mirror of https://github.com/opencv/opencv.git
Merge pull request #1122 from SpecLad:merge-2.4
commit
bd4d24f0fa
32 changed files with 2343 additions and 89 deletions
@ -0,0 +1,438 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iomanip> |
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace ocl; |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
////////////////////////////////////OpenCL kernel strings//////////////////////////
|
||||
extern const char *kmeans_kernel; |
||||
} |
||||
} |
||||
|
||||
static void generateRandomCenter(const std::vector<Vec2f>& box, float* center, RNG& rng) |
||||
{ |
||||
size_t j, dims = box.size(); |
||||
float margin = 1.f/dims; |
||||
for( j = 0; j < dims; j++ ) |
||||
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0]; |
||||
} |
||||
|
||||
// This class is copied from matrix.cpp in core module.
|
||||
class KMeansPPDistanceComputer : public ParallelLoopBody |
||||
{ |
||||
public: |
||||
KMeansPPDistanceComputer( float *_tdist2, |
||||
const float *_data, |
||||
const float *_dist, |
||||
int _dims, |
||||
size_t _step, |
||||
size_t _stepci ) |
||||
: tdist2(_tdist2), |
||||
data(_data), |
||||
dist(_dist), |
||||
dims(_dims), |
||||
step(_step), |
||||
stepci(_stepci) { } |
||||
|
||||
void operator()( const cv::Range& range ) const |
||||
{ |
||||
const int begin = range.start; |
||||
const int end = range.end; |
||||
|
||||
for ( int i = begin; i<end; i++ ) |
||||
{ |
||||
tdist2[i] = std::min(normL2Sqr_(data + step*i, data + stepci, dims), dist[i]); |
||||
} |
||||
} |
||||
|
||||
private: |
||||
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC
|
||||
|
||||
float *tdist2; |
||||
const float *data; |
||||
const float *dist; |
||||
const int dims; |
||||
const size_t step; |
||||
const size_t stepci; |
||||
}; |
||||
/*
|
||||
k-means center initialization using the following algorithm: |
||||
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding |
||||
*/ |
||||
static void generateCentersPP(const Mat& _data, Mat& _out_centers, |
||||
int K, RNG& rng, int trials) |
||||
{ |
||||
int i, j, k, dims = _data.cols, N = _data.rows; |
||||
const float* data = (float*)_data.data; |
||||
size_t step = _data.step/sizeof(data[0]); |
||||
std::vector<int> _centers(K); |
||||
int* centers = &_centers[0]; |
||||
std::vector<float> _dist(N*3); |
||||
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N; |
||||
double sum0 = 0; |
||||
|
||||
centers[0] = (unsigned)rng % N; |
||||
|
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
dist[i] = normL2Sqr_(data + step*i, data + step*centers[0], dims); |
||||
sum0 += dist[i]; |
||||
} |
||||
|
||||
for( k = 1; k < K; k++ ) |
||||
{ |
||||
double bestSum = DBL_MAX; |
||||
int bestCenter = -1; |
||||
|
||||
for( j = 0; j < trials; j++ ) |
||||
{ |
||||
double p = (double)rng*sum0, s = 0; |
||||
for( i = 0; i < N-1; i++ ) |
||||
if( (p -= dist[i]) <= 0 ) |
||||
break; |
||||
int ci = i; |
||||
|
||||
parallel_for_(Range(0, N), |
||||
KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci)); |
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
s += tdist2[i]; |
||||
} |
||||
|
||||
if( s < bestSum ) |
||||
{ |
||||
bestSum = s; |
||||
bestCenter = ci; |
||||
std::swap(tdist, tdist2); |
||||
} |
||||
} |
||||
centers[k] = bestCenter; |
||||
sum0 = bestSum; |
||||
std::swap(dist, tdist); |
||||
} |
||||
|
||||
for( k = 0; k < K; k++ ) |
||||
{ |
||||
const float* src = data + step*centers[k]; |
||||
float* dst = _out_centers.ptr<float>(k); |
||||
for( j = 0; j < dims; j++ ) |
||||
dst[j] = src[j]; |
||||
} |
||||
} |
||||
|
||||
void cv::ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat ¢ers) |
||||
{ |
||||
//if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F)
|
||||
//{
|
||||
// CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
|
||||
// return;
|
||||
//}
|
||||
|
||||
Context *clCxt = src.clCxt; |
||||
int labels_step = (int)(labels.step/labels.elemSize()); |
||||
String kernelname = "distanceToCenters"; |
||||
int threadNum = src.rows > 256 ? 256 : src.rows; |
||||
size_t localThreads[3] = {1, threadNum, 1}; |
||||
size_t globalThreads[3] = {1, src.rows, 1}; |
||||
|
||||
std::vector<std::pair<size_t, const void *> > args; |
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&labels_step)); |
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)¢ers.rows)); |
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data)); |
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&labels.data)); |
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)¢ers.cols)); |
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows)); |
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)¢ers.data)); |
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&dists.data)); |
||||
|
||||
openCLExecuteKernel(clCxt, &kmeans_kernel, kernelname, globalThreads, localThreads, args, -1, -1, NULL); |
||||
} |
||||
///////////////////////////////////k - means /////////////////////////////////////////////////////////
|
||||
double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels, |
||||
TermCriteria criteria, int attempts, int flags, oclMat &_centers) |
||||
{ |
||||
const int SPP_TRIALS = 3; |
||||
bool isrow = _src.rows == 1 && _src.oclchannels() > 1; |
||||
int N = !isrow ? _src.rows : _src.cols; |
||||
int dims = (!isrow ? _src.cols : 1) * _src.oclchannels(); |
||||
int type = _src.depth(); |
||||
|
||||
attempts = std::max(attempts, 1); |
||||
CV_Assert(type == CV_32F && K > 0 ); |
||||
CV_Assert( N >= K ); |
||||
|
||||
Mat _labels; |
||||
if( flags & KMEANS_USE_INITIAL_LABELS ) |
||||
{ |
||||
CV_Assert( (_bestLabels.cols == 1 || _bestLabels.rows == 1) && |
||||
_bestLabels.cols * _bestLabels.rows == N && |
||||
_bestLabels.type() == CV_32S ); |
||||
_bestLabels.download(_labels); |
||||
} |
||||
else |
||||
{ |
||||
if( !((_bestLabels.cols == 1 || _bestLabels.rows == 1) && |
||||
_bestLabels.cols * _bestLabels.rows == N && |
||||
_bestLabels.type() == CV_32S && |
||||
_bestLabels.isContinuous())) |
||||
_bestLabels.create(N, 1, CV_32S); |
||||
_labels.create(_bestLabels.size(), _bestLabels.type()); |
||||
} |
||||
int* labels = _labels.ptr<int>(); |
||||
|
||||
Mat data; |
||||
_src.download(data); |
||||
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type); |
||||
std::vector<int> counters(K); |
||||
std::vector<Vec2f> _box(dims); |
||||
Vec2f* box = &_box[0]; |
||||
double best_compactness = DBL_MAX, compactness = 0; |
||||
RNG& rng = theRNG(); |
||||
int a, iter, i, j, k; |
||||
|
||||
if( criteria.type & TermCriteria::EPS ) |
||||
criteria.epsilon = std::max(criteria.epsilon, 0.); |
||||
else |
||||
criteria.epsilon = FLT_EPSILON; |
||||
criteria.epsilon *= criteria.epsilon; |
||||
|
||||
if( criteria.type & TermCriteria::COUNT ) |
||||
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100); |
||||
else |
||||
criteria.maxCount = 100; |
||||
|
||||
if( K == 1 ) |
||||
{ |
||||
attempts = 1; |
||||
criteria.maxCount = 2; |
||||
} |
||||
|
||||
const float* sample = data.ptr<float>(); |
||||
for( j = 0; j < dims; j++ ) |
||||
box[j] = Vec2f(sample[j], sample[j]); |
||||
|
||||
for( i = 1; i < N; i++ ) |
||||
{ |
||||
sample = data.ptr<float>(i); |
||||
for( j = 0; j < dims; j++ ) |
||||
{ |
||||
float v = sample[j]; |
||||
box[j][0] = std::min(box[j][0], v); |
||||
box[j][1] = std::max(box[j][1], v); |
||||
} |
||||
} |
||||
|
||||
for( a = 0; a < attempts; a++ ) |
||||
{ |
||||
double max_center_shift = DBL_MAX; |
||||
for( iter = 0;; ) |
||||
{ |
||||
swap(centers, old_centers); |
||||
|
||||
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) ) |
||||
{ |
||||
if( flags & KMEANS_PP_CENTERS ) |
||||
generateCentersPP(data, centers, K, rng, SPP_TRIALS); |
||||
else |
||||
{ |
||||
for( k = 0; k < K; k++ ) |
||||
generateRandomCenter(_box, centers.ptr<float>(k), rng); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) ) |
||||
{ |
||||
for( i = 0; i < N; i++ ) |
||||
CV_Assert( (unsigned)labels[i] < (unsigned)K ); |
||||
} |
||||
|
||||
// compute centers
|
||||
centers = Scalar(0); |
||||
for( k = 0; k < K; k++ ) |
||||
counters[k] = 0; |
||||
|
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
sample = data.ptr<float>(i); |
||||
k = labels[i]; |
||||
float* center = centers.ptr<float>(k); |
||||
j=0; |
||||
#if CV_ENABLE_UNROLLED |
||||
for(; j <= dims - 4; j += 4 ) |
||||
{ |
||||
float t0 = center[j] + sample[j]; |
||||
float t1 = center[j+1] + sample[j+1]; |
||||
|
||||
center[j] = t0; |
||||
center[j+1] = t1; |
||||
|
||||
t0 = center[j+2] + sample[j+2]; |
||||
t1 = center[j+3] + sample[j+3]; |
||||
|
||||
center[j+2] = t0; |
||||
center[j+3] = t1; |
||||
} |
||||
#endif |
||||
for( ; j < dims; j++ ) |
||||
center[j] += sample[j]; |
||||
counters[k]++; |
||||
} |
||||
|
||||
if( iter > 0 ) |
||||
max_center_shift = 0; |
||||
|
||||
for( k = 0; k < K; k++ ) |
||||
{ |
||||
if( counters[k] != 0 ) |
||||
continue; |
||||
|
||||
// if some cluster appeared to be empty then:
|
||||
// 1. find the biggest cluster
|
||||
// 2. find the farthest from the center point in the biggest cluster
|
||||
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
|
||||
int max_k = 0; |
||||
for( int k1 = 1; k1 < K; k1++ ) |
||||
{ |
||||
if( counters[max_k] < counters[k1] ) |
||||
max_k = k1; |
||||
} |
||||
|
||||
double max_dist = 0; |
||||
int farthest_i = -1; |
||||
float* new_center = centers.ptr<float>(k); |
||||
float* old_center = centers.ptr<float>(max_k); |
||||
float* _old_center = temp.ptr<float>(); // normalized
|
||||
float scale = 1.f/counters[max_k]; |
||||
for( j = 0; j < dims; j++ ) |
||||
_old_center[j] = old_center[j]*scale; |
||||
|
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
if( labels[i] != max_k ) |
||||
continue; |
||||
sample = data.ptr<float>(i); |
||||
double dist = normL2Sqr_(sample, _old_center, dims); |
||||
|
||||
if( max_dist <= dist ) |
||||
{ |
||||
max_dist = dist; |
||||
farthest_i = i; |
||||
} |
||||
} |
||||
|
||||
counters[max_k]--; |
||||
counters[k]++; |
||||
labels[farthest_i] = k; |
||||
sample = data.ptr<float>(farthest_i); |
||||
|
||||
for( j = 0; j < dims; j++ ) |
||||
{ |
||||
old_center[j] -= sample[j]; |
||||
new_center[j] += sample[j]; |
||||
} |
||||
} |
||||
|
||||
for( k = 0; k < K; k++ ) |
||||
{ |
||||
float* center = centers.ptr<float>(k); |
||||
CV_Assert( counters[k] != 0 ); |
||||
|
||||
float scale = 1.f/counters[k]; |
||||
for( j = 0; j < dims; j++ ) |
||||
center[j] *= scale; |
||||
|
||||
if( iter > 0 ) |
||||
{ |
||||
double dist = 0; |
||||
const float* old_center = old_centers.ptr<float>(k); |
||||
for( j = 0; j < dims; j++ ) |
||||
{ |
||||
double t = center[j] - old_center[j]; |
||||
dist += t*t; |
||||
} |
||||
max_center_shift = std::max(max_center_shift, dist); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon ) |
||||
break; |
||||
|
||||
// assign labels
|
||||
oclMat _dists(1, N, CV_64F); |
||||
|
||||
_bestLabels.upload(_labels); |
||||
_centers.upload(centers); |
||||
distanceToCenters(_dists, _bestLabels, _src, _centers); |
||||
|
||||
Mat dists; |
||||
_dists.download(dists); |
||||
_bestLabels.download(_labels); |
||||
|
||||
double* dist = dists.ptr<double>(0); |
||||
compactness = 0; |
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
compactness += dist[i]; |
||||
} |
||||
} |
||||
|
||||
if( compactness < best_compactness ) |
||||
{ |
||||
best_compactness = compactness; |
||||
} |
||||
} |
||||
|
||||
return best_compactness; |
||||
} |
||||
|
@ -0,0 +1,84 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other GpuMaterials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
__kernel void distanceToCenters( |
||||
int label_step, int K, |
||||
__global float *src, |
||||
__global int *labels, int dims, int rows, |
||||
__global float *centers, |
||||
__global float *dists) |
||||
{ |
||||
int gid = get_global_id(1); |
||||
|
||||
float dist, euDist, min; |
||||
int minCentroid; |
||||
|
||||
if(gid >= rows) |
||||
return; |
||||
|
||||
for(int i = 0 ; i < K; i++) |
||||
{ |
||||
euDist = 0; |
||||
for(int j = 0; j < dims; j++) |
||||
{ |
||||
dist = (src[j + gid * dims] |
||||
- centers[j + i * dims]); |
||||
euDist += dist * dist; |
||||
} |
||||
|
||||
if(i == 0) |
||||
{ |
||||
min = euDist; |
||||
minCentroid = 0; |
||||
} |
||||
else if(euDist < min) |
||||
{ |
||||
min = euDist; |
||||
minCentroid = i; |
||||
} |
||||
} |
||||
dists[gid] = min; |
||||
labels[label_step * gid] = minCentroid; |
||||
} |
@ -0,0 +1,162 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Erping Pang, pang_er_ping@163.com
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
|
||||
using namespace cvtest; |
||||
using namespace testing; |
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
#define OCL_KMEANS_USE_INITIAL_LABELS 1 |
||||
#define OCL_KMEANS_PP_CENTERS 2 |
||||
|
||||
PARAM_TEST_CASE(Kmeans, int, int, int) |
||||
{ |
||||
int type; |
||||
int K; |
||||
int flags; |
||||
cv::Mat src ; |
||||
ocl::oclMat d_src, d_dists; |
||||
|
||||
Mat labels, centers; |
||||
ocl::oclMat d_labels, d_centers; |
||||
cv::RNG rng ; |
||||
virtual void SetUp(){ |
||||
K = GET_PARAM(0); |
||||
type = GET_PARAM(1); |
||||
flags = GET_PARAM(2); |
||||
rng = TS::ptr()->get_rng(); |
||||
|
||||
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
|
||||
cv::Size size = cv::Size(MWIDTH, MHEIGHT); |
||||
src.create(size, type); |
||||
int row_idx = 0; |
||||
const int max_neighbour = MHEIGHT / K - 1; |
||||
CV_Assert(K <= MWIDTH); |
||||
for(int i = 0; i < K; i++ ) |
||||
{ |
||||
Mat center_row_header = src.row(row_idx); |
||||
center_row_header.setTo(0); |
||||
int nchannel = center_row_header.channels(); |
||||
for(int j = 0; j < nchannel; j++) |
||||
center_row_header.at<float>(0, i*nchannel+j) = 50000.0; |
||||
|
||||
for(int j = 0; (j < max_neighbour) ||
|
||||
(i == K-1 && j < max_neighbour + MHEIGHT%K); j ++) |
||||
{ |
||||
Mat cur_row_header = src.row(row_idx + 1 + j); |
||||
center_row_header.copyTo(cur_row_header); |
||||
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), -200, 200, false); |
||||
cur_row_header += tmpmat; |
||||
} |
||||
row_idx += 1 + max_neighbour; |
||||
} |
||||
} |
||||
}; |
||||
TEST_P(Kmeans, Mat){ |
||||
|
||||
if(flags & KMEANS_USE_INITIAL_LABELS) |
||||
{ |
||||
// inital a given labels
|
||||
labels.create(src.rows, 1, CV_32S); |
||||
int *label = labels.ptr<int>(); |
||||
for(int i = 0; i < src.rows; i++) |
||||
label[i] = rng.uniform(0, K); |
||||
d_labels.upload(labels); |
||||
} |
||||
d_src.upload(src); |
||||
|
||||
for(int j = 0; j < LOOP_TIMES; j++) |
||||
{ |
||||
kmeans(src, K, labels, |
||||
TermCriteria( TermCriteria::EPS + TermCriteria::MAX_ITER, 100, 0), |
||||
1, flags, centers); |
||||
|
||||
ocl::kmeans(d_src, K, d_labels, |
||||
TermCriteria( TermCriteria::EPS + TermCriteria::MAX_ITER, 100, 0), |
||||
1, flags, d_centers); |
||||
|
||||
Mat dd_labels(d_labels); |
||||
Mat dd_centers(d_centers); |
||||
if(flags & KMEANS_USE_INITIAL_LABELS) |
||||
{ |
||||
EXPECT_MAT_NEAR(labels, dd_labels, 0); |
||||
EXPECT_MAT_NEAR(centers, dd_centers, 1e-3); |
||||
}
|
||||
else
|
||||
{ |
||||
int row_idx = 0; |
||||
for(int i = 0; i < K; i++) |
||||
{ |
||||
// verify lables with ground truth resutls
|
||||
int label = labels.at<int>(row_idx); |
||||
int header_label = dd_labels.at<int>(row_idx); |
||||
for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++) |
||||
{ |
||||
ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0); |
||||
ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0); |
||||
} |
||||
|
||||
// verify centers
|
||||
float *center = centers.ptr<float>(label); |
||||
float *header_center = dd_centers.ptr<float>(header_label); |
||||
for(int t = 0; t < centers.cols; t++) |
||||
ASSERT_NEAR(center[t], header_center[t], 1e-3); |
||||
|
||||
row_idx += MHEIGHT/K; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine( |
||||
Values(3, 5, 8), |
||||
Values(CV_32FC1, CV_32FC2, CV_32FC4), |
||||
Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));
|
||||
|
||||
#endif |
@ -0,0 +1,147 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
|
||||
#include "opencv2/ocl.hpp" |
||||
using namespace std; |
||||
using namespace std::tr1; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
using namespace cv; |
||||
using namespace cv::superres; |
||||
|
||||
namespace |
||||
{ |
||||
class OneFrameSource_OCL : public FrameSource |
||||
{ |
||||
public: |
||||
explicit OneFrameSource_OCL(const ocl::oclMat& frame) : frame_(frame) {} |
||||
|
||||
void nextFrame(OutputArray frame) |
||||
{ |
||||
ocl::getOclMatRef(frame) = frame_; |
||||
} |
||||
void reset() |
||||
{ |
||||
} |
||||
|
||||
private: |
||||
ocl::oclMat frame_; |
||||
}; |
||||
|
||||
|
||||
class ZeroOpticalFlowOCL : public DenseOpticalFlowExt |
||||
{ |
||||
public: |
||||
void calc(InputArray frame0, InputArray, OutputArray flow1, OutputArray flow2) |
||||
{ |
||||
ocl::oclMat& frame0_ = ocl::getOclMatRef(frame0); |
||||
ocl::oclMat& flow1_ = ocl::getOclMatRef(flow1); |
||||
ocl::oclMat& flow2_ = ocl::getOclMatRef(flow2); |
||||
|
||||
cv::Size size = frame0_.size(); |
||||
|
||||
if(!flow2.needed()) |
||||
{ |
||||
flow1_.create(size, CV_32FC2); |
||||
flow1_.setTo(Scalar::all(0)); |
||||
} |
||||
else |
||||
{ |
||||
flow1_.create(size, CV_32FC1); |
||||
flow2_.create(size, CV_32FC1); |
||||
|
||||
flow1_.setTo(Scalar::all(0)); |
||||
flow2_.setTo(Scalar::all(0)); |
||||
} |
||||
} |
||||
|
||||
void collectGarbage() |
||||
{ |
||||
} |
||||
}; |
||||
} |
||||
|
||||
PERF_TEST_P(Size_MatType, SuperResolution_BTVL1_OCL, |
||||
Combine(Values(szSmall64, szSmall128), |
||||
Values(MatType(CV_8UC1), MatType(CV_8UC3)))) |
||||
{ |
||||
std::vector<cv::ocl::Info>info; |
||||
cv::ocl::getDevice(info); |
||||
|
||||
declare.time(5 * 60); |
||||
|
||||
const Size size = get<0>(GetParam()); |
||||
const int type = get<1>(GetParam()); |
||||
|
||||
Mat frame(size, type); |
||||
declare.in(frame, WARMUP_RNG); |
||||
|
||||
ocl::oclMat frame_ocl; |
||||
frame_ocl.upload(frame); |
||||
|
||||
|
||||
const int scale = 2; |
||||
const int iterations = 50; |
||||
const int temporalAreaRadius = 1; |
||||
Ptr<DenseOpticalFlowExt> opticalFlowOcl(new ZeroOpticalFlowOCL); |
||||
|
||||
Ptr<SuperResolution> superRes_ocl = createSuperResolution_BTVL1_OCL(); |
||||
|
||||
superRes_ocl->set("scale", scale); |
||||
superRes_ocl->set("iterations", iterations); |
||||
superRes_ocl->set("temporalAreaRadius", temporalAreaRadius); |
||||
superRes_ocl->set("opticalFlow", opticalFlowOcl); |
||||
|
||||
superRes_ocl->setInput(new OneFrameSource_OCL(frame_ocl)); |
||||
|
||||
ocl::oclMat dst_ocl; |
||||
superRes_ocl->nextFrame(dst_ocl); |
||||
|
||||
TEST_CYCLE_N(10) superRes_ocl->nextFrame(dst_ocl); |
||||
frame_ocl.release(); |
||||
CPU_SANITY_CHECK(dst_ocl); |
||||
} |
||||
#endif |
@ -0,0 +1,748 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
|
||||
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#if !defined(HAVE_OPENCL) || !defined(HAVE_OPENCV_OCL) |
||||
|
||||
cv::Ptr<cv::superres::SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL() |
||||
{ |
||||
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); |
||||
return Ptr<SuperResolution>(); |
||||
} |
||||
|
||||
#else |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
using namespace cv::superres; |
||||
using namespace cv::superres::detail; |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
extern const char* superres_btvl1; |
||||
|
||||
float* btvWeights_ = NULL; |
||||
size_t btvWeights_size = 0; |
||||
} |
||||
} |
||||
|
||||
namespace btv_l1_device_ocl |
||||
{ |
||||
void buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY, |
||||
const oclMat& backwardMotionX, const oclMat& bacwardMotionY, |
||||
oclMat& forwardMapX, oclMat& forwardMapY, |
||||
oclMat& backwardMapX, oclMat& backwardMapY); |
||||
|
||||
void upscale(const oclMat& src, oclMat& dst, int scale); |
||||
|
||||
float diffSign(float a, float b); |
||||
|
||||
Point3f diffSign(Point3f a, Point3f b); |
||||
|
||||
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst); |
||||
|
||||
void calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize); |
||||
} |
||||
|
||||
void btv_l1_device_ocl::buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY, |
||||
const oclMat& backwardMotionX, const oclMat& backwardMotionY, |
||||
oclMat& forwardMapX, oclMat& forwardMapY, |
||||
oclMat& backwardMapX, oclMat& backwardMapY) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {forwardMapX.cols, forwardMapX.rows, 1}; |
||||
|
||||
int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize()); |
||||
int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize()); |
||||
int backwardMotionX_step = (int)(backwardMotionX.step/backwardMotionX.elemSize()); |
||||
int backwardMotionY_step = (int)(backwardMotionY.step/backwardMotionY.elemSize()); |
||||
int forwardMapX_step = (int)(forwardMapX.step/forwardMapX.elemSize()); |
||||
int forwardMapY_step = (int)(forwardMapY.step/forwardMapY.elemSize()); |
||||
int backwardMapX_step = (int)(backwardMapX.step/backwardMapX.elemSize()); |
||||
int backwardMapY_step = (int)(backwardMapY.step/backwardMapY.elemSize()); |
||||
|
||||
String kernel_name = "buildMotionMapsKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionY.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionY.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapY.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapY.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY.cols)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionY_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapY_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapY_step)); |
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
} |
||||
|
||||
void btv_l1_device_ocl::upscale(const oclMat& src, oclMat& dst, int scale) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {src.cols, src.rows, 1}; |
||||
|
||||
int src_step = (int)(src.step/src.elemSize()); |
||||
int dst_step = (int)(dst.step/dst.elemSize()); |
||||
|
||||
String kernel_name = "upscaleKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
int cn = src.oclchannels(); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&scale)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&cn));
|
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
|
||||
} |
||||
|
||||
float btv_l1_device_ocl::diffSign(float a, float b) |
||||
{ |
||||
return a > b ? 1.0f : a < b ? -1.0f : 0.0f; |
||||
} |
||||
|
||||
Point3f btv_l1_device_ocl::diffSign(Point3f a, Point3f b) |
||||
{ |
||||
return Point3f( |
||||
a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f, |
||||
a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f, |
||||
a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f |
||||
); |
||||
} |
||||
|
||||
void btv_l1_device_ocl::diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
oclMat src1_ = src1.reshape(1); |
||||
oclMat src2_ = src2.reshape(1); |
||||
oclMat dst_ = dst.reshape(1); |
||||
|
||||
int src1_step = (int)(src1_.step/src1_.elemSize()); |
||||
int src2_step = (int)(src2_.step/src2_.elemSize()); |
||||
int dst_step = (int)(dst_.step/dst_.elemSize()); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {src1_.cols, src1_.rows, 1}; |
||||
|
||||
String kernel_name = "diffSignKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src1_.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src2_.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src2_step)); |
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
} |
||||
|
||||
void btv_l1_device_ocl::calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
oclMat src_ = src.reshape(1); |
||||
oclMat dst_ = dst.reshape(1); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {src.cols, src.rows, 1}; |
||||
|
||||
int src_step = (int)(src_.step/src_.elemSize()); |
||||
int dst_step = (int)(dst_.step/dst_.elemSize()); |
||||
|
||||
String kernel_name = "calcBtvRegularizationKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
int cn = src.oclchannels(); |
||||
|
||||
cl_mem c_btvRegWeights; |
||||
size_t count = btvWeights_size * sizeof(float); |
||||
c_btvRegWeights = openCLCreateBuffer(clCxt, CL_MEM_READ_ONLY, count); |
||||
int cl_safe_check = clEnqueueWriteBuffer((cl_command_queue)clCxt->oclCommandQueue(), c_btvRegWeights, 1, 0, count, btvWeights_, 0, NULL, NULL); |
||||
CV_Assert(cl_safe_check == CL_SUCCESS); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src_.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&ksize)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&cn)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&c_btvRegWeights)); |
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
cl_safe_check = clReleaseMemObject(c_btvRegWeights); |
||||
CV_Assert(cl_safe_check == CL_SUCCESS); |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
void calcRelativeMotions(const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
||||
vector<pair<oclMat, oclMat> >& relForwardMotions, vector<pair<oclMat, oclMat> >& relBackwardMotions, |
||||
int baseIdx, Size size) |
||||
{ |
||||
const int count = static_cast<int>(forwardMotions.size()); |
||||
|
||||
relForwardMotions.resize(count); |
||||
relForwardMotions[baseIdx].first.create(size, CV_32FC1); |
||||
relForwardMotions[baseIdx].first.setTo(Scalar::all(0)); |
||||
relForwardMotions[baseIdx].second.create(size, CV_32FC1); |
||||
relForwardMotions[baseIdx].second.setTo(Scalar::all(0)); |
||||
|
||||
relBackwardMotions.resize(count); |
||||
relBackwardMotions[baseIdx].first.create(size, CV_32FC1); |
||||
relBackwardMotions[baseIdx].first.setTo(Scalar::all(0)); |
||||
relBackwardMotions[baseIdx].second.create(size, CV_32FC1); |
||||
relBackwardMotions[baseIdx].second.setTo(Scalar::all(0)); |
||||
|
||||
for (int i = baseIdx - 1; i >= 0; --i) |
||||
{ |
||||
ocl::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first); |
||||
ocl::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second); |
||||
|
||||
ocl::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first); |
||||
ocl::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second); |
||||
} |
||||
|
||||
for (int i = baseIdx + 1; i < count; ++i) |
||||
{ |
||||
ocl::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first); |
||||
ocl::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second); |
||||
|
||||
ocl::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first); |
||||
ocl::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second); |
||||
} |
||||
} |
||||
|
||||
void upscaleMotions(const vector<pair<oclMat, oclMat> >& lowResMotions, vector<pair<oclMat, oclMat> >& highResMotions, int scale) |
||||
{ |
||||
highResMotions.resize(lowResMotions.size()); |
||||
|
||||
for (size_t i = 0; i < lowResMotions.size(); ++i) |
||||
{ |
||||
ocl::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_LINEAR); |
||||
ocl::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_LINEAR); |
||||
|
||||
ocl::multiply(scale, highResMotions[i].first, highResMotions[i].first); |
||||
ocl::multiply(scale, highResMotions[i].second, highResMotions[i].second); |
||||
} |
||||
} |
||||
|
||||
void buildMotionMaps(const pair<oclMat, oclMat>& forwardMotion, const pair<oclMat, oclMat>& backwardMotion, |
||||
pair<oclMat, oclMat>& forwardMap, pair<oclMat, oclMat>& backwardMap) |
||||
{ |
||||
forwardMap.first.create(forwardMotion.first.size(), CV_32FC1); |
||||
forwardMap.second.create(forwardMotion.first.size(), CV_32FC1); |
||||
|
||||
backwardMap.first.create(forwardMotion.first.size(), CV_32FC1); |
||||
backwardMap.second.create(forwardMotion.first.size(), CV_32FC1); |
||||
|
||||
btv_l1_device_ocl::buildMotionMaps(forwardMotion.first, forwardMotion.second, |
||||
backwardMotion.first, backwardMotion.second, |
||||
forwardMap.first, forwardMap.second, |
||||
backwardMap.first, backwardMap.second); |
||||
} |
||||
|
||||
void upscale(const oclMat& src, oclMat& dst, int scale) |
||||
{ |
||||
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 ); |
||||
|
||||
dst.create(src.rows * scale, src.cols * scale, src.type()); |
||||
dst.setTo(Scalar::all(0)); |
||||
|
||||
btv_l1_device_ocl::upscale(src, dst, scale); |
||||
} |
||||
|
||||
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst) |
||||
{ |
||||
dst.create(src1.size(), src1.type()); |
||||
|
||||
btv_l1_device_ocl::diffSign(src1, src2, dst); |
||||
} |
||||
|
||||
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights) |
||||
{ |
||||
const size_t size = btvKernelSize * btvKernelSize; |
||||
|
||||
btvWeights.resize(size); |
||||
|
||||
const int ksize = (btvKernelSize - 1) / 2; |
||||
const float alpha_f = static_cast<float>(alpha); |
||||
|
||||
for (int m = 0, ind = 0; m <= ksize; ++m) |
||||
{ |
||||
for (int l = ksize; l + m >= 0; --l, ++ind) |
||||
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l)); |
||||
} |
||||
|
||||
btvWeights_ = &btvWeights[0]; |
||||
btvWeights_size = size; |
||||
} |
||||
|
||||
void calcBtvRegularization(const oclMat& src, oclMat& dst, int btvKernelSize) |
||||
{ |
||||
dst.create(src.size(), src.type()); |
||||
dst.setTo(Scalar::all(0)); |
||||
|
||||
const int ksize = (btvKernelSize - 1) / 2; |
||||
|
||||
btv_l1_device_ocl::calcBtvRegularization(src, dst, ksize); |
||||
} |
||||
|
||||
class BTVL1_OCL_Base |
||||
{ |
||||
public: |
||||
BTVL1_OCL_Base(); |
||||
|
||||
void process(const vector<oclMat>& src, oclMat& dst, |
||||
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
||||
int baseIdx); |
||||
|
||||
void collectGarbage(); |
||||
|
||||
protected: |
||||
int scale_; |
||||
int iterations_; |
||||
double lambda_; |
||||
double tau_; |
||||
double alpha_; |
||||
int btvKernelSize_; |
||||
int blurKernelSize_; |
||||
double blurSigma_; |
||||
Ptr<DenseOpticalFlowExt> opticalFlow_; |
||||
|
||||
private: |
||||
vector<Ptr<cv::ocl::FilterEngine_GPU> > filters_; |
||||
int curBlurKernelSize_; |
||||
double curBlurSigma_; |
||||
int curSrcType_; |
||||
|
||||
vector<float> btvWeights_; |
||||
int curBtvKernelSize_; |
||||
double curAlpha_; |
||||
|
||||
vector<pair<oclMat, oclMat> > lowResForwardMotions_; |
||||
vector<pair<oclMat, oclMat> > lowResBackwardMotions_; |
||||
|
||||
vector<pair<oclMat, oclMat> > highResForwardMotions_; |
||||
vector<pair<oclMat, oclMat> > highResBackwardMotions_; |
||||
|
||||
vector<pair<oclMat, oclMat> > forwardMaps_; |
||||
vector<pair<oclMat, oclMat> > backwardMaps_; |
||||
|
||||
oclMat highRes_; |
||||
|
||||
vector<oclMat> diffTerms_; |
||||
vector<oclMat> a_, b_, c_; |
||||
oclMat regTerm_; |
||||
}; |
||||
|
||||
BTVL1_OCL_Base::BTVL1_OCL_Base() |
||||
{ |
||||
scale_ = 4; |
||||
iterations_ = 180; |
||||
lambda_ = 0.03; |
||||
tau_ = 1.3; |
||||
alpha_ = 0.7; |
||||
btvKernelSize_ = 7; |
||||
blurKernelSize_ = 5; |
||||
blurSigma_ = 0.0; |
||||
opticalFlow_ = createOptFlow_DualTVL1_OCL(); |
||||
|
||||
curBlurKernelSize_ = -1; |
||||
curBlurSigma_ = -1.0; |
||||
curSrcType_ = -1; |
||||
|
||||
curBtvKernelSize_ = -1; |
||||
curAlpha_ = -1.0; |
||||
} |
||||
|
||||
void BTVL1_OCL_Base::process(const vector<oclMat>& src, oclMat& dst, |
||||
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
||||
int baseIdx) |
||||
{ |
||||
CV_Assert( scale_ > 1 ); |
||||
CV_Assert( iterations_ > 0 ); |
||||
CV_Assert( tau_ > 0.0 ); |
||||
CV_Assert( alpha_ > 0.0 ); |
||||
CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 ); |
||||
CV_Assert( blurKernelSize_ > 0 ); |
||||
CV_Assert( blurSigma_ >= 0.0 ); |
||||
|
||||
// update blur filter and btv weights
|
||||
|
||||
if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_) |
||||
{ |
||||
filters_.resize(src.size()); |
||||
for (size_t i = 0; i < src.size(); ++i) |
||||
filters_[i] = cv::ocl::createGaussianFilter_GPU(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
||||
curBlurKernelSize_ = blurKernelSize_; |
||||
curBlurSigma_ = blurSigma_; |
||||
curSrcType_ = src[0].type(); |
||||
} |
||||
|
||||
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_) |
||||
{ |
||||
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_); |
||||
curBtvKernelSize_ = btvKernelSize_; |
||||
curAlpha_ = alpha_; |
||||
} |
||||
|
||||
// calc motions between input frames
|
||||
|
||||
calcRelativeMotions(forwardMotions, backwardMotions,
|
||||
lowResForwardMotions_, lowResBackwardMotions_,
|
||||
baseIdx, src[0].size()); |
||||
|
||||
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_); |
||||
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_); |
||||
|
||||
forwardMaps_.resize(highResForwardMotions_.size()); |
||||
backwardMaps_.resize(highResForwardMotions_.size()); |
||||
for (size_t i = 0; i < highResForwardMotions_.size(); ++i) |
||||
{ |
||||
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]); |
||||
} |
||||
// initial estimation
|
||||
|
||||
const Size lowResSize = src[0].size(); |
||||
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_); |
||||
|
||||
ocl::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_LINEAR); |
||||
|
||||
// iterations
|
||||
|
||||
diffTerms_.resize(src.size()); |
||||
a_.resize(src.size()); |
||||
b_.resize(src.size()); |
||||
c_.resize(src.size()); |
||||
|
||||
for (int i = 0; i < iterations_; ++i) |
||||
{ |
||||
for (size_t k = 0; k < src.size(); ++k) |
||||
{ |
||||
diffTerms_[k].create(highRes_.size(), highRes_.type()); |
||||
a_[k].create(highRes_.size(), highRes_.type()); |
||||
b_[k].create(highRes_.size(), highRes_.type()); |
||||
c_[k].create(lowResSize, highRes_.type()); |
||||
|
||||
// a = M * Ih
|
||||
ocl::remap(highRes_, a_[k], backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar()); |
||||
// b = HM * Ih
|
||||
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1)); |
||||
// c = DHF * Ih
|
||||
ocl::resize(b_[k], c_[k], lowResSize, 0, 0, INTER_NEAREST); |
||||
|
||||
diffSign(src[k], c_[k], c_[k]); |
||||
|
||||
// a = Dt * diff
|
||||
upscale(c_[k], a_[k], scale_); |
||||
// b = HtDt * diff
|
||||
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1)); |
||||
// diffTerm = MtHtDt * diff
|
||||
ocl::remap(b_[k], diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar()); |
||||
} |
||||
|
||||
if (lambda_ > 0) |
||||
{ |
||||
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_); |
||||
ocl::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_); |
||||
} |
||||
|
||||
for (size_t k = 0; k < src.size(); ++k) |
||||
{ |
||||
ocl::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_); |
||||
} |
||||
} |
||||
|
||||
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_); |
||||
highRes_(inner).copyTo(dst); |
||||
} |
||||
|
||||
void BTVL1_OCL_Base::collectGarbage() |
||||
{ |
||||
filters_.clear(); |
||||
|
||||
lowResForwardMotions_.clear(); |
||||
lowResBackwardMotions_.clear(); |
||||
|
||||
highResForwardMotions_.clear(); |
||||
highResBackwardMotions_.clear(); |
||||
|
||||
forwardMaps_.clear(); |
||||
backwardMaps_.clear(); |
||||
|
||||
highRes_.release(); |
||||
|
||||
diffTerms_.clear(); |
||||
a_.clear(); |
||||
b_.clear(); |
||||
c_.clear(); |
||||
regTerm_.release(); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
class BTVL1_OCL : public SuperResolution, private BTVL1_OCL_Base |
||||
{ |
||||
public: |
||||
AlgorithmInfo* info() const; |
||||
|
||||
BTVL1_OCL(); |
||||
|
||||
void collectGarbage(); |
||||
|
||||
protected: |
||||
void initImpl(Ptr<FrameSource>& frameSource); |
||||
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output); |
||||
|
||||
private: |
||||
int temporalAreaRadius_; |
||||
|
||||
void readNextFrame(Ptr<FrameSource>& frameSource); |
||||
void processFrame(int idx); |
||||
|
||||
oclMat curFrame_; |
||||
oclMat prevFrame_; |
||||
|
||||
vector<oclMat> frames_; |
||||
vector<pair<oclMat, oclMat> > forwardMotions_; |
||||
vector<pair<oclMat, oclMat> > backwardMotions_; |
||||
vector<oclMat> outputs_; |
||||
|
||||
int storePos_; |
||||
int procPos_; |
||||
int outPos_; |
||||
|
||||
vector<oclMat> srcFrames_; |
||||
vector<pair<oclMat, oclMat> > srcForwardMotions_; |
||||
vector<pair<oclMat, oclMat> > srcBackwardMotions_; |
||||
oclMat finalOutput_; |
||||
}; |
||||
|
||||
CV_INIT_ALGORITHM(BTVL1_OCL, "SuperResolution.BTVL1_OCL", |
||||
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor."); |
||||
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count."); |
||||
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method."); |
||||
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term."); |
||||
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV."); |
||||
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter."); |
||||
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size."); |
||||
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma."); |
||||
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area."); |
||||
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm.")); |
||||
|
||||
BTVL1_OCL::BTVL1_OCL() |
||||
{ |
||||
temporalAreaRadius_ = 4; |
||||
} |
||||
|
||||
void BTVL1_OCL::collectGarbage() |
||||
{ |
||||
curFrame_.release(); |
||||
prevFrame_.release(); |
||||
|
||||
frames_.clear(); |
||||
forwardMotions_.clear(); |
||||
backwardMotions_.clear(); |
||||
outputs_.clear(); |
||||
|
||||
srcFrames_.clear(); |
||||
srcForwardMotions_.clear(); |
||||
srcBackwardMotions_.clear(); |
||||
finalOutput_.release(); |
||||
|
||||
SuperResolution::collectGarbage(); |
||||
BTVL1_OCL_Base::collectGarbage(); |
||||
} |
||||
|
||||
void BTVL1_OCL::initImpl(Ptr<FrameSource>& frameSource) |
||||
{ |
||||
const int cacheSize = 2 * temporalAreaRadius_ + 1; |
||||
|
||||
frames_.resize(cacheSize); |
||||
forwardMotions_.resize(cacheSize); |
||||
backwardMotions_.resize(cacheSize); |
||||
outputs_.resize(cacheSize); |
||||
|
||||
storePos_ = -1; |
||||
|
||||
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t) |
||||
readNextFrame(frameSource); |
||||
|
||||
for (int i = 0; i <= temporalAreaRadius_; ++i) |
||||
processFrame(i); |
||||
|
||||
procPos_ = temporalAreaRadius_; |
||||
outPos_ = -1; |
||||
} |
||||
|
||||
void BTVL1_OCL::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output) |
||||
{ |
||||
if (outPos_ >= storePos_) |
||||
{ |
||||
if(_output.kind() == _InputArray::OCL_MAT) |
||||
{ |
||||
getOclMatRef(_output).release(); |
||||
} |
||||
else |
||||
{ |
||||
_output.release(); |
||||
} |
||||
return; |
||||
} |
||||
|
||||
readNextFrame(frameSource); |
||||
|
||||
if (procPos_ < storePos_) |
||||
{ |
||||
++procPos_; |
||||
processFrame(procPos_); |
||||
} |
||||
|
||||
++outPos_; |
||||
const oclMat& curOutput = at(outPos_, outputs_); |
||||
|
||||
if (_output.kind() == _InputArray::OCL_MAT) |
||||
curOutput.convertTo(getOclMatRef(_output), CV_8U); |
||||
else |
||||
{ |
||||
curOutput.convertTo(finalOutput_, CV_8U); |
||||
arrCopy(finalOutput_, _output); |
||||
} |
||||
} |
||||
|
||||
void BTVL1_OCL::readNextFrame(Ptr<FrameSource>& frameSource) |
||||
{ |
||||
curFrame_.release(); |
||||
frameSource->nextFrame(curFrame_); |
||||
|
||||
if (curFrame_.empty()) |
||||
return; |
||||
|
||||
++storePos_; |
||||
curFrame_.convertTo(at(storePos_, frames_), CV_32F); |
||||
|
||||
if (storePos_ > 0) |
||||
{ |
||||
pair<oclMat, oclMat>& forwardMotion = at(storePos_ - 1, forwardMotions_); |
||||
pair<oclMat, oclMat>& backwardMotion = at(storePos_, backwardMotions_); |
||||
|
||||
opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second); |
||||
opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second); |
||||
} |
||||
|
||||
curFrame_.copyTo(prevFrame_); |
||||
} |
||||
|
||||
void BTVL1_OCL::processFrame(int idx) |
||||
{ |
||||
const int startIdx = max(idx - temporalAreaRadius_, 0); |
||||
const int procIdx = idx; |
||||
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_); |
||||
|
||||
const int count = endIdx - startIdx + 1; |
||||
|
||||
srcFrames_.resize(count); |
||||
srcForwardMotions_.resize(count); |
||||
srcBackwardMotions_.resize(count); |
||||
|
||||
int baseIdx = -1; |
||||
|
||||
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k) |
||||
{ |
||||
if (i == procIdx) |
||||
baseIdx = k; |
||||
|
||||
srcFrames_[k] = at(i, frames_); |
||||
|
||||
if (i < endIdx) |
||||
srcForwardMotions_[k] = at(i, forwardMotions_); |
||||
if (i > startIdx) |
||||
srcBackwardMotions_[k] = at(i, backwardMotions_); |
||||
} |
||||
|
||||
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx); |
||||
} |
||||
} |
||||
|
||||
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL() |
||||
{ |
||||
return new BTVL1_OCL; |
||||
} |
||||
#endif |
@ -0,0 +1,261 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Jin Ma jin@multicorewareinc.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other oclMaterials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
__kernel void buildMotionMapsKernel(__global float* forwardMotionX, |
||||
__global float* forwardMotionY, |
||||
__global float* backwardMotionX, |
||||
__global float* backwardMotionY, |
||||
__global float* forwardMapX, |
||||
__global float* forwardMapY, |
||||
__global float* backwardMapX, |
||||
__global float* backwardMapY, |
||||
int forwardMotionX_row, |
||||
int forwardMotionX_col, |
||||
int forwardMotionX_step, |
||||
int forwardMotionY_step, |
||||
int backwardMotionX_step, |
||||
int backwardMotionY_step, |
||||
int forwardMapX_step, |
||||
int forwardMapY_step, |
||||
int backwardMapX_step, |
||||
int backwardMapY_step |
||||
) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < forwardMotionX_col && y < forwardMotionX_row) |
||||
{ |
||||
float fx = forwardMotionX[y * forwardMotionX_step + x]; |
||||
float fy = forwardMotionY[y * forwardMotionY_step + x]; |
||||
|
||||
float bx = backwardMotionX[y * backwardMotionX_step + x]; |
||||
float by = backwardMotionY[y * backwardMotionY_step + x]; |
||||
|
||||
forwardMapX[y * forwardMapX_step + x] = x + bx; |
||||
forwardMapY[y * forwardMapY_step + x] = y + by; |
||||
|
||||
backwardMapX[y * backwardMapX_step + x] = x + fx; |
||||
backwardMapY[y * backwardMapY_step + x] = y + fy; |
||||
} |
||||
} |
||||
|
||||
__kernel void upscaleKernel(__global float* src, |
||||
__global float* dst, |
||||
int src_step, |
||||
int dst_step, |
||||
int src_row, |
||||
int src_col, |
||||
int scale, |
||||
int channels |
||||
) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < src_col && y < src_row) |
||||
{ |
||||
if(channels == 1) |
||||
{ |
||||
dst[y * scale * dst_step + x * scale] = src[y * src_step + x]; |
||||
}else if(channels == 3) |
||||
{ |
||||
dst[y * channels * scale * dst_step + 3 * x * scale + 0] = src[y * channels * src_step + 3 * x + 0]; |
||||
dst[y * channels * scale * dst_step + 3 * x * scale + 1] = src[y * channels * src_step + 3 * x + 1]; |
||||
dst[y * channels * scale * dst_step + 3 * x * scale + 2] = src[y * channels * src_step + 3 * x + 2]; |
||||
}else |
||||
{ |
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 0] = src[y * channels * src_step + 4 * x + 0]; |
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 1] = src[y * channels * src_step + 4 * x + 1]; |
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 2] = src[y * channels * src_step + 4 * x + 2]; |
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 3] = src[y * channels * src_step + 4 * x + 3]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
float diffSign(float a, float b) |
||||
{ |
||||
return a > b ? 1.0f : a < b ? -1.0f : 0.0f; |
||||
} |
||||
|
||||
float3 diffSign3(float3 a, float3 b) |
||||
{ |
||||
float3 pos; |
||||
pos.x = a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f; |
||||
pos.y = a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f; |
||||
pos.z = a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f; |
||||
return pos; |
||||
} |
||||
|
||||
float4 diffSign4(float4 a, float4 b) |
||||
{ |
||||
float4 pos; |
||||
pos.x = a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f; |
||||
pos.y = a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f; |
||||
pos.z = a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f; |
||||
pos.w = 0.0f; |
||||
return pos; |
||||
} |
||||
|
||||
__kernel void diffSignKernel(__global float* src1, |
||||
__global float* src2, |
||||
__global float* dst, |
||||
int src1_row, |
||||
int src1_col, |
||||
int dst_step, |
||||
int src1_step, |
||||
int src2_step) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
|
||||
if(x < src1_col && y < src1_row) |
||||
{ |
||||
dst[y * dst_step + x] = diffSign(src1[y * src1_step + x], src2[y * src2_step + x]); |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
} |
||||
|
||||
__kernel void calcBtvRegularizationKernel(__global float* src, |
||||
__global float* dst, |
||||
int src_step, |
||||
int dst_step, |
||||
int src_row, |
||||
int src_col, |
||||
int ksize, |
||||
int channels, |
||||
__global float* c_btvRegWeights |
||||
) |
||||
{ |
||||
int x = get_global_id(0) + ksize; |
||||
int y = get_global_id(1) + ksize; |
||||
|
||||
if ((y < src_row - ksize) && (x < src_col - ksize)) |
||||
{ |
||||
if(channels == 1) |
||||
{ |
||||
const float srcVal = src[y * src_step + x]; |
||||
float dstVal = 0.0f; |
||||
|
||||
for (int m = 0, count = 0; m <= ksize; ++m) |
||||
{ |
||||
for (int l = ksize; l + m >= 0; --l, ++count) |
||||
dstVal = dstVal + c_btvRegWeights[count] * (diffSign(srcVal, src[(y + m) * src_step + (x + l)]) - diffSign(src[(y - m) * src_step + (x - l)], srcVal)); |
||||
} |
||||
dst[y * dst_step + x] = dstVal; |
||||
}else if(channels == 3) |
||||
{ |
||||
float3 srcVal; |
||||
srcVal.x = src[y * src_step + 3 * x + 0]; |
||||
srcVal.y = src[y * src_step + 3 * x + 1]; |
||||
srcVal.z = src[y * src_step + 3 * x + 2]; |
||||
|
||||
float3 dstVal; |
||||
dstVal.x = 0.0f; |
||||
dstVal.y = 0.0f; |
||||
dstVal.z = 0.0f; |
||||
|
||||
for (int m = 0, count = 0; m <= ksize; ++m) |
||||
{ |
||||
for (int l = ksize; l + m >= 0; --l, ++count) |
||||
{ |
||||
float3 src1; |
||||
src1.x = src[(y + m) * src_step + 3 * (x + l) + 0]; |
||||
src1.y = src[(y + m) * src_step + 3 * (x + l) + 1]; |
||||
src1.z = src[(y + m) * src_step + 3 * (x + l) + 2]; |
||||
|
||||
float3 src2; |
||||
src2.x = src[(y - m) * src_step + 3 * (x - l) + 0]; |
||||
src2.y = src[(y - m) * src_step + 3 * (x - l) + 1]; |
||||
src2.z = src[(y - m) * src_step + 3 * (x - l) + 2]; |
||||
|
||||
dstVal = dstVal + c_btvRegWeights[count] * (diffSign3(srcVal, src1) - diffSign3(src2, srcVal)); |
||||
} |
||||
} |
||||
dst[y * dst_step + 3 * x + 0] = dstVal.x; |
||||
dst[y * dst_step + 3 * x + 1] = dstVal.y; |
||||
dst[y * dst_step + 3 * x + 2] = dstVal.z; |
||||
}else |
||||
{ |
||||
float4 srcVal; |
||||
srcVal.x = src[y * src_step + 4 * x + 0];//r type =float |
||||
srcVal.y = src[y * src_step + 4 * x + 1];//g |
||||
srcVal.z = src[y * src_step + 4 * x + 2];//b |
||||
srcVal.w = src[y * src_step + 4 * x + 3];//a |
||||
|
||||
float4 dstVal; |
||||
dstVal.x = 0.0f; |
||||
dstVal.y = 0.0f; |
||||
dstVal.z = 0.0f; |
||||
dstVal.w = 0.0f; |
||||
|
||||
for (int m = 0, count = 0; m <= ksize; ++m) |
||||
{ |
||||
for (int l = ksize; l + m >= 0; --l, ++count) |
||||
{ |
||||
float4 src1; |
||||
src1.x = src[(y + m) * src_step + 4 * (x + l) + 0]; |
||||
src1.y = src[(y + m) * src_step + 4 * (x + l) + 1]; |
||||
src1.z = src[(y + m) * src_step + 4 * (x + l) + 2]; |
||||
src1.w = src[(y + m) * src_step + 4 * (x + l) + 3]; |
||||
|
||||
float4 src2; |
||||
src2.x = src[(y - m) * src_step + 4 * (x - l) + 0]; |
||||
src2.y = src[(y - m) * src_step + 4 * (x - l) + 1]; |
||||
src2.z = src[(y - m) * src_step + 4 * (x - l) + 2]; |
||||
src2.w = src[(y - m) * src_step + 4 * (x - l) + 3]; |
||||
|
||||
dstVal = dstVal + c_btvRegWeights[count] * (diffSign4(srcVal, src1) - diffSign4(src2, srcVal)); |
||||
|
||||
} |
||||
} |
||||
dst[y * dst_step + 4 * x + 0] = dstVal.x; |
||||
dst[y * dst_step + 4 * x + 1] = dstVal.y; |
||||
dst[y * dst_step + 4 * x + 2] = dstVal.z; |
||||
dst[y * dst_step + 4 * x + 3] = dstVal.w; |
||||
} |
||||
} |
||||
} |
Loading…
Reference in new issue