|
|
|
@ -43,15 +43,12 @@ |
|
|
|
|
#ifndef OPENCV_MXARRAY_HPP_ |
|
|
|
|
#define OPENCV_MXARRAY_HPP_ |
|
|
|
|
|
|
|
|
|
#include <mex.h> |
|
|
|
|
#include <stdint.h> |
|
|
|
|
#include <cstdarg> |
|
|
|
|
#include <string> |
|
|
|
|
#include <vector> |
|
|
|
|
#include <algorithm> |
|
|
|
|
#include <sstream> |
|
|
|
|
#include <iostream> |
|
|
|
|
#include <iterator> |
|
|
|
|
#include <opencv2/core.hpp> |
|
|
|
|
#if __cplusplus > 201103 |
|
|
|
|
#include <unordered_set> |
|
|
|
|
typedef std::unordered_set<std::string> StringSet; |
|
|
|
@ -59,8 +56,6 @@ typedef std::unordered_set<std::string> StringSet; |
|
|
|
|
#include <set> |
|
|
|
|
typedef std::set<std::string> StringSet; |
|
|
|
|
#endif |
|
|
|
|
#include <mex.h> |
|
|
|
|
#include "transpose.hpp" |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* All recent versions of Matlab ship with the MKL library which contains |
|
|
|
@ -103,20 +98,6 @@ static void error(const std::string& str) { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// PREDECLARATIONS
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
class MxArray; |
|
|
|
|
|
|
|
|
|
template <typename InputScalar, typename OutputScalar> |
|
|
|
|
void deepCopyAndTranspose(const cv::Mat& src, MxArray& dst); |
|
|
|
|
|
|
|
|
|
template <typename InputScalar, typename OutputScalar> |
|
|
|
|
void deepCopyAndTranspose(const MxArray& src, cv::Mat& dst); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// MATLAB TRAITS
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
@ -407,44 +388,6 @@ public: |
|
|
|
|
return ptr_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename Scalar> |
|
|
|
|
static MxArray FromMat(const cv::Mat& mat) { |
|
|
|
|
MxArray arr(mat.rows, mat.cols, mat.channels(), Matlab::Traits<Scalar>::ScalarType); |
|
|
|
|
switch (mat.depth()) { |
|
|
|
|
case CV_8U: deepCopyAndTranspose<uint8_t, Scalar>(mat, arr); break; |
|
|
|
|
case CV_8S: deepCopyAndTranspose<int8_t, Scalar>(mat, arr); break; |
|
|
|
|
case CV_16U: deepCopyAndTranspose<uint16_t, Scalar>(mat, arr); break; |
|
|
|
|
case CV_16S: deepCopyAndTranspose<int16_t, Scalar>(mat, arr); break; |
|
|
|
|
case CV_32S: deepCopyAndTranspose<int32_t, Scalar>(mat, arr); break; |
|
|
|
|
case CV_32F: deepCopyAndTranspose<float, Scalar>(mat, arr); break; |
|
|
|
|
case CV_64F: deepCopyAndTranspose<double, Scalar>(mat, arr); break; |
|
|
|
|
default: error("Attempted to convert from unknown class"); |
|
|
|
|
} |
|
|
|
|
return arr; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename Scalar> |
|
|
|
|
cv::Mat toMat() const {
|
|
|
|
|
cv::Mat mat(rows(), cols(), CV_MAKETYPE(cv::DataType<Scalar>::type, channels())); |
|
|
|
|
switch (ID()) { |
|
|
|
|
case mxINT8_CLASS: deepCopyAndTranspose<int8_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxUINT8_CLASS: deepCopyAndTranspose<uint8_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxINT16_CLASS: deepCopyAndTranspose<int16_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxUINT16_CLASS: deepCopyAndTranspose<uint16_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxINT32_CLASS: deepCopyAndTranspose<int32_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxUINT32_CLASS: deepCopyAndTranspose<uint32_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxINT64_CLASS: deepCopyAndTranspose<int64_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxUINT64_CLASS: deepCopyAndTranspose<uint64_t, Scalar>(*this, mat); break; |
|
|
|
|
case mxSINGLE_CLASS: deepCopyAndTranspose<float, Scalar>(*this, mat); break; |
|
|
|
|
case mxDOUBLE_CLASS: deepCopyAndTranspose<double, Scalar>(*this, mat); break; |
|
|
|
|
case mxCHAR_CLASS: deepCopyAndTranspose<char, Scalar>(*this, mat); break; |
|
|
|
|
case mxLOGICAL_CLASS: deepCopyAndTranspose<int8_t, Scalar>(*this, mat); break; |
|
|
|
|
default: error("Attempted to convert from unknown class"); |
|
|
|
|
} |
|
|
|
|
return mat; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
MxArray field(const std::string& name) { return MxArray(mxGetField(ptr_, 0, name.c_str())); } |
|
|
|
|
|
|
|
|
|
template <typename Scalar> |
|
|
|
@ -486,6 +429,10 @@ public: |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// ARGUMENT PARSER
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
/*! @class ArgumentParser
|
|
|
|
|
* @brief parses inputs to a method and resolves the argument names. |
|
|
|
|
* |
|
|
|
@ -568,6 +515,8 @@ private: |
|
|
|
|
: name_(name), Nreq_(Nreq), Nopt_(Nopt), keys_(keys), |
|
|
|
|
order_(Nreq+Nopt, Nreq+2*Nopt), valid_(true), nparsed_(0), nkeys_(0), |
|
|
|
|
working_opt_(0), expecting_val_(false), using_named_(false) {} |
|
|
|
|
/*! @brief the name of the variant */ |
|
|
|
|
String name() const { return name_; } |
|
|
|
|
/*! @brief return the total number of arguments the variant can take */ |
|
|
|
|
size_t size() const { return Nreq_ + Nopt_; } |
|
|
|
|
/*! @brief has the variant been fulfilled? */ |
|
|
|
@ -613,14 +562,12 @@ private: |
|
|
|
|
void sortArguments(Variant& v, MxArrayVector& in, MxArrayVector& out) { |
|
|
|
|
// allocate the output array with ALL arguments
|
|
|
|
|
out.resize(v.size()); |
|
|
|
|
std::copy(v.order().begin(), v.order().end(), std::ostream_iterator<size_t>(std::cout, ", ")); |
|
|
|
|
// reorder the inputs based on the variant ordering
|
|
|
|
|
for (size_t n = 0; n < v.size(); ++n) { |
|
|
|
|
if (v.order(n) >= in.size()) continue; |
|
|
|
|
swap(in[v.order(n)], out[n]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
MxArrayVector filled_; |
|
|
|
|
VariantVector variants_; |
|
|
|
|
String valid_; |
|
|
|
|
String method_name_; |
|
|
|
@ -668,6 +615,7 @@ public: |
|
|
|
|
*/ |
|
|
|
|
MxArrayVector parse(const MxArrayVector& inputs) { |
|
|
|
|
// allocate the outputs
|
|
|
|
|
String variant_string; |
|
|
|
|
MxArrayVector outputs; |
|
|
|
|
VariantVector candidates = variants_; |
|
|
|
|
|
|
|
|
@ -675,25 +623,16 @@ public: |
|
|
|
|
for (MxArrayVector::const_iterator input = inputs.begin(); input != inputs.end(); ++input) { |
|
|
|
|
String name = input->isString() ? input->toString() : String(); |
|
|
|
|
for (VariantVector::iterator candidate = candidates.begin(); candidate < candidates.end(); ++candidate) { |
|
|
|
|
if (candidate->exist(name)) { |
|
|
|
|
mexPrintf("%d\n", candidate->parseNextAsKey(name)); |
|
|
|
|
} else { |
|
|
|
|
mexPrintf("%d\n", candidate->parseNextAsValue()); |
|
|
|
|
} |
|
|
|
|
candidate->exist(name) ? candidate->parseNextAsKey(name) : candidate->parseNextAsValue(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
mexPrintf("We get here!\n"); |
|
|
|
|
|
|
|
|
|
// make sure the candidates have been fulfilled
|
|
|
|
|
for (VariantVector::iterator candidate = candidates.begin(); candidate < candidates.end(); ++candidate) { |
|
|
|
|
if (!candidate->fulfilled()) { |
|
|
|
|
candidate = candidates.erase(candidate)--; |
|
|
|
|
} |
|
|
|
|
if (!candidate->fulfilled()) candidate = candidates.erase(candidate)--; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// if there is not a unique candidate, throw an error
|
|
|
|
|
String variant_string; |
|
|
|
|
for (VariantVector::iterator variant = variants_.begin(); variant != variants_.end(); ++variant) { |
|
|
|
|
variant_string += "\n" + variant->toString(method_name_); |
|
|
|
|
} |
|
|
|
@ -708,111 +647,10 @@ public: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Unique candidate!
|
|
|
|
|
valid_ = candidates[0].name(); |
|
|
|
|
sortArguments(candidates[0], const_cast<MxArrayVector&>(inputs), outputs); |
|
|
|
|
return outputs; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* @brief template specialization for inheriting types |
|
|
|
|
* |
|
|
|
|
* This template specialization attempts to preserve the best mapping |
|
|
|
|
* between OpenCV and Matlab types. Matlab uses double types almost universally, so |
|
|
|
|
* all floating float types are converted to doubles. |
|
|
|
|
* Unfortunately OpenCV does not have a native logical type, so |
|
|
|
|
* that gets mapped to an unsigned 8-bit value |
|
|
|
|
*/ |
|
|
|
|
template <> |
|
|
|
|
MxArray MxArray::FromMat<Matlab::InheritType>(const cv::Mat& mat) { |
|
|
|
|
switch (mat.depth()) { |
|
|
|
|
case CV_8U: return FromMat<uint8_t>(mat); |
|
|
|
|
case CV_8S: return FromMat<int8_t>(mat); |
|
|
|
|
case CV_16U: return FromMat<uint16_t>(mat); |
|
|
|
|
case CV_16S: return FromMat<int16_t>(mat); |
|
|
|
|
case CV_32S: return FromMat<int32_t>(mat); |
|
|
|
|
case CV_32F: return FromMat<double>(mat); //NOTE: Matlab uses double as native type!
|
|
|
|
|
case CV_64F: return FromMat<double>(mat); |
|
|
|
|
default: error("Attempted to convert from unknown class"); |
|
|
|
|
} |
|
|
|
|
return MxArray(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* @brief template specialization for inheriting types |
|
|
|
|
*
|
|
|
|
|
* This template specialization attempts to preserve the best mapping |
|
|
|
|
* between Matlab and OpenCV types. OpenCV has poor support for double precision |
|
|
|
|
* types, so all floating point types are cast to float. Logicals get cast |
|
|
|
|
* to unsignd 8-bit value. |
|
|
|
|
*/ |
|
|
|
|
template <> |
|
|
|
|
cv::Mat MxArray::toMat<Matlab::InheritType>() const { |
|
|
|
|
switch (ID()) { |
|
|
|
|
case mxINT8_CLASS: return toMat<int8_t>(); |
|
|
|
|
case mxUINT8_CLASS: return toMat<uint8_t>(); |
|
|
|
|
case mxINT16_CLASS: return toMat<int16_t>(); |
|
|
|
|
case mxUINT16_CLASS: return toMat<uint16_t>(); |
|
|
|
|
case mxINT32_CLASS: return toMat<int32_t>(); |
|
|
|
|
case mxUINT32_CLASS: return toMat<int32_t>(); |
|
|
|
|
case mxINT64_CLASS: return toMat<int64_t>(); |
|
|
|
|
case mxUINT64_CLASS: return toMat<int64_t>(); |
|
|
|
|
case mxSINGLE_CLASS: return toMat<float>(); |
|
|
|
|
case mxDOUBLE_CLASS: return toMat<float>(); //NOTE: OpenCV uses float as native type!
|
|
|
|
|
case mxCHAR_CLASS: return toMat<int8_t>(); |
|
|
|
|
case mxLOGICAL_CLASS: return toMat<int8_t>(); |
|
|
|
|
default: error("Attempted to convert from unknown class"); |
|
|
|
|
} |
|
|
|
|
return cv::Mat(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// MATRIX TRANSPOSE
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename InputScalar, typename OutputScalar> |
|
|
|
|
void deepCopyAndTranspose(const cv::Mat& in, MxArray& out) { |
|
|
|
|
conditionalError(static_cast<size_t>(in.rows) == out.rows(), "Matrices must have the same number of rows"); |
|
|
|
|
conditionalError(static_cast<size_t>(in.cols) == out.cols(), "Matrices must have the same number of cols"); |
|
|
|
|
conditionalError(static_cast<size_t>(in.channels()) == out.channels(), "Matrices must have the same number of channels"); |
|
|
|
|
std::vector<cv::Mat> channels; |
|
|
|
|
cv::split(in, channels); |
|
|
|
|
for (size_t c = 0; c < out.channels(); ++c) { |
|
|
|
|
cv::transpose(channels[c], channels[c]); |
|
|
|
|
cv::Mat outmat(out.cols(), out.rows(), cv::DataType<OutputScalar>::type,
|
|
|
|
|
static_cast<void *>(out.real<OutputScalar>() + out.cols()*out.rows()*c)); |
|
|
|
|
channels[c].convertTo(outmat, cv::DataType<OutputScalar>::type); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//const InputScalar* inp = in.ptr<InputScalar>(0);
|
|
|
|
|
//OutputScalar* outp = out.real<OutputScalar>();
|
|
|
|
|
//gemt('R', out.rows(), out.cols(), inp, in.step1(), outp, out.rows());
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename InputScalar, typename OutputScalar> |
|
|
|
|
void deepCopyAndTranspose(const MxArray& in, cv::Mat& out) { |
|
|
|
|
conditionalError(in.rows() == static_cast<size_t>(out.rows), "Matrices must have the same number of rows"); |
|
|
|
|
conditionalError(in.cols() == static_cast<size_t>(out.cols), "Matrices must have the same number of cols"); |
|
|
|
|
conditionalError(in.channels() == static_cast<size_t>(out.channels()), "Matrices must have the same number of channels"); |
|
|
|
|
std::vector<cv::Mat> channels; |
|
|
|
|
for (size_t c = 0; c < in.channels(); ++c) { |
|
|
|
|
cv::Mat outmat; |
|
|
|
|
cv::Mat inmat(in.cols(), in.rows(), cv::DataType<InputScalar>::type, |
|
|
|
|
static_cast<void *>(const_cast<InputScalar *>(in.real<InputScalar>() + in.cols()*in.rows()*c))); |
|
|
|
|
inmat.convertTo(outmat, cv::DataType<OutputScalar>::type); |
|
|
|
|
cv::transpose(outmat, outmat); |
|
|
|
|
channels.push_back(outmat); |
|
|
|
|
} |
|
|
|
|
cv::merge(channels, out); |
|
|
|
|
|
|
|
|
|
//const InputScalar* inp = in.real<InputScalar>();
|
|
|
|
|
//OutputScalar* outp = out.ptr<OutputScalar>(0);
|
|
|
|
|
//gemt('C', in.rows(), in.cols(), inp, in.rows(), outp, out.step1());
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|