removed unnecessary memory allocation in LBP classifier

pull/2/head
Marina Kolpakova 13 years ago
parent eb599f6832
commit bc83011736
  1. 6
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 4
      modules/gpu/perf/perf_objdetect.cpp
  3. 46
      modules/gpu/src/cascadeclassifier.cpp

@ -1428,7 +1428,7 @@ class CV_EXPORTS CascadeClassifier_GPU_LBP
public:
enum stage { BOOST = 0 };
enum feature { LBP = 0 };
CascadeClassifier_GPU_LBP();
CascadeClassifier_GPU_LBP(cv::Size detectionFrameSize = cv::Size());
~CascadeClassifier_GPU_LBP();
bool empty() const;
@ -1441,6 +1441,7 @@ public:
Size getClassifierSize() const;
private:
bool read(const FileNode &root);
void initializeBuffers(cv::Size frame);
static const stage stageType = BOOST;
static const feature featureType = LBP;
@ -1459,8 +1460,9 @@ private:
GpuMat subsets_mat;
GpuMat features_mat;
// current integral image
GpuMat integral;
GpuMat integralBuffer;
GpuMat resuzeBuffer;
};
////////////////////////////////// SURF //////////////////////////////////////////

@ -66,12 +66,12 @@ GPU_PERF_TEST_1(LBPClassifier, cv::gpu::DeviceInfo)
cv::Mat img_host = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
cv::gpu::CascadeClassifier_GPU_LBP cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
cv::gpu::GpuMat img(img_host);
cv::gpu::GpuMat gpu_rects, buffer;
cv::gpu::CascadeClassifier_GPU_LBP cascade(img.size());
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
// cascade.detectMultiScale(img, objects_buffer);
cascade.detectMultiScale(img, buffer, gpu_rects);

@ -61,20 +61,46 @@ Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu();
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size) { throw_nogpu(); return 0; }
// ============ LBP cascade ==============================================//
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP() { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP() { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size /*frameSize*/){ throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP() { throw_nogpu(); }
bool cv::gpu::CascadeClassifier_GPU_LBP::empty() const { throw_nogpu(); return true; }
bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string&) { throw_nogpu(); return true; }
Size cv::gpu::CascadeClassifier_GPU_LBP::getClassifierSize() const { throw_nogpu(); return Size(); }
void cv::gpu::CascadeClassifier_GPU_LBP::preallocateIntegralBuffer(cv::Size /*desired*/) { throw_nogpu();}
void cv::gpu::CascadeClassifier_GPU_LBP::initializeBuffers(cv::Size /*frame*/) { throw_nogpu();}
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const cv::gpu::GpuMat& /*image*/, cv::gpu::GpuMat& /*scaledImageBuffer*/, cv::gpu::GpuMat& /*objectsBuf*/,
double /*scaleFactor*/, int /*minNeighbors*/, cv::Size /*maxObjectSize*/){ throw_nogpu(); return 0;}
#else
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(){}
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size detectionFrameSize)
{
if (detectionFrameSize != cv::Size())
initializeBuffers(detectionFrameSize);
}
void cv::gpu::CascadeClassifier_GPU_LBP::initializeBuffers(cv::Size frame)
{
if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows)
{
resuzeBuffer.create(frame, CV_8UC1);
integral.create(frame.height + 1, frame.width + 1, CV_32SC1);
NcvSize32u roiSize;
roiSize.width = frame.width;
roiSize.height = frame.height;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
// printf("HERE!!!!!!!%d\n", bufSize);
integralBuffer.create(1, bufSize, CV_8UC1);
}
}
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP(){}
@ -309,10 +335,12 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
objects.create(1 , defaultObjSearchNum, CV_32SC4);
GpuMat candidates(1 , defaultObjSearchNum, CV_32SC4);
// GpuMat candidates(objects);
if (maxObjectSize == cv::Size())
maxObjectSize = image.size();
scaledImageBuffer.create(image.rows + 1, image.cols + 1, CV_8U);
initializeBuffers(image.size());
unsigned int* classified = new unsigned int[1];
*classified = 0;
unsigned int* dclassified;
@ -335,13 +363,17 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
// if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
// continue;
cv::gpu::resize(image, scaledImageBuffer, scaledImageSize, 0, 0, CV_INTER_LINEAR);
cv::gpu::integral(scaledImageBuffer, integral);
GpuMat scaledImg(resuzeBuffer, cv::Rect(0, 0, scaledImageSize.width, scaledImageSize.height));
GpuMat scaledIntegral(integral, cv::Rect(0, 0, scaledImageSize.width + 1, scaledImageSize.height + 1));
GpuMat currBuff = integralBuffer;//(integralBuffer, cv::Rect(0, 0, integralBuffer.width, integralBuffer.height));
cv::gpu::resize(image, scaledImg, scaledImageSize, 0, 0, CV_INTER_LINEAR);
cv::gpu::integralBuffered(scaledImg, scaledIntegral, currBuff);
step = (factor <= 2.) + 1;
cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, factor, step, subsetSize, candidates, dclassified);
scaledIntegral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, factor, step, subsetSize, candidates, dclassified);
}
if (groupThreshold <= 0 || objects.empty())
return 0;

Loading…
Cancel
Save