diff --git a/modules/dnn/src/tensorflow/tf_importer.cpp b/modules/dnn/src/tensorflow/tf_importer.cpp index 202958d733..822b2fc655 100644 --- a/modules/dnn/src/tensorflow/tf_importer.cpp +++ b/modules/dnn/src/tensorflow/tf_importer.cpp @@ -138,6 +138,11 @@ static Mat getTensorContent(const tensorflow::TensorProto &tensor) convertFp16(halfsSigned, floats); return floats; } + case tensorflow::DT_QUINT8: + { + CV_Assert(!content.empty()); + return Mat(1, content.size(), CV_8UC1, (void*)content.c_str()).clone(); + } default: CV_Error(Error::StsError, "Tensor's data type is not supported"); break; @@ -588,7 +593,7 @@ const tensorflow::TensorProto& TFImporter::getConstBlob(const tensorflow::NodeDe } } -static void addConstNodes(const tensorflow::GraphDef& net, std::map<String, int>& const_layers, +static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& const_layers, std::set<String>& layers_to_ignore) { for (int li = 0; li < net.node_size(); li++) @@ -597,7 +602,52 @@ static void addConstNodes(const tensorflow::GraphDef& net, std::map<String, int> String name = layer.name(); String type = layer.op(); - if (type != "Const") + if (type == "Dequantize") + { + // Example of Dequantize node: + // name: "conv2d_1/bias" + // op: "Dequantize" + // input: "conv2d_1/bias_quantized_const" (tensor of dtype DT_QUINT8) + // input: "conv2d_1/bias_quantized_min" + // input: "conv2d_1/bias_quantized_max" + // attr { key: "T" value { type: DT_QUINT8 } } (quantized type) + // attr { key: "mode" value { s: "MIN_FIRST" } } (quantization technique) + CV_Assert(layer.input_size() == 3); + for (int i = 0; i < 3; ++i) + CV_Assert(const_layers.find(layer.input(i)) != const_layers.end()); + CV_Assert(hasLayerAttr(layer, "mode") && + getLayerAttr(layer, "mode").s() == "MIN_FIRST"); + + int tensorId = const_layers[layer.input(0)]; + int minId = const_layers[layer.input(1)]; + int maxId = const_layers[layer.input(2)]; + + tensorflow::TensorProto* tensor = net.mutable_node(tensorId) + ->mutable_attr()->at("value") + .mutable_tensor(); + CV_Assert(tensor->dtype() == tensorflow::DT_QUINT8); + + Mat qMin = getTensorContent(net.node(minId).attr().at("value").tensor()); + Mat qMax = getTensorContent(net.node(maxId).attr().at("value").tensor()); + CV_Assert(qMin.total() == 1, qMin.type() == CV_32FC1, + qMax.total() == 1, qMax.type() == CV_32FC1); + + Mat content = getTensorContent(*tensor); + + float minVal = qMin.at<float>(0); + float rangeScale = (qMax.at<float>(0) - minVal) / 255; + CV_Assert(rangeScale >= 0); + content.convertTo(content, CV_32FC1, rangeScale, + rangeScale * cvRound(minVal / rangeScale)); + + tensor->set_dtype(tensorflow::DT_FLOAT); + tensor->set_tensor_content(content.data, content.total() * content.elemSize1()); + + ExcludeLayer(net, li, 0, false); + layers_to_ignore.insert(name); + continue; + } + else if (type != "Const") continue; // only Const parameters are supported if (layer.attr().find("value") != layer.attr().end()) diff --git a/modules/dnn/test/test_tf_importer.cpp b/modules/dnn/test/test_tf_importer.cpp index 1badf74ab7..59ba656f40 100644 --- a/modules/dnn/test/test_tf_importer.cpp +++ b/modules/dnn/test/test_tf_importer.cpp @@ -188,6 +188,11 @@ TEST(Test_TensorFlow, fp16) runTensorFlowNet("fp16_padding_same", false, l1, lInf); } +TEST(Test_TensorFlow, quantized) +{ + runTensorFlowNet("uint8_single_conv"); +} + TEST(Test_TensorFlow, MobileNet_SSD) { std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false);