOptimized_reduceR32fMin(tegra::reduceR32fMin);
#else
func = reduceR_<float, float, OpMin<float> >;
#endif
func = GET_OPTIMIZED(reduceMinR32f);
else if(sdepth == CV_64F && ddepth == CV_64F)
func = reduceR_<double, double, OpMin<double> >;
func = reduceMinR64f;
}
}
else
@ -2053,67 +2075,63 @@ void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype)
if(op == CV_REDUCE_SUM)
{
if(sdepth == CV_8U && ddepth == CV_32S)
#ifdef HAVE_TEGRA_OPTIMIZATION
func = tegra::getTegraOptimized_reduceC8uAdd(tegra::reduceC8uAdd);
#else
func = reduceC_<uchar,int,OpAdd<int> >;
#endif
func = GET_OPTIMIZED(reduceSumC8u32s);
else if(sdepth == CV_8U && ddepth == CV_32F)
func = reduceC_<uchar,float,OpAdd<int> >;
func = reduceSumC8u32f;
else if(sdepth == CV_8U && ddepth == CV_64F)
func = reduceC_<uchar,double,OpAdd<int> >;
func = reduceSumC8u64f;
else if(sdepth == CV_16U && ddepth == CV_32F)
func = reduceC_<ushort,float,OpAdd<float> >;
func = reduceSumC16u32f;
else if(sdepth == CV_16U && ddepth == CV_64F)
func = reduceC_<ushort,double,OpAdd<double> >;
func = reduceSumC16u64f;
else if(sdepth == CV_16S && ddepth == CV_32F)
func = reduceC_<short,float,OpAdd<float> >;
func = reduceSumC16s32f;
else if(sdepth == CV_16S && ddepth == CV_64F)
func = reduceC_<short,double,OpAdd<double> >;
else if(sdepth == CV_32F && ddepth == CV_32F)
func = reduceC_<float,float,OpAdd<float> >;
func = reduceSumC16s64f;
else if(sdepth == CV_32F && ddepth == CV_32F)
func = GET_OPTIMIZED(reduceSumC32f32f);
else if(sdepth == CV_32F && ddepth == CV_64F)
func = reduceC_<float,double,OpAdd<double> >;
func = reduceSumC32f64f;
else if(sdepth == CV_64F && ddepth == CV_64F)
func = reduceC_<double,double,OpAdd<double> >;
func = reduceSumC64f64f;
}
else if(op == CV_REDUCE_MAX)
{
if(sdepth == CV_8U && ddepth == CV_8U)
func = reduceC_<uchar, uchar, OpMax<uchar> >;
else if(sdepth == CV_16U && ddepth == CV_16U)
func = reduceC_<ushort, ushort, OpMax<ushort> >;
func = GET_OPTIMIZED(reduceMaxC8u);
else if(sdepth == CV_16U && ddepth == CV_16U)
func = reduceMaxC16u;
else if(sdepth == CV_16S && ddepth == CV_16S)
func = reduceC_<short, short, OpMax<short> >;
func = reduceMaxC16s;
else if(sdepth == CV_32F && ddepth == CV_32F)
func = reduceC_<float, float, OpMax<float> >;
func = GET_OPTIMIZED(reduceMaxC32f);
else if(sdepth == CV_64F && ddepth == CV_64F)
func = reduceC_<double, double, OpMax<double> >;
func = reduceMaxC64f;
}
else if(op == CV_REDUCE_MIN)
{
if(sdepth == CV_8U && ddepth == CV_8U)
func = reduceC_<uchar, uchar, OpMin<uchar> >;
func = GET_OPTIMIZED(reduceMinC8u);
else if(sdepth == CV_16U && ddepth == CV_16U)
func = reduceC_<ushort, ushort, OpMin<ushort> >;
func = reduceMinC16u;
else if(sdepth == CV_16S && ddepth == CV_16S)
func = reduceC_<short, short, OpMin<short> >;
func = reduceMinC16s;
else if(sdepth == CV_32F && ddepth == CV_32F)
func = reduceC_<float, float, OpMin<float> >;
func = GET_OPTIMIZED(reduceMinC32f);
else if(sdepth == CV_64F && ddepth == CV_64F)
func = reduceC_<double, double, OpMin<double> >;
func = reduceMinC64f;
}
}
if( !func )
CV_Error( CV_StsUnsupportedFormat,
"Unsupported combination of input and output array formats" );
"Unsupported combination of input and output array formats" );
func( src, temp );
if( op0 == CV_REDUCE_AVG )
if( op0 == CV_REDUCE_AVG )
temp.convertTo(dst, dst.type(), 1./(dim == 0 ? src.rows : src.cols));
}
}
//////////////////////////////////////// sort ///////////////////////////////////////////

@ -169,7 +169,7 @@ static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn )
return nzm;
}
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
@ -201,7 +201,7 @@ static SumFunc sumTab[] =
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f,
0
};
template<typename T>
static int countNonZero_(const T* src, int len )
{
@ -229,7 +229,7 @@ static int countNonZero64f( const double* src, int len )
{ return countNonZero_(src, len); }
typedef int (*CountNonZeroFunc)(const uchar*, int);
static CountNonZeroFunc countNonZeroTab[] =
{
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)(countNonZero8u),
@ -238,7 +238,7 @@ static CountNonZeroFunc countNonZeroTab[] =
(CountNonZeroFunc)countNonZero64f, 0
};
template<typename T, typename ST, typename SQT>
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn )
{
@ -393,7 +393,7 @@ static SumSqrFunc sumSqrTab[] =
};
}
cv::Scalar cv::sum( InputArray _src )
{
Mat src = _src.getMat();
@ -419,12 +419,12 @@ cv::Scalar cv::sum( InputArray _src )
blockSize = std::min(blockSize, intSumBlockSize);
_buf.allocate(cn);
buf = _buf;
for( k = 0; k < cn; k++ )
buf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
@ -464,7 +464,7 @@ int cv::countNonZero( InputArray _src )
return nz;
}
cv::Scalar cv::mean( InputArray _src, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
@ -523,7 +523,7 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
return s*(nz0 ? 1./nz0 : 0);
}
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
@ -610,7 +610,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
Mat dst = _dst.getMat();
int dcn = (int)dst.total();
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
double* dptr = dst.ptr<double>();
for( k = 0; k < cn; k++ )
dptr[k] = sptr[k];
@ -701,7 +701,7 @@ static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, fl
static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t);
static MinMaxIdxFunc minmaxTab[] =
@ -712,7 +712,7 @@ static MinMaxIdxFunc minmaxTab[] =
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f),
0
};
static void ofs2idx(const Mat& a, size_t ofs, int* idx)
{
int i, d = a.dims;
@ -732,7 +732,7 @@ static void ofs2idx(const Mat& a, size_t ofs, int* idx)
idx[i] = -1;
}
}
}
void cv::minMaxIdx(InputArray _src, double* minVal,
@ -784,9 +784,9 @@ void cv::minMaxIdx(InputArray _src, double* minVal,
if( maxIdx )
ofs2idx(src, maxidx, maxIdx);
}
void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal,
Point* minLoc, Point* maxLoc, InputArray mask )
Point* minLoc, Point* maxLoc, InputArray mask )
{
Mat img = _img.getMat();
CV_Assert(img.dims <= 2);
@ -797,7 +797,7 @@ void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal,
if( maxLoc )
std::swap(maxLoc->x, maxLoc->y);
}
/****************************************************************************************\
* norm *
\****************************************************************************************/
@ -842,7 +842,7 @@ float normL2Sqr_(const float* a, const float* b, int n)
return d;
}
float normL1_(const float* a, const float* b, int n)
{
int j = 0; float d = 0.f;
@ -870,7 +870,7 @@ float normL1_(const float* a, const float* b, int n)
for( ; j <= n - 4; j += 4 )
{
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) +
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
}
}
@ -910,7 +910,7 @@ int normL1_(const uchar* a, const uchar* b, int n)
for( ; j <= n - 4; j += 4 )
{
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) +
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
}
}
@ -930,7 +930,7 @@ static const uchar popCountTable[] =
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
static const uchar popCountTable2[] =
{
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
@ -942,7 +942,7 @@ static const uchar popCountTable2[] =
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4
};
static const uchar popCountTable4[] =
{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
@ -954,7 +954,7 @@ static const uchar popCountTable4[] =
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
int normHamming(const uchar* a, const uchar* b, int n)
{
int i = 0, result = 0;
@ -979,12 +979,12 @@ int normHamming(const uchar* a, const uchar* b, int n)
#endif
for( ; i <= n - 4; i += 4 )
result += popCountTable[a[i] ^ b[i]] + popCountTable[a[i+1] ^ b[i+1]] +
popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]];
popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]];
for( ; i < n; i++ )
result += popCountTable[a[i] ^ b[i]];
return result;
}
int normHamming(const uchar* a, const uchar* b, int n, int cellSize)
{
if( cellSize == 1 )
@ -999,13 +999,13 @@ int normHamming(const uchar* a, const uchar* b, int n, int cellSize)
int i = 0, result = 0;
for( ; i <= n - 4; i += 4 )
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] +
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]];
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]];
for( ; i < n; i++ )
result += tab[a[i] ^ b[i]];
return result;
}
template<typename T, typename ST> int
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
@ -1026,7 +1026,7 @@ normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn)
*_result = result;
return 0;
}
template<typename T, typename ST> int
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
@ -1071,7 +1071,7 @@ normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn)
*_result = result;
return 0;
}
template<typename T, typename ST> int
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
@ -1140,16 +1140,16 @@ normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int le
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \
{ return norm##L##_(src, mask, r, len, cn); } \
static int normDiff##L##_##suffix(const type* src1, const type* src2, \
const uchar* mask, ntype* r, int len, int cn) \
static int normDiff##L##_##suffix(const type* src1, const type* src2, \
const uchar* mask, ntype* r, int len, int cn) \
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); }
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \
CV_DEF_NORM_FUNC(L2, suffix, type, l2type)
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \
CV_DEF_NORM_FUNC(L2, suffix, type, l2type)
CV_DEF_NORM_ALL(8u, uchar, int, int, int)
CV_DEF_NORM_ALL(8s, schar, int, int, int)
@ -1159,7 +1159,7 @@ CV_DEF_NORM_ALL(32s, int, int, double, double)
CV_DEF_NORM_ALL(32f, float, float, double, double)
CV_DEF_NORM_ALL(64f, double, double, double, double)
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int);
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int);
@ -1202,7 +1202,7 @@ static NormDiffFunc normDiffTab[3][8] =
};
}
double cv::norm( InputArray _src, int normType, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
@ -1221,18 +1221,18 @@ double cv::norm( InputArray _src, int normType, InputArray _mask )
if( normType == NORM_L2 )
{
double result = 0;
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1);
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1);
return std::sqrt(result);
}
if( normType == NORM_L1 )
{
double result = 0;
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1);
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1);
return result;
}
{
float result = 0;
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1);
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1);
return result;
}
@ -1257,7 +1257,7 @@ double cv::norm( InputArray _src, int normType, InputArray _mask )
NAryMatIterator it(arrays, ptrs);
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
(normType == NORM_L2 && depth <= CV_8S);
(normType == NORM_L2 && depth <= CV_8S);
int isum = 0;
int *ibuf = &result.i;
size_t esz = 0;
@ -1275,8 +1275,8 @@ double cv::norm( InputArray _src, int normType, InputArray _mask )
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn );
count += bsz;
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
result.d += isum;
@ -1304,7 +1304,7 @@ double cv::norm( InputArray _src, int normType, InputArray _mask )
return result.d;
}
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask )
{
if( normType & CV_RELATIVE )
@ -1329,18 +1329,18 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
if( normType == NORM_L2 )
{
double result = 0;
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1);
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1);
return std::sqrt(result);
}
if( normType == NORM_L1 )
{
double result = 0;
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1);
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1);
return result;
}
{
float result = 0;
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1);
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1);
return result;
}
}
@ -1365,7 +1365,7 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
NAryMatIterator it(arrays, ptrs);
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
(normType == NORM_L2 && depth <= CV_8S);
(normType == NORM_L2 && depth <= CV_8S);
unsigned isum = 0;
unsigned *ibuf = &result.u;
size_t esz = 0;
@ -1496,7 +1496,7 @@ cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal,
cv::extractImageCOI(imgarr, img);
cv::minMaxLoc( img, _minVal, _maxVal,
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask );
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask );
}

Loading…
Cancel
Save