|
|
|
@ -23,9 +23,9 @@ public: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void processNet(const std::string& weights, const std::string& proto, |
|
|
|
|
Size inpSize, const std::string& outputLayer, |
|
|
|
|
Size inpSize, const std::string& outputLayer = "", |
|
|
|
|
const std::string& halideScheduler = "", |
|
|
|
|
double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
double l1 = 0.0, double lInf = 0.0) |
|
|
|
|
{ |
|
|
|
|
// Create a common input blob.
|
|
|
|
|
int blobSize[] = {1, 3, inpSize.height, inpSize.width}; |
|
|
|
@ -36,9 +36,9 @@ public: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void processNet(std::string weights, std::string proto, |
|
|
|
|
Mat inp, const std::string& outputLayer, |
|
|
|
|
Mat inp, const std::string& outputLayer = "", |
|
|
|
|
std::string halideScheduler = "", |
|
|
|
|
double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
double l1 = 0.0, double lInf = 0.0) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) |
|
|
|
|
{ |
|
|
|
@ -49,6 +49,16 @@ public: |
|
|
|
|
throw SkipTestException("OpenCL is not available/disabled in OpenCV"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
|
|
|
{ |
|
|
|
|
l1 = l1 == 0.0 ? 4e-3 : l1; |
|
|
|
|
lInf = lInf == 0.0 ? 2e-2 : lInf; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
l1 = l1 == 0.0 ? 1e-5 : l1; |
|
|
|
|
lInf = lInf == 0.0 ? 1e-4 : lInf; |
|
|
|
|
} |
|
|
|
|
weights = findDataFile(weights, false); |
|
|
|
|
if (!proto.empty()) |
|
|
|
|
proto = findDataFile(proto, false); |
|
|
|
@ -71,31 +81,28 @@ public: |
|
|
|
|
Mat out = net.forward(outputLayer).clone(); |
|
|
|
|
|
|
|
|
|
if (outputLayer == "detection_out") |
|
|
|
|
normAssertDetections(outDefault, out, "First run", 0.2); |
|
|
|
|
normAssertDetections(outDefault, out, "First run", 0.2, l1, lInf); |
|
|
|
|
else |
|
|
|
|
normAssert(outDefault, out, "First run", l1, lInf); |
|
|
|
|
|
|
|
|
|
// Test 2: change input.
|
|
|
|
|
inp *= 0.1f; |
|
|
|
|
float* inpData = (float*)inp.data; |
|
|
|
|
for (int i = 0; i < inp.size[0] * inp.size[1]; ++i) |
|
|
|
|
{ |
|
|
|
|
Mat slice(inp.size[2], inp.size[3], CV_32F, inpData); |
|
|
|
|
cv::flip(slice, slice, 1); |
|
|
|
|
inpData += slice.total(); |
|
|
|
|
} |
|
|
|
|
netDefault.setInput(inp); |
|
|
|
|
net.setInput(inp); |
|
|
|
|
outDefault = netDefault.forward(outputLayer).clone(); |
|
|
|
|
out = net.forward(outputLayer).clone(); |
|
|
|
|
|
|
|
|
|
if (outputLayer == "detection_out") |
|
|
|
|
checkDetections(outDefault, out, "Second run", l1, lInf); |
|
|
|
|
normAssertDetections(outDefault, out, "Second run", 0.2, l1, lInf); |
|
|
|
|
else |
|
|
|
|
normAssert(outDefault, out, "Second run", l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void checkDetections(const Mat& out, const Mat& ref, const std::string& msg, |
|
|
|
|
float l1, float lInf, int top = 5) |
|
|
|
|
{ |
|
|
|
|
top = std::min(std::min(top, out.size[2]), out.size[3]); |
|
|
|
|
std::vector<cv::Range> range(4, cv::Range::all()); |
|
|
|
|
range[2] = cv::Range(0, top); |
|
|
|
|
normAssert(out(range), ref(range)); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, AlexNet) |
|
|
|
@ -110,8 +117,6 @@ TEST_P(DNNTestNetwork, AlexNet) |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, ResNet_50) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
|
|
|
|
Size(224, 224), "prob", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" : |
|
|
|
@ -120,8 +125,6 @@ TEST_P(DNNTestNetwork, ResNet_50) |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, SqueezeNet_v1_1) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
|
|
|
|
Size(227, 227), "prob", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" : |
|
|
|
@ -130,8 +133,6 @@ TEST_P(DNNTestNetwork, SqueezeNet_v1_1) |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, GoogLeNet) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
|
|
|
|
Size(224, 224), "prob"); |
|
|
|
|
} |
|
|
|
@ -180,7 +181,7 @@ TEST_P(DNNTestNetwork, SSD_VGG16) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || |
|
|
|
|
backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", |
|
|
|
|
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out"); |
|
|
|
@ -189,30 +190,24 @@ TEST_P(DNNTestNetwork, SSD_VGG16) |
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_coco) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
double l1 = target == DNN_TARGET_OPENCL_FP16 ? 3e-5 : 1e-5; |
|
|
|
|
double lInf = target == DNN_TARGET_OPENCL_FP16 ? 3e-3 : 1e-4; |
|
|
|
|
processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", |
|
|
|
|
Size(368, 368), "", "", l1, lInf); |
|
|
|
|
Size(368, 368)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
double l1 = target == DNN_TARGET_OPENCL_FP16 ? 4e-5 : 1e-5; |
|
|
|
|
double lInf = target == DNN_TARGET_OPENCL_FP16 ? 7e-3 : 1e-4; |
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", |
|
|
|
|
Size(368, 368), "", "", l1, lInf); |
|
|
|
|
Size(368, 368)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
double l1 = target == DNN_TARGET_OPENCL_FP16 ? 5e-5 : 1e-5; |
|
|
|
|
double lInf = target == DNN_TARGET_OPENCL_FP16 ? 5e-3 : 1e-4; |
|
|
|
|
// The same .caffemodel but modified .prototxt
|
|
|
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", |
|
|
|
|
Size(368, 368), "", "", l1, lInf); |
|
|
|
|
Size(368, 368)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenFace) |
|
|
|
|