mirror of https://github.com/opencv/opencv.git
Merge pull request #9862 from sovrasov:dnn_nms
commit
bc93775385
5 changed files with 199 additions and 70 deletions
@ -0,0 +1,33 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <nms.inl.hpp> |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace dnn |
||||
{ |
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN |
||||
|
||||
static inline float rectOverlap(const Rect& a, const Rect& b) |
||||
{ |
||||
return 1.f - static_cast<float>(jaccardDistance(a, b)); |
||||
} |
||||
|
||||
void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, |
||||
const float score_threshold, const float nms_threshold, |
||||
std::vector<int>& indices, const float eta, const int top_k) |
||||
{ |
||||
CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0, |
||||
nms_threshold >= 0, eta > 0); |
||||
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); |
||||
} |
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END |
||||
}// dnn
|
||||
}// cv
|
@ -0,0 +1,100 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef OPENCV_DNN_NMS_INL_HPP |
||||
#define OPENCV_DNN_NMS_INL_HPP |
||||
|
||||
#include <opencv2/dnn.hpp> |
||||
|
||||
namespace cv { |
||||
namespace dnn { |
||||
|
||||
namespace |
||||
{ |
||||
|
||||
template <typename T> |
||||
static inline bool SortScorePairDescend(const std::pair<float, T>& pair1, |
||||
const std::pair<float, T>& pair2) |
||||
{ |
||||
return pair1.first > pair2.first; |
||||
} |
||||
|
||||
} // namespace
|
||||
|
||||
// Get max scores with corresponding indices.
|
||||
// scores: a set of scores.
|
||||
// threshold: only consider scores higher than the threshold.
|
||||
// top_k: if -1, keep all; otherwise, keep at most top_k.
|
||||
// score_index_vec: store the sorted (score, index) pair.
|
||||
inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k, |
||||
std::vector<std::pair<float, int> >& score_index_vec) |
||||
{ |
||||
CV_DbgAssert(score_index_vec.empty()); |
||||
// Generate index score pairs.
|
||||
for (size_t i = 0; i < scores.size(); ++i) |
||||
{ |
||||
if (scores[i] > threshold) |
||||
{ |
||||
score_index_vec.push_back(std::make_pair(scores[i], i)); |
||||
} |
||||
} |
||||
|
||||
// Sort the score pair according to the scores in descending order
|
||||
std::stable_sort(score_index_vec.begin(), score_index_vec.end(), |
||||
SortScorePairDescend<int>); |
||||
|
||||
// Keep top_k scores if needed.
|
||||
if (top_k > 0 && top_k < (int)score_index_vec.size()) |
||||
{ |
||||
score_index_vec.resize(top_k); |
||||
} |
||||
} |
||||
|
||||
// Do non maximum suppression given bboxes and scores.
|
||||
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
|
||||
// https://goo.gl/jV3JYS
|
||||
// bboxes: a set of bounding boxes.
|
||||
// scores: a set of corresponding confidences.
|
||||
// score_threshold: a threshold used to filter detection results.
|
||||
// nms_threshold: a threshold used in non maximum suppression.
|
||||
// top_k: if not > 0, keep at most top_k picked indices.
|
||||
// indices: the kept indices of bboxes after nms.
|
||||
template <typename BoxType> |
||||
inline void NMSFast_(const std::vector<BoxType>& bboxes, |
||||
const std::vector<float>& scores, const float score_threshold, |
||||
const float nms_threshold, const float eta, const int top_k, |
||||
std::vector<int>& indices, float (*computeOverlap)(const BoxType&, const BoxType&)) |
||||
{ |
||||
CV_Assert(bboxes.size() == scores.size()); |
||||
|
||||
// Get top_k scores (with corresponding indices).
|
||||
std::vector<std::pair<float, int> > score_index_vec; |
||||
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec); |
||||
|
||||
// Do nms.
|
||||
float adaptive_threshold = nms_threshold; |
||||
indices.clear(); |
||||
for (size_t i = 0; i < score_index_vec.size(); ++i) { |
||||
const int idx = score_index_vec[i].second; |
||||
bool keep = true; |
||||
for (int k = 0; k < (int)indices.size() && keep; ++k) { |
||||
const int kept_idx = indices[k]; |
||||
float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]); |
||||
keep = overlap <= adaptive_threshold; |
||||
} |
||||
if (keep) |
||||
indices.push_back(idx); |
||||
if (keep && eta < 1 && adaptive_threshold > 0.5) { |
||||
adaptive_threshold *= eta; |
||||
} |
||||
} |
||||
} |
||||
|
||||
}// dnn
|
||||
}// cv
|
||||
|
||||
#endif |
@ -0,0 +1,41 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
namespace cvtest |
||||
{ |
||||
|
||||
TEST(NMS, Accuracy) |
||||
{ |
||||
//reference results obtained using tf.image.non_max_suppression with iou_threshold=0.5
|
||||
std::string dataPath = findDataFile("dnn/nms_reference.yml"); |
||||
FileStorage fs(dataPath, FileStorage::READ); |
||||
|
||||
std::vector<Rect> bboxes; |
||||
std::vector<float> scores; |
||||
std::vector<int> ref_indices; |
||||
|
||||
fs["boxes"] >> bboxes; |
||||
fs["probs"] >> scores; |
||||
fs["output"] >> ref_indices; |
||||
|
||||
const float nms_thresh = .5f; |
||||
const float score_thresh = .01f; |
||||
std::vector<int> indices; |
||||
cv::dnn::NMSBoxes(bboxes, scores, score_thresh, nms_thresh, indices); |
||||
|
||||
ASSERT_EQ(ref_indices.size(), indices.size()); |
||||
|
||||
std::sort(indices.begin(), indices.end()); |
||||
std::sort(ref_indices.begin(), ref_indices.end()); |
||||
|
||||
for(size_t i = 0; i < indices.size(); i++) |
||||
ASSERT_EQ(indices[i], ref_indices[i]); |
||||
} |
||||
|
||||
}//cvtest
|
Loading…
Reference in new issue