|
|
|
@ -169,7 +169,7 @@ static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn ) |
|
|
|
|
return nzm; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn ) |
|
|
|
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
|
|
|
|
|
@ -201,7 +201,7 @@ static SumFunc sumTab[] = |
|
|
|
|
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f, |
|
|
|
|
0 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T> |
|
|
|
|
static int countNonZero_(const T* src, int len ) |
|
|
|
|
{ |
|
|
|
@ -229,7 +229,7 @@ static int countNonZero64f( const double* src, int len ) |
|
|
|
|
{ return countNonZero_(src, len); } |
|
|
|
|
|
|
|
|
|
typedef int (*CountNonZeroFunc)(const uchar*, int); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static CountNonZeroFunc countNonZeroTab[] = |
|
|
|
|
{ |
|
|
|
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)(countNonZero8u), |
|
|
|
@ -238,7 +238,7 @@ static CountNonZeroFunc countNonZeroTab[] = |
|
|
|
|
(CountNonZeroFunc)countNonZero64f, 0 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T, typename ST, typename SQT> |
|
|
|
|
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn ) |
|
|
|
|
{ |
|
|
|
@ -393,7 +393,7 @@ static SumSqrFunc sumSqrTab[] = |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv::Scalar cv::sum( InputArray _src ) |
|
|
|
|
{ |
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
@ -419,12 +419,12 @@ cv::Scalar cv::sum( InputArray _src ) |
|
|
|
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
|
|
|
_buf.allocate(cn); |
|
|
|
|
buf = _buf; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( k = 0; k < cn; k++ ) |
|
|
|
|
buf[k] = 0; |
|
|
|
|
esz = src.elemSize(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
|
|
|
{ |
|
|
|
|
for( j = 0; j < total; j += blockSize ) |
|
|
|
@ -464,7 +464,7 @@ int cv::countNonZero( InputArray _src ) |
|
|
|
|
|
|
|
|
|
return nz; |
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv::Scalar cv::mean( InputArray _src, InputArray _mask ) |
|
|
|
|
{ |
|
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
|
|
@ -523,7 +523,7 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask ) |
|
|
|
|
return s*(nz0 ? 1./nz0 : 0); |
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) |
|
|
|
|
{ |
|
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
|
|
@ -610,7 +610,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input |
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
int dcn = (int)dst.total(); |
|
|
|
|
CV_Assert( dst.type() == CV_64F && dst.isContinuous() && |
|
|
|
|
(dst.cols == 1 || dst.rows == 1) && dcn >= cn ); |
|
|
|
|
(dst.cols == 1 || dst.rows == 1) && dcn >= cn ); |
|
|
|
|
double* dptr = dst.ptr<double>(); |
|
|
|
|
for( k = 0; k < cn; k++ ) |
|
|
|
|
dptr[k] = sptr[k]; |
|
|
|
@ -701,7 +701,7 @@ static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, fl |
|
|
|
|
static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval, |
|
|
|
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
|
|
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t); |
|
|
|
|
|
|
|
|
|
static MinMaxIdxFunc minmaxTab[] = |
|
|
|
@ -712,7 +712,7 @@ static MinMaxIdxFunc minmaxTab[] = |
|
|
|
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f), |
|
|
|
|
0 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void ofs2idx(const Mat& a, size_t ofs, int* idx) |
|
|
|
|
{ |
|
|
|
|
int i, d = a.dims; |
|
|
|
@ -732,7 +732,7 @@ static void ofs2idx(const Mat& a, size_t ofs, int* idx) |
|
|
|
|
idx[i] = -1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::minMaxIdx(InputArray _src, double* minVal, |
|
|
|
@ -784,9 +784,9 @@ void cv::minMaxIdx(InputArray _src, double* minVal, |
|
|
|
|
if( maxIdx ) |
|
|
|
|
ofs2idx(src, maxidx, maxIdx); |
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal, |
|
|
|
|
Point* minLoc, Point* maxLoc, InputArray mask ) |
|
|
|
|
Point* minLoc, Point* maxLoc, InputArray mask ) |
|
|
|
|
{ |
|
|
|
|
Mat img = _img.getMat(); |
|
|
|
|
CV_Assert(img.dims <= 2); |
|
|
|
@ -797,7 +797,7 @@ void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal, |
|
|
|
|
if( maxLoc ) |
|
|
|
|
std::swap(maxLoc->x, maxLoc->y); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
|
* norm * |
|
|
|
|
\****************************************************************************************/ |
|
|
|
@ -842,7 +842,7 @@ float normL2Sqr_(const float* a, const float* b, int n) |
|
|
|
|
return d; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float normL1_(const float* a, const float* b, int n) |
|
|
|
|
{ |
|
|
|
|
int j = 0; float d = 0.f; |
|
|
|
@ -870,7 +870,7 @@ float normL1_(const float* a, const float* b, int n) |
|
|
|
|
for( ; j <= n - 4; j += 4 ) |
|
|
|
|
{ |
|
|
|
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
|
|
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
|
|
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -910,7 +910,7 @@ int normL1_(const uchar* a, const uchar* b, int n) |
|
|
|
|
for( ; j <= n - 4; j += 4 ) |
|
|
|
|
{ |
|
|
|
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
|
|
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
|
|
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -930,7 +930,7 @@ static const uchar popCountTable[] = |
|
|
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
|
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static const uchar popCountTable2[] = |
|
|
|
|
{ |
|
|
|
|
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
|
|
@ -942,7 +942,7 @@ static const uchar popCountTable2[] = |
|
|
|
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
|
|
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static const uchar popCountTable4[] = |
|
|
|
|
{ |
|
|
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
|
|
@ -954,7 +954,7 @@ static const uchar popCountTable4[] = |
|
|
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
|
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int normHamming(const uchar* a, const uchar* b, int n) |
|
|
|
|
{ |
|
|
|
|
int i = 0, result = 0; |
|
|
|
@ -979,12 +979,12 @@ int normHamming(const uchar* a, const uchar* b, int n) |
|
|
|
|
#endif |
|
|
|
|
for( ; i <= n - 4; i += 4 ) |
|
|
|
|
result += popCountTable[a[i] ^ b[i]] + popCountTable[a[i+1] ^ b[i+1]] + |
|
|
|
|
popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]]; |
|
|
|
|
popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]]; |
|
|
|
|
for( ; i < n; i++ ) |
|
|
|
|
result += popCountTable[a[i] ^ b[i]]; |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int normHamming(const uchar* a, const uchar* b, int n, int cellSize) |
|
|
|
|
{ |
|
|
|
|
if( cellSize == 1 ) |
|
|
|
@ -999,13 +999,13 @@ int normHamming(const uchar* a, const uchar* b, int n, int cellSize) |
|
|
|
|
int i = 0, result = 0; |
|
|
|
|
for( ; i <= n - 4; i += 4 ) |
|
|
|
|
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] + |
|
|
|
|
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; |
|
|
|
|
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; |
|
|
|
|
for( ; i < n; i++ ) |
|
|
|
|
result += tab[a[i] ^ b[i]]; |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T, typename ST> int |
|
|
|
|
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
|
|
|
{ |
|
|
|
@ -1026,7 +1026,7 @@ normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
|
|
|
*_result = result; |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T, typename ST> int |
|
|
|
|
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
|
|
|
{ |
|
|
|
@ -1071,7 +1071,7 @@ normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
|
|
|
*_result = result; |
|
|
|
|
return 0; |
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T, typename ST> int |
|
|
|
|
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
|
|
|
{ |
|
|
|
@ -1140,16 +1140,16 @@ normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int le |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \ |
|
|
|
|
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \
|
|
|
|
|
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \
|
|
|
|
|
{ return norm##L##_(src, mask, r, len, cn); } \
|
|
|
|
|
static int normDiff##L##_##suffix(const type* src1, const type* src2, \
|
|
|
|
|
const uchar* mask, ntype* r, int len, int cn) \
|
|
|
|
|
static int normDiff##L##_##suffix(const type* src1, const type* src2, \
|
|
|
|
|
const uchar* mask, ntype* r, int len, int cn) \
|
|
|
|
|
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \ |
|
|
|
|
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \
|
|
|
|
|
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \
|
|
|
|
|
CV_DEF_NORM_FUNC(L2, suffix, type, l2type) |
|
|
|
|
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \
|
|
|
|
|
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \
|
|
|
|
|
CV_DEF_NORM_FUNC(L2, suffix, type, l2type) |
|
|
|
|
|
|
|
|
|
CV_DEF_NORM_ALL(8u, uchar, int, int, int) |
|
|
|
|
CV_DEF_NORM_ALL(8s, schar, int, int, int) |
|
|
|
@ -1159,7 +1159,7 @@ CV_DEF_NORM_ALL(32s, int, int, double, double) |
|
|
|
|
CV_DEF_NORM_ALL(32f, float, float, double, double) |
|
|
|
|
CV_DEF_NORM_ALL(64f, double, double, double, double) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int); |
|
|
|
|
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int);
|
|
|
|
|
|
|
|
|
@ -1202,7 +1202,7 @@ static NormDiffFunc normDiffTab[3][8] = |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
|
|
|
{ |
|
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
|
|
@ -1221,18 +1221,18 @@ double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
|
|
|
if( normType == NORM_L2 ) |
|
|
|
|
{ |
|
|
|
|
double result = 0; |
|
|
|
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
|
|
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
|
|
|
return std::sqrt(result); |
|
|
|
|
} |
|
|
|
|
if( normType == NORM_L1 ) |
|
|
|
|
{ |
|
|
|
|
double result = 0; |
|
|
|
|
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); |
|
|
|
|
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
|
{ |
|
|
|
|
float result = 0; |
|
|
|
|
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); |
|
|
|
|
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); |
|
|
|
|
return result; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
@ -1257,7 +1257,7 @@ double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
|
|
|
NAryMatIterator it(arrays, ptrs); |
|
|
|
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
|
|
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
|
|
|
(normType == NORM_L2 && depth <= CV_8S); |
|
|
|
|
(normType == NORM_L2 && depth <= CV_8S); |
|
|
|
|
int isum = 0; |
|
|
|
|
int *ibuf = &result.i; |
|
|
|
|
size_t esz = 0; |
|
|
|
@ -1275,8 +1275,8 @@ double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
|
|
|
for( j = 0; j < total; j += blockSize ) |
|
|
|
|
{ |
|
|
|
|
int bsz = std::min(total - j, blockSize); |
|
|
|
|
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn ); |
|
|
|
|
count += bsz; |
|
|
|
|
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn ); |
|
|
|
|
count += bsz; |
|
|
|
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
|
|
|
{ |
|
|
|
|
result.d += isum; |
|
|
|
@ -1304,7 +1304,7 @@ double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
|
|
|
return result.d; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ) |
|
|
|
|
{ |
|
|
|
|
if( normType & CV_RELATIVE ) |
|
|
|
@ -1329,18 +1329,18 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m |
|
|
|
|
if( normType == NORM_L2 ) |
|
|
|
|
{ |
|
|
|
|
double result = 0; |
|
|
|
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
|
|
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
|
|
|
return std::sqrt(result); |
|
|
|
|
} |
|
|
|
|
if( normType == NORM_L1 ) |
|
|
|
|
{ |
|
|
|
|
double result = 0; |
|
|
|
|
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); |
|
|
|
|
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
|
{ |
|
|
|
|
float result = 0; |
|
|
|
|
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); |
|
|
|
|
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -1365,7 +1365,7 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m |
|
|
|
|
NAryMatIterator it(arrays, ptrs); |
|
|
|
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
|
|
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
|
|
|
(normType == NORM_L2 && depth <= CV_8S); |
|
|
|
|
(normType == NORM_L2 && depth <= CV_8S); |
|
|
|
|
unsigned isum = 0; |
|
|
|
|
unsigned *ibuf = &result.u; |
|
|
|
|
size_t esz = 0; |
|
|
|
@ -1496,7 +1496,7 @@ cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal, |
|
|
|
|
cv::extractImageCOI(imgarr, img); |
|
|
|
|
|
|
|
|
|
cv::minMaxLoc( img, _minVal, _maxVal, |
|
|
|
|
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask ); |
|
|
|
|
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|